
Volume 7 • Issue 3 • 1000315
J Biom Biostat
ISSN: 2155-6180 JBMBS, an open access journal

Research Article Open Access

Camara., J Biom Biostat 2016, 7:3
DOI: 10.4172/2155-6180.1000315

Research Article Open Access

Journal of Biometrics & Biostatistics
ISSN: 2155-6180

Jo
ur

na
l o

f B
iometrics & Biostatistics

Keywords: Estimation; Loss function; Confidence interval; Central
limit theorem; Statistical analysis

Introduction
Bayesian analysis implies the exploitation of suitable prior 

information and the choice of a loss function in association with Bayes’ 
Theorem. It rests on the notion that a parameter within a model is not 
merely an unknown quantity but rather behaves as a random variable 
which follows some distribution. In the area of life testing, it is indeed 
realistic to assume that a life parameter is stochastically dynamic. This 
assertion is supported by the fact that the complexity of electronic and 
structural systems is likely to cause undetected component interactions 
resulting in an unpredictable fluctuation of life parameters. Drake 
gave an excellent account for the use of Bayesian statistics in reliability 
problems. As he points out “He (Bayesian) realizes that his selection 
of a prior (distribution) to express his present state of knowledge 
will necessarily be somewhat arbitrary. But he greatly appreciates 
this opportunity to make his entire assumptive structure clear to the 
world…” “Why should an engineer not use his engineering judgment 
and prior knowledge about the parameters in the statistical distribution 
he has picked? For example, if it is the mean time between failures (MTBF) 
of an exponential distribution that must be evaluated from some tests, he 
undoubtedly has some idea of what the value will turn to be.

Life testing in reliability has received a substantial amount of 
interest from theorists as well as reliability engineers. Their concern was 
a product of the increased complexity and sophistication in electronic 
and structural systems, which came into existence very rapidly during 
this time. In the early 1950’s, Epstein and Sobel began to explore the 
field of parametric life testing. Under the assumption of an exponential 
time-to-failure distribution, they produced a series of papers (1953, 
1954, and 1955) which were to influence future work in reliability and 
life parameter testing.

Shortly thereafter other failure distributions more complex than 
the exponential were used as failure models. For example, Kao brought 
attention to the Weibull probability distribution, while Birnhaum 
and Saunders suggested the gamma distribution. In this study, we 
will use the gamma probability as our underlying model. The gamma 
distribution is defined as follows: that is defined as follows:
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where α is the shape parameter and β is the scale parameter.

The Gamma distribution is widely used to model positive and 
continuous variables having skewed distributions.

The following estimator is frequently used to obtain point estimates 
of the shape parameter corresponding to the two-parameter Gamma 
distribution:
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The estimator listed below is also frequently used to obtaining point 
estimates of the shape parameters corresponding to the two-parameter 
Gamma distribution:
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The Square Error loss function will be used to derive our 
Approximate Bayesian models that are presented in this research 
paper...

The “popular” Square Error loss function places a small weight 
on estimates that are near the true value and proportionately more 
weight on extreme deviation from the true value of the parameter. Its 
popularity is due to its analytical tractability in Bayesian modeling. The 
Square Error loss is defined as follows:

the Square Loss function that is defined as follows:
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Methodology
Considering the Square Error Loss function, the following 

Approximate Bayesian confidence bounds for the variance [1,2], 
the mean [3-7] and the coefficient of variation [8-10], of a Normal 
distribution will be used along with the Central Limit Theorem, to 

*Corresponding author: Vincent A R Camara, Research Center for Bayesian
Applications, Inc., Largo, FL, USA, Tel: (727) 238-2387; E-mail: gvcamara@ij.net

Received June 21, 2016; Accepted June 25, 2016; Published June 30, 2016

Citation: Camara VAR (2016) New Approximate Bayesian Confidence Intervals for 
the Shape and the Scale Parameters of the Two Parameter Gamma Distribution. J 
Biom Biostat 7: 315. doi:10.4172/2155-6180.1000315

Copyright: © 2016 Camara VAR. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

New Approximate Bayesian Confidence Intervals for the Shape and the 
Scale Parameters of the Two Parameter Gamma Distribution
Vincent AR Camara*
Research Center for Bayesian Applications, Inc., Largo, FL, USA

Abstract
The aim of the present study is to construct confidence intervals for the shape and the scale parameters of the two-

parameter Gamma Distribution. Using the square error loss function, closed form approximate Bayesian confidence 
intervals are derived.

Numerical results show that the obtained Approximate Bayesian models rely only on the observations under study 
and have great coverage accuracy.
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construct Approximate Bayesian confidence bounds for the Shape and 
the Scale of a Gamma Distribution:
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Per the Central Limit Theorem, for large samples, the distribution 
corresponding to the sample mean x  is approximately Normal, 
irrespective of the distribution of X.

Therefore, with large samples, to derive our new Approximate 
Bayesian confidence bounds for the shape parameter of a Gamma 
distribution, we will use the Central Limit Theorem along with the 
above Approximate Bayesian confidence bounds for the variance and 
the mean of a Gaussian distribution.

Using equations (4) and (5), we have the followings:
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Thus, for large samples, we have the following Approximate 
Bayesian bounds for the population variance and the population mean 
of a Gamma distribution

Approximate Bayesian interval for the variance: αβ2 when the 
Gamma population mean is known.
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Approximate Bayesian interval for the variance αβ2 of a Gamma 
distribution, when the Gamma population mean is not known.
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 Approximate Bayesian interval for the population mean αβ of a 
Gamma distribution.
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Using the above mentioned confidence intervals, for the mean and 
the variance of a Gamma distribution, we can easily derive the following 
confidence bounds for the inverse of the coefficient of variation of the 
Gamma distribution:
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Thus, the confidence bounds for the shape parameter of a Gamma 
distribution are the following:
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Confidence bounds for the scale and the rate parameters

To derive the Approximate Bayesian confidence bounds for the 
scale parameter of the two-parameter Gamma distribution, we will use 
the Central limit along the obtained Approximate Bayesian confidence 
bounds for the variance and the shape parameter of the Gamma 
distribution (Equations 11 and12).

 Using the confidence bounds corresponding to the variance of the 
Gamma distribution:
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Along with the confidence bounds corresponding to the inverse of 
the shape parameter
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We can easily obtain the following confidence bounds for the 
square of the scale parameter:
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Hence, the Approximate Bayesian confidence bounds for the scale 
parameter of the Gamma distribution are:
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Numerical Results
For the numerical results, we will use large Gamma data from the 

collection of SAS data sets.

Example 1 SAS data

0.746, 0.357, 0.376, 0.327, 0.485, 1.741, 0.241, 0.777 0.768, 0.409,

0.252, 0.512, 0.534, 1.656, 0.742, 0.378, 0.714, 1.121, 0.597, 0.231,

0.541, 0.805, 0.682, 0.418, 0.506, 0.501, 0.247, 0.922, 0.880, 0.344,

0.519, 1.302, 0.275, 0.601, 0.388, 0.450, 0.845, 0.319, 0.486, 0.529,

1.547, 0.690, 0.676, 0.314, 0.736, 0.643, 0.483, 0.352, 0.636, 1.080
x =0.63362

S=0.098336807

SAS yielded the following point estimate of the shape and scale 
parameter (Table 1):

 2)//(
_

sx =4.082646

SAS yields the following estimate of the shape and scale parameters:

Estimate of the scale parameter: 2
_
s

x
=0.155198

Estimate of the rate parameter: 6.443382 (Table 2).

Example 2 SAS data

620, 470, 260, 89, 388, 242, 103, 100, 39, 460, 284, 1285, 218, 393, 
106, 158, 152, 477, 403, 103, 69, 158, 818, 947, 399, 1274, 32, 12, 134, 
660, 548, 381, 203, 871, 193, 531, 317, 85, 1410, 250, 41, 1101, 32, 421, 
32, 343, 376, 1512, 1792, 47, 95, 76, 515, 72,1585, 253, 6, 860, 89, 1055, 
537, 101, 385, 176, 11, 565, 164, 16, 1267, 352, 160, 195, 1279, 356, 751, 
500, 803, 560, 151, 24, 689, 1119, 1733, 2194, 763, 555, 14, 45, 776, 1.

x =468.74444444

S=475.927505248

Point estimate of shape parameter: 0.959264019 (Tables 3 and 4).

Example 3 SAS data

 1747, 945, 12, 1453, 14, 150, 20, 41, 35, 69, 195, 89,

 1090, 1868, 294, 96, 618, 44, 142, 892, 1307, 310, 230, 30,

 403, 860, 23, 406, 1054, 1935, 561, 348, 130, 13, 230, 250,

 317, 304, 79, 1793, 536, 12, 9, 256, 201, 733, 510, 660,
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122, 27, 273, 1231, 182, 289, 667, 761, 1096, 43, 44, 87,

405, 998, 1409, 61, 278, 407, 113, 25, 940, 28, 848, 41,

646, 575, 219, 303, 304, 38, 195, 1061, 174, 377, 388, 10,

246, 323, 198, 234, 39, 308, 55, 729, 813, 1216, 1618, 539,

6, 1566, 459, 946, 764, 794, 35, 181, 147, 116, 141, 19,

380, 609, 546.
x =459.513513514

S=477.755849874

Point estimate of the shape parameter: 0.925091198 (Tables 5 and 6):

Exercise 4, Monte Carlo simulation has been used to generate the 
following 40 observations from a Gamma distribution.

 4.5046, 8.9119, 66.7603, 0.2643, 6.1241, 30.5425, 29.7423, 60.2067, 
16.3891, 8.2941, 52.0380, 0.1402, 12.6309, 19.4385, 22.8395, 52.3378, 
3.4389, 19.3268, 8.2350, 3.4737, 56.0736, 22.6451, 0.8359, 7.3484, 
7.7675, 15.3635, 4.05222, 36.2578, 5.6189, 8.7365, 7.6990, 15.3844, 
23.2242, 11.8542, 63.6975, 14.8772, 32.9585, 2.2127, 5,4132, 44.2462

x =20.297643

S=19.3784360608

Point estimate of shape parameter: 1.097119087 (Tables 7 and 8).

Conclusion
In the present study, new and closed form Approximate Bayesian 

confidence intervals for the Shape and the Scale parameters of a 

C.L.% Confidence bounds for the shape parameter
80 4.000775-4.456600
90 3.989559 -4.600397
95 3.984170- 4.744194
99 3.979958-5.078080

Table 1: Approximate Bayesian Confidence bounds for the shape parameter of the 
Gamma distribution.

C.L.% Confidence bounds for the scale parameter 
80 0.143864-0.158056
90 0.139282-0.158456
95 0.135428-0.158649
99 0.127254- 0.158800

Table 2: Confidence bounds for the scale parameter of the Gamma distribution.

C.L.% Confidence bounds for the shape parameter 
80 0.941889-1.038629
90 0.939508-1.069147
95 0.938365-1.099665
99 0.937471-1.170526

Table 3: Approximate Bayesian Confidence bounds for the shape parameter of the 
Gamma distribution.

C.L.% Confidence bounds for the scale parameter 
80 460.377645- 495.337918
90 450.400759-496.269320
95 440.867642-496.718142
99 420.281633-497.06955

Estimate of scale parameter: 488.650085.

Table 4: Confidence bounds for the scale parameter of the Gamma distribution.

C.L.% Confidence bounds for the shape parameter 
80 0.9112782-0.988185
90 0.909386-1.012446
95 0.908477-1.036707
99 0.907766-1.093040

Table 5: Approximate Bayesian Confidence bounds for the shape parameter of the 
Gamma distribution.

C.L.% Confidence bounds for the scale parameter 
80 472.916267-502.278094
90 464.390820-503.049553
95 456.183203-503.421082
99 438.252898-503.711915

Estimate of the scale parameter: 496.7223931.

Table 6: Confidence bounds for the scale parameter of the Gamma distribution.

C.L.% Confidence bounds for the shape parameter 
80 1.054678-1.290977
90 1.048863-1.365522
95 1.046070-1.440066
99 1.043886-1.613152

Table 7: Approximate Bayesian Confidence bounds for the shape parameter of the 
Gamma distribution.

C.L.% Confidence bounds for the scale parameter 
80 16.317761-19.063310
90 15.614121-19.143194
95 14.970570-19.181819
99 13.668167-19.212127

Estimate of the scale parameter: 18.50085668.

Table 8: Confidence bounds for the scale parameter of the Gamma distribution.

Gamma Distribution have been obtained. The models that have been 
derived rely only on observations under study and have great coverage 
accuracy.

 With these models, one may easily construct confidence intervals 
for the shape and the scale parameter of a Gamma distribution, at any 
level of significance.

Bayesian analysis contributes to reinforcing well-known statistical 
theories such as the Estimation and the Decision- making Theories.
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