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Abstract

Vitamin K is an essential micronutrient in the post-translational modification of specific glutamic acid residues
(Glu) into γ-carboxyglutamic acid residues (Gla) in target proteins known as vitamin K-dependent proteins (VKDPs).
In healthy conditions of sufficient vitamin K status, a vitamin K recycling system maintains sufficient vitamin K levels
for proper γ-carboxylation of VKDPs, and vitamin K antagonists (VKAs) widely used as anticoagulants inhibit vitamin
K recycling. Besides its well-known function in the maintenance of normal coagulation, vitamin K has been reported
to have other diverse physiological functions with impact in human health. In extra-hepatic tissues vitamin K
deficiency results in impairment of VKDPs γ-carboxylation with important implications in bone and cardiovascular
health. Although most of the vitamin K effects have been associated with regulation of mineralization in connective
tissues through the action of matrix Gla protein (MGP) and osteocalcin (OC), the discovery of Gla-rich protein (GRP)
opens new perspectives on the potential therapeutic range of vitamin K.
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Introduction
Vitamin K is a lipid-soluble vitamin originally discovered by Dam as

a necessary factor for normal haemostasis [1]. For many years
considered as required only for the synthesis of blood clotting factors
in the liver, the continuous discovery of extra-hepatic Gla proteins
clearly showed that vitamin K functions lies beyond its function in
blood coagulation, and is involved in multiple biological processes
such as in bone and in the vasculature [2-7]. Vitamin K is an essential
micronutrient acting as cofactor for the post-translational modification
of vitamin K-dependent proteins (VKDPs), where specific glutamic
acid (Glu) residues can be modified to calcium binding γ-
carboxyglutamic acid (Gla) residues, through the action of γ-glutamyl
carboxylase (GGCX) enzyme [6-8]. The use of vitamin K antagonists
(VKAs) such as warfarin, known to influence the carboxylation of Glu
residues of the coagulation factors in liver, has been shown to also
impair the γ-carboxylation of extra-hepatic VKDPs, resulting in
unwanted pathological side-effects in tissues such as bone and blood
vessels [6,7,9-12]. Recently, additional functions of vitamin K, such as
anti-inflammatory, transcriptional regulator of osteoblastic genes, and
inhibition of tumor progression, have been proposed to be mediated
by a direct vitamin K effect rather than through VKDPs action [13,14].
However, the function of VKDPs associated to these emerging
functions of vitamin K has been poorly explored. Vitamin K status has
been inversely correlated with circulating inflammatory markers and
proposed to exert its anti-inflammatory function by suppressing
nuclear factor κB (NF-κB) signal transduction [15-17]. Furthermore it
has been suggested to have a protective effect against oxidative stress
through blocking of reactive oxygen species generation [18].

Vitamin K forms and recycling
Naturally occurring vitamin K compounds with classical cofactor

activity required for γ-carboxylation reaction, comprise the
phylloquinone (vitamin K1), and a series of menaquinones (MKs)
(vitamin K2), which share a common 2-methyl-1,4-naphthoquinone
ring structure (also known as menadione (MD) or vitamin K3) and an
isoprenoid side chain, that differs in length and degree of saturation,
depending on the organism by which they are synthetized [18,19].
Phylloquinone contains a phytyl side chain, which has only one
unsaturated bond, and is found in plants and cyanobacteria [18,19].
Menaquinones are predominantly produced by bacteria and composed
by a side chain with repeating isoprene residues, each containing an
unsaturated bond [18-20]. In human diet their main sources are
fermented foods represented by cheese and curd in Western diets, and
the traditional Japanese food made from soybeans, natto. Depending
on the number of prenyl repeats, menaquinones are subcategorized as
MK-n, with n corresponding to the number of isoprenoid units,
generally ranging from 4 to 13 [18-20]. MK-4 and MK-7 are
commonly used as vitamin K2 supplements. These molecular forms of
vitamin K have different cofactor activities and behave differently in
processes such as absorption, transport, cellular uptake, tissue
distribution and turnover [18,19]. While K1 is a major type (>90%) of
dietary vitamin K, its concentrations in animal tissues is remarkably
low compared with those of menaquinones, especially MK-4, which is
the major form (>90%) of vitamin K in tissues. It is known that
mammals have the ability to convert dietary K1 into MK-4, which is
then stored in specific tissues [21]. This conversion was recently shown
to be via side chain removal/addition mechanism with MD as the
intermediate molecule, and specifically regulated at tissue level [21].

The γ-carboxylation of VKDPs, that comprises the conversion of
Glu to Gla residues catalysed by the GGCX enzyme, requires the
presence of a reduced form of vitamin K (vitamin K hydroquinone,
KH2), carbon dioxide and oxygen, and the continuous recycling of
vitamin K 2,3-epoxide (KO) to its quinone (K) and hydroquinone
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(KH2) forms, in successive reactions catalysed by vitamin K reductases
[8,22,23]. The two enzymes known to be involved in this vitamin K
cycle are vitamin K epoxide reductase (VKOR) and vitamin K
reductase (VKR), in a process known as the vitamin K cycle [8,22].
Each vitamin K molecule can thus be recycled several thousand times
with this vitamin K cycle, which is the reason why minute vitamin K
amounts are sufficient to cover its daily diet requirements [24].
However, the present dietary reference values for vitamin K (90 µg/day
for women and 120 µg/day for men) [10] are based on proper
functioning of the blood coagulation factors to maintain normal
haemostasis, and not on the γ-carboxylation status of other VKDPs
such as matrix Gla protein (MGP), Gla-rich protein (GRP), and
osteocalcin (OC), known to be of vital importance in bone and/or
vascular health [2-7,18,24]. Interestingly, extra-hepatic Gla proteins
have been shown to be present as incompletely γ-carboxylated forms
in the majority of healthy adults [4,25], and thus the biological activity
of these proteins could be considered sub-optimal. Since VKOR is a
dithiol dependent enzyme known to be inhibited by 4-
hydroxycoumarin anticoagulant drugs, such as warfarin,
acenocoumarol, and phenprocoumon, the widely use of these oral
anticoagulants acting as vitamin K antagonists (VKAs), has also been
linked to unwanted side effects in several extra-hepatic tissues with
adverse clinical outcomes [4,7-9,11,12]. Remarkably, despite the long
use of VKA the exact mechanism of inhibition of VKOR remains to be
elucidated [26].

Vitamin K-antagonists as indicators of vitamin K importance
in health
The extra hepatic effects of VKAs were first suggested when it was

found that women receiving VKAs treatment between the 6th and 12th

week of pregnancy gave birth to children with severe bone
abnormalities [27]. Since then, many in vitro and in vivo experiments
have shown that VKAs induce vitamin K deficiency, which has been
unequivocally related to increased mineralization of several tissues,
particularly in the vascular tree and skeletal elements. Rats treated with
warfarin presented extensive vascular calcification which could be
inhibited by simultaneous treatments with vitamin K [28-30].
Furthermore, vitamin K was shown to induce a regression of pre-
formed warfarin-induced vascular calcifications, with restoration of
arterial distensibility [31]. The ApoE knockout mice model of
atherosclerosis treated with warfarin displayed increased
atherosclerotic plaque calcification and plaque vulnerability [32]. In
humans, VKA use was associated with coronary artery plaque
calcification in patients with suspected coronary artery disease (CAD),
where calcification of coronary plaques significantly increased with
prolonged VKA use [32,33]. Also, increased calcification of aortic
valves was observed in patients receiving preoperative VKAs relative to
non-treated patients [34,35]. Chronic kidney disease (CKD) patients, a
population with a high prevalence of cardiovascular mortality and
vascular calcifications, have been associated with subclinical vitamin K
deficiency [35,36]. In a CKD rat model, warfarin treatments increased
vascular calcification while high dietary vitamin K1 increased vitamin
K tissue concentrations and attenuated vascular calcification [37].
Calciphylaxis is an often fatal complication of end-stage renal disease
characterized by subcutaneous small arterioles calcification.
Interestingly, approximately 50% of stage 5 CKD patients who develop
calciphylaxis were on VKA therapy, which was proposed as one of the
risk factors in the absence of severe disorders of calcium metabolism
[9,38]. In the population-based Rotterdam study vitamin K2 intake
was found inversely related to all-cause mortality and severe aortic

calcification [39]. Vitamin K supplementation has been demonstrated
as able to reduce bone turnover and improving bone strength [40,41],
and higher levels of vitamin K intake were associated with decreased
risk of hip fracture [42-44]. Higher doses of vitamin K2 have been
administered for osteoporosis treatment in Japan for several years [45].
Decreased bone mineralization and turnover was reported in rats
treated with warfarin [46], and long-term warfarin therapy in humans
has been associated with decreased bone mineral density [47,48].
Subclinical vitamin K levels have also been associated with an
increased risk of osteoarthritis development [49,50].

Vitamin K mechanism of action
It is presently accepted that the most plausible mechanism

underlying dysregulated mineralization in soft tissues associated to
vitamin K is the impairment of γ-carboxylation in VKDPs that have
been known to have a role as regulators of mineralization. Insufficient
γ-carboxylation either by dietary vitamin K deficiency or impairment
of vitamin K recycling leading to the exhaustion of vitamin K storage,
results in the production of inactive undercarboxylated VKDP forms.
OC and MGP have been widely associated with mineralized tissues,
regulation of mineralization processes, and vascular ectopic
calcification, and considered the two VKD target proteins involved in
bone and vascular tissues health, respectively [2-7,9,51]. The
accumulation of their undercarboxylated (uc) protein forms has been
implicated with loss of functionality and pathological mineralization.
OC is a small secreted protein with 46-50 amino acids containing 3 Gla
residues in most species, and highly expressed and accumulated in
bone [52]. Initial in vitro studies have shown that OC binds to
hydroxyapatite (HA) through its Gla residues inhibiting HA formation
[53]. OC knockout mice evidenced that OC acts as a negative regulator
of bone formation without altering bone resorption or mineralization,
with a role in stimulating bone mineral maturation [54,55]. OC is
presently considered a marker for bone formation [56] and circulating
uncarboxylated OC has been proposed as a sensitive marker for
vitamin K deficiency [57,58]. MGP contains 4-5 Gla residues and is
synthetized by chondrocytes, vascular smooth muscle cells (VSMCs),
endothelial cells, and fibroblasts [51]. It is presently considered one of
the most powerful vascular calcification inhibitor known to date, and it
is undercarboxylated form has been proposed as a biomarker for
cardiovascular calcification and for vitamin K status [51,59-61].
Knockout mice for MGP die within 8 weeks of birth due to massive
vascular mineralization of the main arteries, a phenotype similar to
that obtain with warfarin treatments [62]. Interestingly, the Keutel
syndrome in humans, which is characterized by loss-of-function
mutations in the MGP gene results in non-lethal abnormal soft tissues
calcification, which suggest additional or compensatory mechanisms of
mineralization inhibition in humans. The discovery of an additional
VKDP, Gla-rich protein (GRP), also expressed and accumulated in
skeletal and vascular tissues [63-65], that we have recently shown to
function as a calcification inhibitor in the cardiovascular [66] and
articular systems [67], should open a new window of knowledge in the
area of pathological calcification of connective tissues and increase the
range of vitamin K action. GRP was initially identified in sturgeon
calcified cartilage and characterized by the presence of an
unprecedented 16 Gla residues within its 74 amino acid total protein
sequence, and an impressive degree of evolutionary conservation [63].
The metal binding properties of Gla residues within the VKDP family
have been associated with binding of calcium ions or calcium crystals,
either through Ca2+ coordination in the Ca2+- dependent binding of
coagulation factors to anionic phospholipids membrane surfaces [68],
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or through binding to HA crystals, the major mineral component
present in mineralized extracellular matrix, and associated either with
physiological (eg., in bone) or pathological processes in soft tissues
[69]. Fully γ-carboxylated GRP in human can include 15 Gla residues,
which confers to this protein outstanding calcium and mineral binding
capacity [25,63,64]. Undercarboxylation of GRP has been recently
associated with several pathological calcification related diseases, as
calcific aortic valve disease [66], osteoarthritis [67] and certain cancers
[25], while only γ-carboxylated GRP has shown to display anti-
mineralization capacity [66,67]. Interestingly, we have recently shown
that GRP is involved in the crosstalk between inflammation and
calcification of articular tissues in osteoarthritis, acting as an anti-
inflammatory agent [67]. Since calcification and inflammation are
common and interconnected events in calcification-related chronic
inflammatory diseases, the importance of GRP and vitamin K might
acquire a new dimension in healthy and pathological states. Since the
focus of VKAs treatments in ectopic calcification has been mainly
restricted to the function of MGP and OC, the effects on GRP
functionality and the consequences in the mineralization levels are
currently unknown. However, it reinforces the notion that special care
should be given to the widely used VKAs agents whose side effects are
certainly still not completely unraveled.

Conclusions
Although innumerous studies have shown a protective role of

vitamin K against pathological mineralization by improving the
function of VKDPs acting as calcification regulators, and no toxicity is
known for higher vitamin K dosages, the unequivocal beneficial effect
on vitamin K supplementation in human dietary is still debatable.
Nevertheless, vitamin K is a potential therapeutic target for highly
prevalent diseases involving pathological mineralization such as
cardiovascular diseases and osteoarthritis. In addition, the knowledge
of the association of inflammatory processes to the etiology of these
diseases and the increased attention to novel biological functions of
vitamin K, namely its antioxidant and anti-inflammatory role, should
point for a more global evaluation of its role in human health and its
beneficial use as a nutritional supplement. Furthermore, despite the
detrimental side effects of VKAs therapy, additional studies on long-
term vascular, bone and systemic effects of warfarin need to be
performed, in order to understand whether its proven benefits in
patients at risk of thromboembolic disease prevails over its negative
impact in connective tissues. In this area there is a growing scientific
knowledge underscoring a need for anticoagulants that do not interfere
with the vitamin K-cycle.
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