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Introduction
Hypertension is a common but one of the most important health 

problems, because it is a major risk factor for many CVDs. So it is very 
important to prevent, diagnose early and treat hypertension and its 
complications. Renin-angiotensin-aldosterone system (RAAS) has been 
reported to be associated with hypertension and target organ damage 
for a long time [1]. RAAS, not only in the systemic circulation but also 
in the local organs and tissues, has also been shown to play a crucial 
role in the pathogenesis of hypertension and CVDs [2-4]. And there 
are lots of evidences that inhibitors of ACE (ACEI) and antagonists 
of AngⅡ(ARBs) are effective for the treatment of hypertension and 
related CVDs [5]. 

Interaction of AngⅡ with its receptors, AT1 and AT2, plays the 
central role in the expressions of various biological functions of RAAS 
in kidney, heart, endothelium, brain and other tissues, However, 
multifunctional new components of RAAS have been identified such 
as various fragments of angiotensin peptides, enzymes forming these 
angiotensin peptides, and receptors of these peptides. These include 
Ang-(1-7), alamandin, Ang A, Ang-(1-12), AngⅢ, AngⅣ, and Ang-
(1-9) as angiotensin peptides, and Mas (receptor for Ang-(1-7)), MrgD 
(receptor for alamandin), AT4/IRAP (receptor for Ang Ⅳ) (pro)renin 
recptor (PRR, receptor for prorenin and renin) as receptors, and ACE2 
and many other enzymes.

One of the important mechanisms of hypertension or CVDs caused 
by activated RAAS is increased oxidative stress by AngⅡ through 
AT1 receptor. Inhibition of RAAS by ACEI or ARB is reported to be 
associated with reduced free radical concentrations in the clinical 
setting [6]. But the reports on the alteration in oxidative stress level 
brought by these new components of RAAS are rare. In this review, 
outlines of the these new components of RAAS and recent findings on 
their effect on oxidative stress will be discussed.   

Renin-angiotensin-aldosterone system with new components 
(Figure 1) and oxidative stress 
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ACE/ AngⅡ/ AT1 axis: AngⅡ is the major bioactive component of this 
classical axis in the RAAS. It is an octapeptide produced following the 
removal of C-terminal of AngⅠ, a decapeptide produced by the cleavage 
of the N-terminal of angiotensinogen by renin. Carboxypeptidase ACE 
removes C-terminal dipeptide, His-Leu from AngⅠ, but this process 
can be done by other enzymes other than ACE such as chymase, 
cathepsin G, tonin, and others [7], so these enzymes can produce 
AngⅡ even under inhibition of ACE by ACEI. AngⅡ exerts a potent 
biological effects such as blood pressure elevation by vasoconstriction, 
sodium retention, aldosterone release from adrenal gland, hypertrophy, 
proliferation, fibrosis, and increased oxidative stress by biding to AT1 
receptor [8]. On the other hand, AngⅡ exerts a protective effects such 
as vasodilation, antihypertrophy, antiproliferation, antifibrosis, and NO 
release by biding to AT2 receptor [9].

Oxidative stress has been shown to be involved in the pathogenesis 
of human essential hypertension, because hydrogen peroxide or 
superoxide anion are reported to be elevated in the plasma of those 
patients [10-14]. Griendling et al. reported that superoxide anion 
was produced NAD(P)H oxidase-dependently from the cultured 
smooth muscle cells from the animal model of hypertension by AngⅡ 
administration [15]. 

Reactive oxygen species (ROS) production by AngⅡ through AT1
receptor is caused mainly by NAD(P)H oxidase, which is composed of 
p22phox, gp91 phox (Nox2), components of cell membrane, intracellular 
p47 phox, p40 phox, p67 phox, and small G protein Rac. And biphasic AngⅡ-
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stimulated ROS production is reported, first phase involves protein 
kinase C (PKC), and second phase involves Rac, Phosphatidylinositol-
3’-kinase (PI3K), c-Src kinase and epidermal growth factor (EGF) 
[16]. RhoA/Rho-kinase activation by increased NAD(P)H oxidase-
dependent ROS are also reported, leading to vascular smooth muscle 
contraction [17]. Involvement of the glutathionylation-dependent 
uncoupling of endothelial nitric oxide synthase (eNOS) is also reported 
[18]. Pharmacological intervention to oxidtive stress or RAAS are also 
reported. Glutathione (GSH) depletion by GSH synthase inhibitor 
buthionine sulfoximine (BSO) on Sprague-Dawley rats caused a 
marked elevation in blood pressure, and a significant reduction in 
the urinary excretion of the NO metabolite nitrate plus nitrite, which 
suggests depressed NO availability [19]. Treatment of human vascular 
endothelial cells (HVEC) with ARB, Losrtan, or ACEI, Lisinopril, 
both reduced AngⅡ-stimulated superoxide anion production [20]. 
Telmisartan, another ARB, has been also reported to have reduced 
atherosclerotic lesion size, superoxide anion production, and NAD(P)
H oxidase activity of aorta from ApoE KO mice [21].    

On the contrary, activation of AT2 receptor has shown to cause 
protective effects by antioxidant mechanism. Inhibition of AT2 receptor 
resulted in superoxide anion production in human umbilical vein 
endothelial cells (HUVEC), and this effect involved src homology 
2 domain containing inositol phosphatases  (SHP-1) activation by 
AT2 receptor [22]. Involvement of c-Src tyrosine kinase in SHP-1 
phosphatase activation by AT2 receptors in rat fetal tissues has been 
reported [23]. Increased NAD(P)H oxidase activity, p47phox, and plaque 
area were reported in the aorta of double knock out mice of ApoE and 
AT2 receptor [24]. Authors are speculating that AT2 receptor stimulation 
antagonizes AT1 receptor-mediated NAD(P)H oxidase activation, that 
is phosphorylation of p47phox and translocation of Rac1 to the plasma 
membrane, activation and translocation of NAD(P)H oxidase subunits. 
And authors are also suggesting AT2 receptor-mediated inhibitory effect 
on oxidative stress were caused through inhibition of Akt activation 
brought by AT1 receptor activation, which is a prerequisite for the AT2 

receptor to exert its inhibitory effect on NAD(P)H oxidase activation.

Another interesting mechanism of controlling oxidative stress 
is internalization of AT1 receptor. AngiotensinⅡ type 1 receptor-
associated protein (ATRAP) is reported to mediate this phenomenone. 
Overexprssion of ATRAP causes reduction in NAD(P)H oxidase 
activity [25]. 

ACE2/ Ang-(1-7)/ Mas axis: The most important peptide in this axis, 
Ang-(1-7), is produced after removing C-terminal phenylalanine from 
AngⅡ by membrane-associated zinc metaloprotease ACE2, which is 
expressed in endothelial cells of coronary arteries, aorta, carotid artery, 
renal and mesenteric arteries and other tissues [26,27]. Less Ang-(1-
7) is produced from Ang-(1-9) by ACE and other alternative enzymes
such as prolyl endopeptidase, neutral endopeptidase, or thimet
oligopeptidase [27,28]. Ang-(1-9) is produced from AngⅠ by ACE2,
carboxypeptidase A or cathepsin A [29,30]. Ang-(1-7) is endogenous
ligand for G protein-coupled receptor (GPCR) Mas [31], eliciting
antagonistic reaction against AT1 receptor including vasodilation,
antiproliferation in the vasculature, antihypertrophy, antifibrosis,
antiarrythmia in the heart, and many other protective reactions in the
kidney, and the brain etc [32]. Ang-(1-7) is also reported to bind to
the AT2 receptor in in vitro experiment [33], and in vivo study, causing
the AT2 receptor-mediated effects such as increased perfusion pressure
of isolated mouse hearts [34], or vasodepressor effects in  rats [35,36].
Interestingly, Ang-(1-9) has been demonstrated to bind to AT2 receptor 
showing the antihypertrophic effects in adult rabbit cardiomyocytes
[37].

Vasorelaxant effects caused by Ang-(1-7) was reported to be 
mediated by prostaglandins [38], or by the endothelium-dependent 
release of nitric oxide, involving a B2 bradykinin receptor [39]. NO 
release was reported to be inhibited by the selective Mas antagonist, 
A-779, and Akt-dependent pathway was involved in NO release
change, using Chinese hamster ovary cells transfected with Mas cDNA
[40]. And increased NO release by Ang-(1-7) was also inhibited by
the the selective antagonist for Mas, D-Ala7- Ang-(1-7) [41], using
cultured bovine aortic endothelial cells (BAECs). Authors report that
moderate Ang-(1-7)-stimulated NO release was accompanied by a
very slow concomitant superoxide anion, suggesting low formation
of peroxynitrite. Thus, Ang-(1-7) might preserve the vascular system,
among others, due to its low formation of cytotoxic peroxynitrite by the 
reaction between NO and superoxide anion.

Another important mechanism of ACE2/Ang-(1-7)/Mas Axis is 
generation of ROS by components of this axis. As mentioned above 
[41], low generation of superoxide anion was reported after Ang-(1-
7) stimulation. This may be caused from eNOS uncoupling due to
L-arginine shortage [42]. Still, Mas activation causes vasodilatory
and protective cardiovascular effect. One possible mechanism is
Mas-mediated phosphorylation of SHP-2 [43]. Authors of this
report are speculating that Ang-(1-7) increases association between
phosphorylated SHP-2 and c-Src of human endothelial cells treated
by AngⅡ, leadind to negative modulation of downstream targets of
extracellular signal regulator kinase (ERK) 1/2 and NAD(P)H oxidase
activity. Cross talk between ACE/ AngⅡ/AT2 Axis and ACE2/Ang-
(1-7)/Mas Axis is reported as a mechanism of antiatherosclerotic of
Ang-(1-7), using Mas-knockout and AT2 receptor knockout mice [44].
Neointimal formation after cuff placement were more pronounced in
Mas-knockout mice than wild-type mice. Treatment with azilsartan
or Ang-(1-7) attenuated neointimal area, vascular smooth muscle
cell proliferation, and superoxide anion, and increased ACE2 mRNA
and AT2 receptor mRNA but not AT1 receptor mRNA, suggesting

Figure 1: Outline of rennin-angiotensin-aldosterone system with new 
components. PRR: (pro) rennin receptor. Ang: angiotensin. ACE: 
angiotensin converting enzyme. NEP: neutral endopeptidase. PEP: prolyl 
endopeptidase. APA: aminopeptidase A. APM: aminopeptidase M. APN: 
aminopeptidase N. APB: aminopeptidase B. AT1: angiotensinⅡ type 1 
receptor. AT2: angiotensinⅡ type 2 receptor. AT4: angiotensinⅡ type 4 
receptor. IRAP: insulin-regulated aminopeptidase. MrgD: Mas-related 
G-protein coupled receptor D. Mas: Ang-(1-7) receptor Mas. TOP: thimet
oligopeptidase. Black rectangles are protective receptors
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blockade of AT1 receptor coud enhance the activities of the ACE2/ 
AngⅡ/AT2 Axis and ACE2/Ang-(1-7)/Mas Axis. The role of ACE2 
in the vasculature is also reported, evaluating angiogenesis and 
atherosclerosis in endothelial cells of apoprotein E-knockout, ACE2-
overexpressing and deficient mice [45]. ACE2-deficient mice exhibited 
impaired endothelium-dependent relaxation. ACE2 promoted capillary 
and neovessel maturation and reduced atherosclerosis, and attenuated 
AngⅡ-induced reactive oxygen production in part through decreasing 
the expression of p22phox in an Ang-(1-7)-dependent fashion. And we 
would like to refer details to reviews that report the relationship ACE2/
Ang-(1-7)/Mas Axis with oxidative stress [46,47]. Interactions between 
AT1 receptor, Mas and NAD(P)H oxidase at signal transduction level 
from above mentioned reports [43] are summerized in Figure 2.

Ang A/ Alamandine/ MrgD axis: Angiotensin A (Ang A), an 
octapeptide, is produced by decarboxylatin of N-terminal aspartate of 
AngⅡ into alanin. Ang A binds to both AT1 and AT2 receptors [48]. 
Its vasoconstrictive and pressor effect due to AT1 receptor activation is 
reported [49,50]. 

By hydrolyzing the C-terminal amino acid of Ang A by ACE2, 
or decarboxylation of N-terminal aspartate of Ang-(1-7) into alanin, 
alamandine is produced [51]. Alamandine produced several biological 
effects including endothelial-dependent vasorelaxation in aortic rings 
of mice and rats or central cardiovascular effects. Microinjection 
of alamandine into rostal ventrolateral medulla (RVLM) increased 
blood pressure, and microinjection into caudal ventrolateral medulla 
(CVLM) decreased blood pressure, and modulated the baroreflex 
sensitivity after intra-cerebro ventricular (ICV) infusion [51]. Mas-
related G-coupled receptor type D (MrgD) has been identified as the 
receptor for alamandine [51].

 On the other hand, β-alanin has been established as a ligand for 
MrgD and responsible for their effects in the primary sensory neurons 
[52]. Surprisingly, MrgD agonist β-alanin did not relax abovementioned 
aortic rings, which was relaxed by alamandine. Thus signal transduction 
induced by alamandine in blood vessel seems to be different from 
that of β-alanin in primary sensory neurons. The former causes NO 

production and vasorelaxation. But the latter causes inhibition of 
KCNQ2/3 in primary sensory neurons [53]. Unfortunately, effect of 
Ang A/Alamandine/MrgD Axis on oxidative stress are not studied for 
detail.

AngⅢ/ AngⅣ/ AT4/ IRAP axis: Angiotensin Ⅲ (Ang Ⅲ) 
is produced from AngⅡafter removing N-terminal aspartate by 
aminopeptidase A. Ang Ⅲ normally binds to AT1 receptor and to AT2 
receptor [54]. Ang Ⅲ causes blood pressure elevation in normal and 
hypertensive subjects [55], and aldosterone release [56].

Angiotensin Ⅳ(Ang Ⅳ) is produced from AngⅢ after removing 
N-terminal arginine by aminopeptidase N, and directly from AngⅡ by 
D-aminopeptidase. Centrally administered Ang Ⅳ causes improvement 
in learning or memory in animal model [57]. Ang Ⅳ also induces 
vasodilation in preconstricted endothelium-intact pulmonary artery 
[58], and increases endothelial NO synthase activity in pulmonary 
arterial endothelial cells [59]. Many effects of Ang Ⅳ are mediated by 
AT4 receptor [55]. A fragment of the hemoglobin β-chain, Leu-Val-
Hemorphin 7 (LVV-hemorphin 7), was isolated from sheep brain as 
endogenous ligand for AT4 receptor that attenuates the deleterious 
effects of scopolamine on learning performance [60]. AT4 receptor 
was identified as insulin-regulated membrane aminopeptidase (IRAP) 
and was proposed that AT4 receptor ligands may inhibit the catalytic 
activity of IRAP, thereby extend the half-life of its neuropeptide 
substrates including arginine vasopressin, oxytocin and somstostatin 
which are reported to enhance memory [61]. And AT4 receptor ligands 
may modulate glucose uptake by influencing intracellular vesicular 
trafficking of GLUT4, co-localized with IRAP, increasing glucose 
uptake by neurons [62]. AngⅢ seems to activating NAD(P)H oxidase 
via activation of AT1 receptor. And decreased ROS level by AT4/IRAP 
receptor is speculated, but details are not investigated.

Angiotensin-(1-12): Ang-(1-12) is a peptide of 12 N-terminal amino 
acids of rat angiotensinogen, being substrate for AngⅡ, expressed in 
the kidney and the heart [63]. Ang-(1-12) can be degraded into smaller 
peptides such as Ang-(1-7) by ACE, neprilysin or chymase [64]. Ang-
(1-12) was also reported to bind AT1 receptors, serving not only as 
a substrate for smaller active peptides, but also as a ligand [65]. This 
peptide does not exist in human tissues.   

Prorenin/(pro)renin receptor (PRR)/ intracellular signaling 
axis

The (pro)renin Receptor (PRR) is a 350-amino acid single 
transmembrane receptor protein. Expressed in brain, heart, lung, liver, 
kidney, skeletal muscle, pancreas, fat, placenta, and others, but not in 
the systemic circulation. Both prorenin and renin bind to the PRR [66]. 
After binding to PRR, nonproteolytic activation and conformational 
change of prorenin occur without cleavage of the prosegment, causing 
local AngⅡ generation and AngⅡ-dependent activation of tissue RAAS 
[67].  This may lead to increase oxidative stress like above-mentioned 
mechanism through activation of AT1 receptor. After the binding of 
prorenin and renin to PRR as ligands, AngⅡ-independent signaling 
cascades are activated. AngII-independent MAPK activation by human 
(pro)renin receptor and induction of glomerulosclerosis with increased 
TGF-beta1 expression was reported [68]. And Renin-activated induction 
of ERK1/2 through a receptor-mediated, angiotensin II-independent 
mechanism in mesangial cells has been reported. This renin-activated 
pathway was reported to have triggered cell proliferation along with 
TGF-beta1 and plasminogen activator inhibitor-1 gene expression [69]. 
These AngⅡ-independent signaling pathways may also cause oxidative 
stress and further enhance end organ damage as above-mentioned 

Figure 2: Interactions between AT1 receptor, Mas and NAD(P)H oxidase 
at signal transduction level. ERK1/2: extracellular signal regulator kinase. 
C-Src: proto-oncogene tyrosine-protei kinase. NAD(P)H: nicotinamide adenin 
dinucleotide phosphate-oxidase. O2-: superoxide anion. SHP-2: Src homology 
2-containing inositol phosphatase 2. PI3K: phosphatidylinositol 3-kinase. Akt: 
protein kinase B. NOS: nitric oxide synthase. NO: nitric oxide.
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activation of AT1 receptor (Figure 2). PRR may affect on vacuolar H+ 
-ATPase (V-ATPase) which regulates the pH of cellular and intracellular 
vesicles [70], because hydrophobic membrane-binding fragment of
PRR degraded by furin contains ATPase assciated protein 2 (ATP 6
ap 2). Bafilomycin, a specific inhibitor of V-ATPase, has been reported
to inhibit phosphorylation of ERK by prorenin in the kidney [71].
Prorenin and its receptor-mediated Ang-II-independent pathways is
reported to comprise of PRR-associated V-ATPase-linked Wnt/Frizzled 
signal transduction, including canonical-β-catenin and non-canonical
Wnt-JNK-Ca(2+) signals  in the pathogenesis of cardiovascular and
renal end-organ damage [72]. On top of that, there is a possibility
that PRR, by modulating intracellular H+ concentration as V-ATPase
associated-protein, is changing the production of intracelular ROS such 
as hydroperoxy radical or hydrogen peroxide (superoxide anion + H+⇔
hydroperoxy radical, peroxide  + 2H+⇔ hydrogen peroxide) (Figure 3:
author’s speculation).

Therapeutic Implications 
   Discovery of new components of the RAAS including ACE2/

Ang-(1-7)/Mas Axis and others brought about changes of our concept 
on RAAS and understanding of pathophysiology on hypertension 
and CVDs. Development of novel therapeutic strategies for the better 
treatment of hypertension and related CVDs based on these new 
findings can be expected. We would like to review briefly the present 
status of them including experimental findings.

ACE2/Ang-(1-7)/Mas axis

Recombinant human ACE2 (rhACE2) is reported to be a potential 
candidate to treat diastolic and systolic heart failure [73]. Efficacy 
of lentiviral vector-mediated overexpression of ACE2 is reported 
to inhibit the myocardial and perivascular fibrosis of experimental 
Ang-II infusion rat and SHR [74,75]. Administration of rhACE2 was 
well tolerated by healthy human subjects. Despite marked changes in 
angiotensin system peptide concentrations , cardiovascular effects were 
absent, suggesting the presence of effective compensatory mechanisms 
in healthy volunteers [76]. A soluble form of rhACE2 is being assessed 
for acute lung injury and PAH.

   Efficacy of synthetic enhancers of ACE2 activators, xanthenone 

(XNT), and resorcinolnaphthalein are reported to activate ACE2, 
decrease blood pressure, and reverse tissue remodeling [77], and 
diminazene aceturate (DIZE) to attenuate pulmonary hypertension 
in experimental models [78]. But some structural modifications are 
necessary for clinical use because of poor solubility in water and safety.

   Oral administation of Ang-(1-7) seems promising as a candidate 
for therapy. But its clinical use is limited because of short half-life 
in vivo. Cyclized Ang-(1-7) (thioether-bridged Ang-(1-7)) and 
angiotensin-(1-7) inclusion in cyclodextrin (Ang-(1-7)-CyD) exhibited 
better pharmacokinetic profile in vivo but in experimental models 
[79,80]. A synthetic analog of Ang-(1-7) TXA127 is in clinical trial for 
the treatment of PAH.

AVE-0991 is a first synthetic non-peptide agonist for the Mas 
receptor and produced beneficial effects in isolated perfused rat hearts 
and attenuated postischemic heart failure [81]. And two novel Mas 
agonists, CGEN-856S and CGEN-857 with high binding specificity for 
Mas, has been reported [82]. CGEN-856S induced antiarrythmogenic 
effect and decreased arterial pressure of conscious SHR.

Interestingly, it is reported that olmesartan, ARB, may activate 
ACE2 in hypertensive patients [83].   

Ang A/Alamandine/MrgD axis

Oral administration of an inclusion compound of Ang-(1-7) or 
alamandine/β-hydroxypropyl cyclodextrin produced a long-lasting 
antihypertensive effect in SHR and antifibrotic effects in rats treated 
with isoproterenol [51,84]. 

PRR/intracellular signaling axis

Ichihara et al. reported that the binding of rennin and prorenin to 
the PRR and diabetic nephropathy were inhibited by a decoy peptide 
corresponding to the “handle” region for nonproteolytic activation 
of prorenin on PRR, and nonproteolytic activation of prorenin may 
be a significant mechanism of diabetic nephropathy and may serve 
as important therapeutic targets for the prevention of diabetic organ 
damage [85]. 

Conclusion
Targeting the emerging new components of RAAS is a promising 

strategy for developing novel therapy for hypertension and target organ 
damage. But improvement of safety and drug delivery, for example 
liposome modification, are necessary before future clinical application.
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