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Abstract

In this article we apply three mathematical methods for solving the Maccari system, namely, the exp(-¢(&))-
expansion method, the sine-cosine approach and the Riccati-Bernoulli sub-ODE method. These methods are used
to construct new and general exact periodic and soliton solutions of the Maccari system. This nonlinear system can
be turned into another nonlinear ordinary differential equation by suitable transformation. It is shown that the
exp(-p(&))-expansion method, the sine-cosine method and the Riccati-Bernoulli sub-ODE method provide a powerful
mathematical tool for solving a great many systems of nonlinear partial differential equations in mathematical physics.
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Introduction

Nonlinear wave phenomenon play a major role in many natural
sciences including mathematics, biology, and particularly in many
branches of physics, such as nonlinear optics, condensed matter
physics, plasma physics, chemical physics, solid-state physics, fluid
dynamics, [1-7]. Actually, there are so many interesting applications
of the previous natural sciences like the schrodinger equation, the
Phi-4 equation, the 2D Ginzburg-Landau equation, the generalized-
Zakharov system, the model of blood flow in arteries, the diffusive
predator-prey system, shallow water equations, etc.

According to the import role of these equations, various papers
interested in finding solutions of them even numerically or analytically.
These solutions might be essential and important for the exploring
some physical phenomena. Therefore investigating new technique for
deterministic case to solve more complicated problems. Thus, many
new methods have been proposed, like as the homogeneous balance
method [8,9], the F-expansion method [10-12], the tanh-sech method
[13-15], the Riccati-Bernoulli sub-ODE method [16,17], Jacobi elliptic
function method [18,19], sine-cosine method [20-22], extended tanh-

method [23-25], (Q) -expansion method [26,27], and exp-function
method [28-30].

The objective of this paper is to apply three mathematical methods,
specially, the exp(-¢(£))-expansion method, the sine-cosine method
and the Riccati-Bernoulli sub-ODE method, for finding various
new exact solutions of the Maccari system. This system is extremely
presented to define the motion of the isolated waves, localized in a
very small part of space, in many fields such as hydrodynamics, optics,
quantum field theory. Moreover it used in plasma physics to describe
the behavior of the sonic Langmuir solitons. We give new solutions and
compare it with other methods and show that this method is efficient
robust and adequate for solving other type of NPDEs. Moreover the
Riccati-Bernoulli sub-ODE method gives infinite sequence of solutions.
Actually all presented solutions have so important contribution for the
explanation of some practical physical problems.

Therest of this work is given as follows: In section 2 we prescribe the
exp(-¢(£))-expansion method, the sine-cosine method and the Riccati-
Bernoulli sub-ODE method. In Section 3 these methods are applied
to solve the Maccari system. In Section 4, some three-dimensional
graphs of some solutions is provided. Finally, in Section 5 we give the
summary of our contribution.

Analysis of the Methods

Any nonlinear evolution equation can be presented in following
form:

P(uu,u u,,u_,..)=0, (1)

where P is a polynomial in u(x,t) and its partial derivatives in which
the highest order derivatives. The basic steps for this method are

>

Using the wave transformation for a positive constant c,

u(x,N=u(&), E=x-c, (2)

Eqn. (1) will be transformed to the following ODE:

D@u,u',u" u'",....)=0, (3)
The exp(-¢(£))-expansion method

Assume that the solution of eqn. (3) can be written in a polynomial
form of exp(-@(&))as follows [29,30]:

u(@)=Ya, (ew-p(@))', a,#0, @
where @(£) satisfies the following OD
9'(&) = exp(=p($)) + uexp(p($)) + A. (5)

Eqn. (5) has the following solutions:
LAt A2 =4u>0,u=0,

. y_wwz—ﬂf@%)}l

- (6)
(&) =In o ;

Where k is an arbitrary constant.
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2.At A2 —4u<0,u#0,

T [ -2

2u

P(&)=1In )

3.At AP —4u>0,u=0,1%0

| — A )
#() ln[exp(l(§+k))—lj’

4. At AP —4u=0,u#0,120,

~ _2(/1(§+k)+2)
40(5)1”[ ’12(54’]‘)]’ 9
5 At A —4u=0,4=0,1=0,
(&)= ln(f + k). (10)

Finally, superseding eqn. (4) with eqn. (5) into eqn. (3) and
aggregating all terms of the same power

exp(m-¢(£)), m=0,1,2,3,4...Then equating each term to zero to
get algebraic equations which can be solved analytically or by using
Mathematica or Maple to obtain the values of a, Hence, we get the
solutions (4), which give the exact solutions of eqn. (3).

The sine-cosine method

The solutions of the reduced ODE eqn. (3) can be expressed in the
form [31,32]

Vs
Asin” , <=,
u(et) = s, 141 " (an
0, otherwise,
or in the form
Acos'(uf), ||~
u(x,t)= He: “ou’, (12)
0, otherwise,

where A, y and r'0, are parameters, which will be determined. From
eqn. (11) we have

u(§) = Asin" (us),
u" (&)= A"sin" (ué), | (11a)
W"); = nuri"cos(ué)sin""' (us),
U")ee =-n 2P A sin™ (ué) + npt A"r(nr — D)sin™ 7 (ué),
and from (12) we have
u(§) = Acos” (us),
' (€)= Acos” (uE), 120

W") = —nprAsin(ué)cos™ " (ué),
W) ==’ 12 r* A cos™ (uE) + np* A'r(nr —cos™ * (ué),
and so on for other derivatives.

Finally, we substitute the above equations into the reduced
equation obtained

above in eqn. (3), balance the terms of the cosine functions when (11a)
is used, or balance the terms of the sine functions when (12a) is used,
and solving the resulting system of algebraic equations by using the
computerized symbolic calculations. We next collect all terms with the

same power in cos" (u€) or sin"(ué) and set to zero their coefficient
to get a system of algebraic equations in the unknowns A, y and r We
obtained all possible values of the parameters A, y and r

Riccati-Bernoulli sub-ODE method

Due to the Riccati-Bernoulli Sub-ODE technique [16,17,33], we
assume that eqn. (3) has a solution given by:

u'=au”™" +bu+cu", (13)
where a,b,c and n are constants determined later. From eqn. (13), we get
u" = ab(—mu*" + a2 - m)* ™ + nctu? +be(n + D" + Qac + by, (14)
u" =(abB-n)2-nu"" +a*Q2-n)3-2n)u>*"
+nQ2n =D +ben(n+1Du"™" + Qac + b))

(15)

The solitary solutions u (&) of eqn. (13) are given as follow:

1. For n=1

u(§)= pe " (16)
Where p is an arbitrary constant.

2.For n #1 b=0 and c=0

u(@) = (aln—1)(E + ). a7)
3. For n#1, b#0 and c=0

u(&) = ( +yeh(n71)§jﬁ. (18)

4. For n#1, a#0 and b*-4ac<0

u(f)[;l)+ dac—b tan{(l—n)\Mac—b (§+#)D (19)
a 2a 2

and

u(g)=

[ -b \/4ac b’ [(1—;1)\/4ac—b2 (§+ﬂ)]J]" (20)
5 .

5. For n#1, a#0 and b*-4ac>0

u(&) - [” Vb —dac . ( ”)“ 9 et )D @)
and
u(é) = [” Vb ~dac { ”)“ 9 (e )B".m)

6. For n#1, a#0 and b*-4ac=0

1
_ 1 by (23)
") (a(n—l)(e:w) 2a] |
Bicklund transformation: When u, (&) and

u, (&), (&) =u,(u, (£))) are the solutions of eqn. (13), we have
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” 3 — 32
i, (€) __ (&) di (&) _ (@) (oa "+ L+ L=, 62
d§ dum—l(§) dé dum—l(g) ) —c s
= = 1 =

namely where [ =c{./, [Cz +c3]’l3 (ki +k3) -
du (&) (&) (b Onsolving eqn. (26) using the exp (-¢(£)-expansion method
aw,” +bu,, +cuy,  au,” +bu, , +cu, Balancing the highest order derivative 4" and non-linear term u*

Integrating eqn. (24) once with respect to & we get a Backlund
transformation of eqn. (13) as follows:
1

, (£) [ K+ aK, (1, () J o
bK1 + CZKZ + aK] (umil (5))

where K and K, are arbitrary constants. We use eqn. (25) to obtain
infinite sequence of solutions of eqn. (13), as well of eqn. (1)

The Maccari System

Maccari [34] derived a new integrable (2+1) dimensional
nonlinear system. This system is obtained by an asymptotically exact
reduction method based on Fourier expansion and spatio-temporal
rescaling, from the Kadomtseva€“Petviashvili equation. The Maccari
system is frequently introduced to define the motion of the isolated
waves, localized in a very small part of space, in many fields such as
hydrodynamics, quantum field theory, nonlinear optics. Indeed, it is
plays an important role in plasma physics to describe the behavior of
the sonic Langmuir solitons. In this section we are concerned with the
Maccari system [35-37], given as follows:

ig+¢,.+9y =0,
(26)
w,+v, +(g)° =0,

Where ¢=¢(x,y,t) and y=y(x,y,t), represent, respectively,
the complex scalar field and the real scalar field. Here x,y are the
independent spatial variables and t>0 represents the temporal variable.
In this section we apply the expansion exp(-(£)) method, the sine-cosine
method and the Riccati-Bernoulli sub-ODE method, to construct exact
solutions for the Maccari system.

Consider the wave transformation

px,y.0)=eu(@), w(x,y,0=w(&), =cx+cy+at, e=kx+ky+kt, (27)
where €565 kl k2 and k3 are arbitrary constants. Then, eqn. (26) are
transformed into the following equations

ic’ = ke — kju + 2ikcu’ + cju' +uy =0,

(28)

(e, +e)y'+ Cl(uz)' =0,

Integrating second equation of eqn. (28) and taking integration
constant zero for the sake of simplicity, yields

W=[ —4 ju% (29)
62 +C3

Now by separating real and imaginary parts in the first equation of
(28), we have

i(c; + 2kc)u' = —0. (30)
~(ky + I Yu + cfu” +uy = 0. (1)

Substituting eqn. (29) into (31), we get the following NODE:

in eqn. (32), we obtain n=1. Consequently, eqn. (32) has the following
solution

U =4, + dexp(-9), (33)

where A, and A are constants to be determined, such thatAl %0
It is easy to see that

U'=4 (2 exp(=3p) + 32 exp(=2¢) + Qu + %) exp(—¢) + l,u), (34)
U = & exp(=3p) + 34,4} exp(-29) +34; 4, exp(~p) + 4, (35)

Superseding u, u', u® into eqn. (32) and then equating the
coefficients of exp @) to zero, we obtain

LAAu+1L,A +1,4,=0, (36)
AL(A* +2u) +3LAA + 1,4 =0, (37)
31,4+ 31,4,4> =0, (38)
204, +1,4] =0. (39)

Solving eqns. (36)-(39), we get

[ RSy S SR S S
2’ =4u L(4u—2%) L(4u—-2%)

Actually we will consider only case from the above cases, the other
cases follow in the same way. Now substituting the values of ALA, into
eqn. (33) yields

L
U - m (2 + 2ep(-p(2). (40)

Now substituting eqns. (6)-(7) into eqn. (40) respectively, we have
the following solutions:

Case 1. At A —4u>0,u#0,

b . (41)

2_
«MZ—4ytanh{ 4 B Au (c,x+czy+c3t+k)J+l

PRER ) Sy LS
‘ VL@u-27)

where 1,,55,¢,,¢,,¢5,4, 44 and k are arbitrary constants. Using eqns.
(41), (27) and (29) the solutions of eqn. (26) take the forms:

PHESME ie"‘*‘*‘”*“"vm A- 4u (42)
) -7 7
L (4u l11_4ytanh[\/i : 4u (qx+c2y+c,t+k)]+1

and

wl_z<x,y.r>:[fi] @ b |- _4u (43)
are = JAT—4u [anh{\/;ﬁ%(u,x+c2y+c;t+k)]+/l

Case2. At A —4u<0,u+0,

o) =2 #"; ol 4u (44)

2
Nau-2* tanh[éwf_i(c,x +eytot+ k)] -4
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where /,,1;,¢,,¢,,¢;,A, 4 and k are arbitrary constants.

Using eqns. (44), (27) and (29) the solutions of eqn. (26) take the
forms:

i(kyveky vk

\ia 1142) i+ du (45)
2 NCYEY S tanh(\/4'u2_l. (c',x+c2y+c3t+k)]7/1

B4 (x 0,0 = te

and

2

m(mth(—"‘] b las i .(46)
. o +e )| \L@u-2%) s Jau—2
44— 27 tanh 3 (ex+ey+et+k)|-2

Case3. At A*—4u>0,u=0,1#0

LVt ==+ 2 A+ ' v
s (%, 3,1) —12/12[ exp(/’«(clx+czY+cs’+k))‘1J v

Using eqns. (47), (27) and (29) the solutions of eqn. (26) take the
forms:

-LA? exp(A(ex+e,y+et+k))-1

] (48)

and

2
—C I 24
0 =| —2 | | , (49)
W3'4(x »t) [cz+03}[ —lzﬂ.z[ +exp(/l(c,x+czy+cxt+k))—1]]

where 1,,1;,¢,,¢,,¢5,4, 14 and k are arbitrary constants.

On solving eqn. (26) using the sine-cosine method

Now we apply the sine-cosine method for solving eqn. (32).
Subtitling (31) into (32), gives

A (—,uzrzﬂ,sin"(/tf) + 12 Ar(r — l)sin"z(yf)) + LA sin® (ué) + L Asin" (ué) = 0. (50)

Equating the exponents and the coefficient of the sine functions

gives the following system of algebraic equations:

r—=1#0, r—-2=3r,

L2 Ar(r=1)+1,A° =0, (51)

1P A+ 1A =0.

Solving this system gives

S QT R L (52)
12 ll

for 1*3 >0 and ji >0 with [,1, '0. Theresult (52) can be easily obtained

1
if we also use the cosine method (12). Consequently, we get the

:following periodic solutions

i, (x,y,t) == zl—ksec[\/iz(c]xﬁ-czyﬁ-c}t)], \\/iz(clx+c2y+c3t)\<§ (53)
2 1 1

and

it,(x,y,t) ==+ zl—écsc[\/i;(clx+czy+cst)} 0<\/i;(clx+czy+cst)</r. (54)
2 1 1

Using eqns. (53), (54), (27) and (29) the solutions of eqn. (26) take
the forms:

gz;,(x,y,t) = g/ %sec{\/?(qx +o,y+ cit)], | \/jz(clx +o,y+et)|< %, (55)
2 1 1

§(x, p,1) = £ TR %M[\/g(qx +oy+ Cst)]’ 0< \/2;(0.1 +ey+en<r, (56)
1 1

2

W‘(X,y,t):{ ~4 ]{\/zsec[\/g(c,x+czy+cjt)]] s \\/E(c,x+cz))+c3t)|<£ (57)
c,+e 1, A A 2

and

2
v, (x,y,0)= —4 %cxc ]i(clx+c7y+cst) , 0< li(c,x+czy+c3t)<7r. (58)
- c, +cy 1, I - A

/ . .
However, for =<0 and [, '0, we obtain the soliton and complex
solutions 2

i, (x,,8) =% /iésech[ /—?(C1x+c2y+c3t)J (59)
2 1

and

i, (x,y,t) =% le&csch[\/?(clx+c2y+c3t)} (60)
2 1

Using eqns. (59), (60), (27) and (29), we get the solutions of eqn.
(26) in the same way as in eqns. (55)-(58).

On solving eqn. (26) using the Riccati-Bernoulli Sub-ODE
method

Now we apply the Riccati-Bernoulli Sub-ODE method for solving
eqn. (32). Substituting eqn. (14) into eqn. (32), we obtain

A (ab(3 "+ a2 =)’ + ncu + be(n+ Du" + (2ac + bz)u) + lzu3 +Lu=0. (61)

Setting n=0, eqn. (61) is reduced to

L,Babu’ +2a’w’ +be + (2ac + b )u) + L’ + Lu = 0. (62)
Putting each coefficient o u'(i =0,1,2,3) to zero, we get

lbc=0, (63)
LQac+bh*)+1,=0, (64)
3lab =0, (65)
20a* +1,=0. (66)
Solving eqns. (63)-(66), we get

b=0 (67)
c=F L (68)

NET

a=t /%2. (69)
1

Hence, we give the cases of solutions for the eqns. (32) and (26),
respectively

1. When b=0 and ¢=0the solution of eqn. (32) is

ﬁl(x,y,t):(—a(clx+c2y+c3t+,u))7l. (70)

Using eqns. (70), (27) and (29) the solutions of eqn. (26) take the
forms:

¢ (x, 1) = &0 (—a(clx +e,y+ot+ ,u))7l , (71)
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¥ (x.0) =[ — j((a(clx+c2y+c3t+#))l)z, (72)

C, TG

where k ,k,.k,.c ,c,.c,.it are arbitrary constants.

1
2. When 73< 0, substituting eqns. (67)-(69), (27) and (29) into

1
eqns. (19) and (20), we obtain the exact solutions of eqn. (26) as follows

ﬁu(x,y,t) = i\/? tan[ ’_Té(clx-k Gy +ot+ y)J (73)
2 1

and

124’5(x,y,t)=i\/§?cot[ _ll3(c]x+czy+c3t+y)]. (74)
2 1

Using eqns. (73), (74), (27) and (29) the solutions of eqn. (26) take
the forms:

q$2_3(x,y,t) = i\/?e’“”k”tan[ /_1—13 (clx +eytot+ y)] (75)
2 1

and

¢?4,5(x=ysf) -t jsef“l“kzy*h’)co{ _1—13 (clx +e,y+et+ y)} (76)
2 1

2

7 (xapt) = | —2 litan i3(cx+cy+ct+/1) (77)
2.3 > c, +e, 1, I 1 2 3 >

2

W,s(x, )= B~ b cot i(clx+c2y+c3t+y) , (78)
c,+e L L,

Where kl,kz,ka,cl,cz,cili,lz,l},p are arbitrary constants.

3. When %> 0, substituting eqns. (67)-(69) and (27) into eqns.
1
(21) and (22), we get exact solutions of eqn. (26),

U, (x,y,0) =% ;&tanh(\/?(c]x +o,y+ot+ ,U)] (79)
2 i

and

i o (x,p,0) =% _lécoth[\/?(clx+czy+clt+y)} (80)
2 1

Using eqns. (79), (80), (27) and (29) the solutions of eqn. (26) take
the forms:

¢?6,7(x,y,t)=i /_113e‘“‘”l‘z”h')tanh[\/?(C,x+Czy+031+ﬂ)j (81)
2 1

and

¢89(x y,0)= \/7 ikt kgt )tanh(\/ij(qx+czy+c3t+,u)], (82)

l//m(x »= [ f ][\/7 [\/7 Cx+62y+6l+,u)]J (83)
G TG

WVyo(X,,0) = ( N j[\rcoth[\f c|x+c2y+c;z+,u)D (84)
¢, +e

Where k k, k¢ .c.c, L,l,l.p are arbitrary constants.
Remark 3.1

Applying eqn. (25) to u(xyt) i=1,2,...,9, we obtain an infinite
sequence of solutions of eqn. (32). Consequently, we get an infinite
sequence of solutions of eqn. (26). For illustration, by applying eqn. (25)
to ul(x,y,t) i=1,2,...,9, once, we have new solutions of eqn. (32)

B
ul (x,y,0) = 3 ; (85)
1 (02.0) —aBg(c|x+czy+c3t+,u)il
13 13 713
+ o7 + B, l—tan l—(clx+czy+cst+,u)
u;,}(xayst): = ] 2 ] 1 b} (86)
B+ 1—3 tan( %(c]x+czy +ot + y)j
2 1
13 ls _13
+ + B, |- cot —(clx+czy+c3t+y)
. N2 I3 A (87)
uy(x,,t) = ; ; s
Bt |2 cot| |- (cx+c,y+et+u)
12 ll
b -1 A
+ o B, Ttanh 7(clx+czy+c3t+,u)
g (%) = ., (88)
B, + ?tanh(\ﬁ(c,x+czy+c3t+,u)J
2 1
A -1 A
+ £B, [ coth| |2 (cx+c,y+cit+p)
. 2L IA | (89)
M&O(X,y,t)— s

B+ /;—l’ coth[ ?(clx+czy+c3t+,u)]
2 1

where B, c,¢,.c, 1,1, are arbitrary constants.

Remark 3.2

1. Comparing our results concerning eqn. (26) with the results [35-
37], one can see that our results are new and most extensive. Moreover
it can be seen that by choosing suitable values for the parameters
similar solutions can be verified

2. One very important characteristic, that the Riccati-Bernoulli
Sub-ODE method admits infinite sequence of solutions of equation,
which has never given for any another methods.

3. Consequently, the method is efficacious robust and adequate for
solving such types PDEs.

Graphs for the Solutions

In this section 3D graphics of some solutions have been plotted,
namely Figures 1-7.

Conclusion

In this work we have introduced the exp(-¢(£))-expansion, the sine-
cosine methods and the Riccati-Bernoulli sub-ODE method in order to
obtain the exact travelling wave solutions for the Maccari system. Many
new and more general traveling wave solutions are obtained during the
analytical treatment. The calculations demonstrate that this method
has a very important role to obtain analytical solutions in a unified
and more general form. It is shown that these three methods provide
a very effective and powerful mathematical tool for solving nonlinear
evolution equations in mathematical physics, such as the schrodinger
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2000 ~

1500

- 1000 4

500 ~

X 0 4 1

Figure 1: The solution u=u, in eqn. (41) with 1,=1.5, [,.=2, mu=2.2, 1=3.5,
1,=1.1594, ¢,=1,¢,=1.6, k=4and _p<x<2, 0<1<2.

1.2

08
5 0.6 4
0.4 4

0.2

Figure 4: The solution 4 =1, in egn. (53) with /,=1.1, ,.=2, ¢,=1.3, ¢,=2.2,
and 4<x<4,0<r<4.

1.2

1.16 4

1.05 4

X

Figure 2: The stochastic solution u=u, in eqn. (44) with ,=1.5, [,=2, mu=3,
r=2,1=-0.5,¢=12,¢,=18, k=4 and -3<x<3, 0<r<3.

7000

Figure 5: The solution u =, in eqn. (59) with /,=1.1, [,=3, [,=-2, ¢,=1.3,
c;=2.2,and -4<x<4, 0<1<4.

Figure 3: The solution u=u, in eqn. (47) with [,=2.5, [,=2.4, mu=1.6, 1=4,
1=0.5,¢,=1.2,¢,=1.7, k=2 and -4<x<4, 0<1<4.
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Figure 6: The solution u =, in eqn. (53) with /,=1.5, ,=1.6, [,=-2, y=1.2,
¢=15,¢,=26,and -4<x<4, 0<r<4.
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equation, the Phi-4 equation, the 2D Ginzburg-Landau equation, the
generalized-Zakharov system, etc.
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