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Introduction
When we speak of data in the realm of next generation sequencing 

(NGS), we typically refer to colossal amounts of data-points that require 
analysis, filtering, and interpretation [1,2]. Analytical pipelines can be 
automated such that these prodigious amounts of data are processed 
with the single push of a button, but this begs the question: What is the 
most faithful way of analyzing NGS raw data?

Previously, the best way to prove the faithfulness and capabilities 
of NGS was to find concordance with the gold standard in the clinical 
diagnostic setting [3-5], i.e., di-deoxy Sanger sequencing [6]. Although 
it is known that Sanger itself is prone to error [7], it is still regarded as 
the fundamental method of detecting DNA mutations against which 
NGS must compare [8]. Indeed, many variant callers and pipelines 
for NGS data are now in existence [2,9-13], but complete agreement 
with Sanger remains either elusive or it is something that is no 
longer sought. Although good agreement with Sanger was recently 
achieved [3], only 168 variants were observed and the method was not 
reproducible. Moreover, power analysis has shown that agreement on 
300 or more variants is necessary [14], a figure also adopted by the 
British-based Association for Clinical Genetic Sciences (ACGS, http://
www.acgs.uk.com/) in their best practice guidelines. Further, NGS data 
is still plagued with false-positives and –negatives [15-17] that serve to 
dampen confidence in its reliability as a mode of diagnosis. As a final 
issue, there is still very much a lack of consensus on how to analyze NGS 
raw data, an area in which systematic methods are required [18], with 
different organizations and commercial ventures applying different 
filtering and QC thresholds. The community appears undecided on 
what is or is not a true variant.

Thus, we are set in the tantalizing situation whereby complex, rare, 
and other diseases are being genetically characterized in the research 
world [19-25], but as yet no analytical pipeline has been capable of 

increasing confidence in NGS technology such that it can replace 
existing clinical diagnostic methods. A critical point in this regard is 
that the research world can tolerate a certain level of error in results, 
whereas the demands of a clinical diagnostic service are much higher. 
It is believed that generating high depth of coverage can boost NGS’ 
capabilities —particularly for somatic mutation detection in cancer 
[4] — however, it was previously shown that increasing depth actually
resulted in more false-positives [26]. Indeed, it seems that there is a
fine balance between read-depth and error, and that most of the core
issues pertaining to NGS surround the bioinformatic algorithms used
to process and filter the raw data [18]. To overcome these issues, many
have adopted the strategy of analyzing NGS raw data using multiple
variant callers and/or pipelines and then finding a consensus [27], but
it was clear that much disagreement still existed between each set of
results. Using replicate samples was also recently suggested as a way
to minimize error [17], but this is impractical where DNA is limited.

Thus, whilst there is already much confidence in the capability of 
NGS, barriers remain to its long term use in clinical diagnostics. We 
therefore set out to develop an analytical pipeline that could eventually 
be used as the sole method of diagnosis in our laboratory. This required 
the following:
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Abstract
As next generation sequencing (NGS) technology has already become a regular fixture in research, it is now 

time for clinical environments to also reap the benefits of such technology. Indeed, the rich promise of NGS has the 
potential to be translated into improved patient care. However, there is still doubt about the widespread use of NGS 
in clinical diagnostics. Before implementation, there must be consensus on which analytical pipeline to use, with 
follow-up confirmation of variants with the gold standard: Sanger sequencing.

Here, we present a NGS analytical pipeline that has complete agreement on 341 variants with Sanger 
sequencing and that is already being used in our clinical diagnostic laboratory in the National Health Service 
England for the regular screening of inherited, pathogenic variants. Details on our NGS and other services can 
be found at http://www.sheffieldchildrens.nhs.uk/our-services/sheffield-diagnostic-genetics-service/. Our pipeline 
broadly follows the ‘best practices’ guidelines set by the GATK at the Broad Institute, with a novel added approach 
involving randomly selecting subsets of reads and later merging variants called from each. This allows for false-
negatives to be eliminated with a high level of confidence. Moreover, modeling reduced depth of coverage reveals 
that 30X is the point at which false-positives are eliminated with >99.9% confidence.

Our results allude to a fine balance between read-depth and error, and we believe that our pipeline will increase 
confidence in NGS and permit its gradual enrollment in clinical diagnostic laboratories.
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1)	 Ensuring complete pick-up of variants, thus eliminating false-
negatives

2)	 Determining thresholds to filter-out false-positives

3)	 Adhering to data protection legislation and respecting patient 
privacy

4)	 Outputting results according to standard nomenclature

5)	 Broadly, providing all data needed by those interpreting the 
results in order that informed decisions could be reached

All of these outcomes need to be achieved for a robust clinical 
analysis pipeline.

Methods
We used the SureSelect (Agilent Technologies, Inc.) wet-

laboratory chemistry and protocol for the screening of variants under 
the umbrella of two main disease areas: connective tissue disorders 
(CTDs) and glycogen storage diseases (GSDs). We designed custom 
panels of probes using SureSelect for each of these. Additionally, we 
used the TruSight™ Cancer Sequencing Panel (Illumina, Inc.) for the 
screening of hereditary cancers. Both panels differ in their protocols, 
with TruSight™ having a longer set-up time (~1.5 days compared to 
1 day for SureSelect) and utilizing shorter probes (80-mer compared 
to 120-mer SureSelect probes). All of our NGS was performed with 
an Illumina MiSeq™ (Illumina, Inc.), whilst our di-deoxy Sanger 
sequencing was performed using an Applied Biosystems 3730xl DNA 
Analyzer (Applied Biosystems®). For visualizing NGS data, we used 
Alamut (Interactive Biosoftware, LLC.) and Integrated Genomics 
Viewer (IGV) [30,31]. We also used SAP® Crystal Reports® (SAP AG) 
for tabulating data.

Random read-selection for recovering false-negatives

To perform the validation of our NGS analytical pipeline with 
Sanger, we used the raw data obtained from 14 patient samples that 
were sequenced using SureSelect: 7 samples using the CTD custom 
panel; 7 using the GSD custom panel. We also used the raw data from 
19 samples using TruSight™ Cancer Sequencing Panel. We obtained the 
unfiltered raw data (FASTQ files) for each sample and passed these 
through the analytical pipeline (Figure 1).

In brief, paired alignment was performed using BWA [32]. We 
then marked PCR duplicates using Picard (http://picard.sourceforge.
net/) and expunged these duplicate reads from the BAM files prior to 
performing QC. SAMtools [33], BEDTools [34], GATK [2,35], and 
custom shell commands were used to generate various QC reports, 
including: alignment and reads on target percentages; coverage at 
various depths; minimum and maximum read-depth; and a report 
of all bases falling below a defined threshold (variants called on any 
of these bases below the threshold are not considered). Any sample 
that fails QC is discussed in the scientist meeting (Figure 1), with the 
possibility of repeating the sample in the wet-laboratory.

Post-QC steps involved preparing the data for variant calling. First, 
candidate indels were identified and then realigned using GATK [2,35]. 
We then adopted a novel approach, as follows: Random sets of half and 
quarter reads were extracted from the aligned BAM file using Picard 
(http://picard.sourceforge.net/), which looks at each read in the BAM 
file and uses a predefined probability of retaining or discarding the read 
(in this pipeline, the probabilities were fixed at 0.5 and 0.25 for half 
and quarter sets of reads). The full, half, and quarter sets were then 
passed into GATK Haplotype Caller [2,35], with each set of variants 

Figure 1: Analytical pipeline �� diagram.  A, broad overview of operations 
highlighting the interactions between the wet-laboratory and scientists with the 
analytical pipeline; B, all inputs, outputs, and programs used at each step in 
the analytical pipeline.  A, aligned; S, sorted; PCRM, PCR duplicates marked; 
PCRR, PCR duplicates removed; I, indexed; IR, indels realigned; RR, random 
read-sampled.
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then being merged into a consensus list of variants. The consensus list 
was annotated using SnpSift [36] and ANNOVAR [37] before being 
filtered according to each respective BED file regions of interest (ROI) 
using VCFtools [38]. For the purposes of this work, the pipeline was 
configured to look up to 150bp into each intronic region for calling 
and annotating variants. Custom shell commands were again used to 
present the data in the form of mutation reports. All variants called 
in the ROI were then manually compared to Sanger sequence results 
for the same regions. SAMtools [33] was used for intermediate steps 
throughout the workflow that involved file format conversion, sorting, 
or indexing.

Modeling reduced depth of coverage to avoid false-positives

For modeling reduced depth of coverage, we used the raw data 
obtained from three samples that were sequenced using SureSelect: two 
samples using the CTD custom panel; one using the GSD custom panel 
(these were samples that had also been previously sequenced by Sanger 
in our laboratory). We passed the unfiltered raw data (FASTQ files) 
through our NGS analytical pipeline to completion. We subsequently 
sampled reads from the aligned BAM files for each and then processed 
these read libraries through the remainder of the pipeline. This was 
to simulate reduced depth of coverage. Samplings were performed at 
levels of 0.002, 0.004, 0.008, 0.016, 0.032, 0.064, 0.128, 0.256 and 0.512.

We filtered variants according to our BED file ROI, which matched 
the primer pools used in each SureSelect kit, configuring the pipeline 
to again look up to 150bp into each intronic region for the purpose of 
calling variants. Additionally, for this modeling, as we were searching 
for an ideal level of coverage to be used as our main QC threshold, 
we used the existing Phred-scaled quality score as an initial gauge of 
quality, taking 60 or more as a cut-off (equating to a 1-in-1 million 
chance of being incorrect). We took the variant caller format (VCF) 
[38] files that were annotated with dbSNP [39] (build 138) for each 
sample and its associated read libraries, and used SAP® Crystal Reports® 
to perform our analyses. When performing the final analyses in 
modeling, we excluded variants that represented long indels (≥ 20bp) 
and those that represented the same indel called in the same sample at 

varying lengths - we also excluded variants called in homopolymeric 
and repeat regions.

Results
Random read-selection for recovering false-negatives

As high sensitivity with the gold standard is a requirement for any 
NGS analytical pipeline in a clinical diagnostic laboratory, we sought 
to compare the level of agreement between our NGS and Sanger 
sequencing results. In total, we compared results for 341 Sanger-
confirmed variants covering 28 genes. These included both exonic 
and intronic variants, and also single nucleotide variants (SNVs) and 
insertions-deletions (indels), and were tabulated from the results of 33 
patient DNA samples screened in our laboratory for various inherited 
disorders: glycogen storage diseases, connective tissues disorders, and 
hereditary cancers. The results are summarized in Table 1. We were 
able to detect all Sanger-confirmed variants using NGS, i.e., no false-
negatives were found. In addition, our NGS analytical pipeline detected 
8 intronic variants that were overlooked during Sanger sequence 
analysis due to poor quality. These were subsequently detected when 
the Sanger traces were rechecked.

Modeling reduced depth of coverage to avoid false-positives

With confidence that all variants were being detected, we then 
set-out to find a read-depth ‘sweet spot’ in order to cope with the 
uncomfortable amount of false-positives that NGS results can contain. 
We wanted to identify the lowest read-depth at which a variant could 
still be detected and at which we could still be confident in the call. 
To do this, we modeled reduced depth of coverage in samples and 
found the level of read-depth at which high sensitivity could still be 
achieved. In total, we analyzed 3,121 variants that were called at any 
initial level of read-depth across 3 patient samples. Although some 
of these were common to 2 or 3 samples, we decided to treat each as 
unique. These variants covered multiple genes across the genome and 
included variants in both coding and non-coding regions. We sampled 
the raw reads from these samples at 9 reduced levels, ran each through 
our analytical pipeline (Figure 1 and Methods), and then compared 

Connective tissue disorders Glycogen storage diseases Hereditary cancers

Gene Total variants Gene Total variants Gene Total variants

ALPL 14 AGL 19 APC 8

COL1A1 21 GAA 19 BRCA1 22

COL1A2 24 GBE1 5 BRCA2 32

COL3A1 12 GYS2 15 FANCA 33

COL5A1 49 PHKB 1 FANCG 3

COL5A2 14 PHKG2 2 MLH1 3

CRTAP 5 PYGL 11 MSH2 4

FKBP10 1        

LEPRE1 5        

PLOD1 1        

PPIB 1        

SERPINF1 11        

SERPINH1 4        

SP7 2        

Total 164 Total 72 Total 105
Overall total 341

Table 1: Validated Sanger and NGS variants. Validated variants are totaled per gene and disease area under which they were originally detected.  Not listed are intronic 
variants that were missed by Sanger sequencing but detected by NGS.
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Finally, we have shown how our analytical pipeline is suited to 
the clinical setting for several reasons: Firstly, at no point during the 
automated analysis is data transmitted outside the domain in which 
the pipeline is run. This ensures adherence to standards pertaining to 
data protection and patient privacy (for example, BS7799 in the United 
Kingdom of Great Britain and Northern Ireland). Secondly, we have 
conducted comprehensive validation work, including our reduced 
depth of coverage analysis and our comparison of results with Sanger 
sequencing. Additionally, we output our variants according to the 
standards set by the Human Genome Variation Society (HGVS) [40]. 
Finally, we have shown how the analytical pipeline functions equally on 
raw data produced from different wet-laboratory chemistries.

To summarize, we have developed a robust NGS analytical pipeline 
that consistently agrees with the current gold standard in clinical 
diagnostics: di-deoxy Sanger sequencing. This pipeline is currently 
automated and is being used in the live diagnostic setting at the 
Sheffield Diagnostic Genetics Service, part of the Sheffield Children’s 
NHS Foundation Trust (http://www.sheffieldchildrens.nhs.uk/our-
services/sheffield-diagnostic-genetics-service/). We encourage other 
clinical diagnostic laboratories and research groups to test our method.
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