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Abstract
Random generators or stochastic engines are a key component in the structure of metaheuristic algorithms. This 

work investigates the effects of non-Gaussian stochastic engines on the performance of metaheuristics when solving 
a real-world optimization problem. In this work, the bacteria foraging algorithm (BFA) was employed in tandem with 
four random generators (stochastic engines). The stochastic engines operate using the Weibull distribution, Gamma 
distribution, Gaussian distribution and a chaotic mechanism. The two non-Gaussian distributions are the Weibull and 
Gamma distributions. In this work, the approaches developed were implemented on the real-world multi-objective resin 
bonded sand mould problem. The Pareto frontiers obtained were benchmarked using two metrics; the hyper volume 
indicator (HVI) and the proposed Average Explorative Rate (AER) metric. Detail discussions from various perspectives 
on the effects of non-Gaussian random generators in metaheuristics are provided.
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Background
Among the all state-of-the-art approaches for solving highly 

complex optimization problems, swarm intelligence (SI) stands as one 
of the most favoured strategies. This is mainly due to its effectiveness 
in the search process and its efficiency in terms of computational time 
[1]. Some of the most common SI-based approaches are particle swarm 
optimization (PSO) [2], cuckoo search (CS) [3], ant colony optimization 
(ACO) [4] and bacterial foraging algorithm (BFA) [5]. In the past, 
one of the most popular techniques employed for solving constrained 
nonlinear optimization problems is PSO [2]. However, in recent times 
other strategies such as BFA have become attractive for this purpose. 
BFA’s computational performance has been proven to as good as and 
at times better than other SI’s as well evolutionary techniques [6]. 
Inspired by the natural behaviour of the E.Coli bacterium searching for 
nutrients in the environment, Pasino [5] proposed the BFA for solving 
complex optimization problems. The central premise of this approach 
is that the bacteria tries to maximize its energy per unit time spent 
during foraging for nutrients while simultaneously evading noxious 
substances.

Over the past years, many research works has been centred on resin 
bonded sand mould systems (cold box moulding process) due to its 
adaptive capabilities in a dynamics environment, its compliance to 
environmental factors and its high casting quality [7]. This approach 
is extremely power-saving when it comes to large-scale or mass 
production [8]. In most cases, resin bonded sand mould systems have 
excellent flow behaviour. Nevertheless some introduction of vibration 
and compaction during the moulding process is required. Casting 
properties are very much influenced by the mould properties (which 
are in effect dependent on the process parameters during mould 
development process) [9]. In this work, the multiobjective (MO) 
optimization model employed for the resin bonded sand system was 
developed in Surekha et al. [10]. This model was based on a resin 
bonded sand system where phenol formaldehyde was used as binder 
and tetrahydrophtalic anhydride was used as a hardener [10]. Since in 

this work, the problem formulation is MO in nature, the computational 
technique (BFA) is incorporated with the weighted-sum framework. 
Using this approach, multiple solutions are obtained for various 
weights which are then utilized to construct the Pareto frontier.

Most metaheuristic algorithms are endowed with a stochastic 
engine that generates random values which diversifies the algorithm’s 
search space. These stochastic engines also provide the algorithm with 
a ‘warm-start’ prior to the searching process. Therefore, the type of 
probability distribution function (PDF) that generates the random 
value in the stochastic engine heavily influences the algorithm’s search 
capability. In most metaheuristic algorithms, the stochastic engine 
produces random numbers following a Gaussian PDF [11,12]. In 
other cases, researchers have employed other approaches to enhance 
the stochastic engine by using chaos-based functions to couple with 
the Gaussian PDF [13]. These approaches avoid the algorithm from 
getting stuck in the local optima which causes premature algorithmic 
convergence [14]. Thus, stochastic engines play a crucial role in the 
implementation of metaheuristics. Besides Gaussian stochastic engines, 
another distribution that has rarely been investigated with respect to 
metaheuristics are the non-Gaussian distributions. These are usually 
heavy-tailed distributions, for instance distributors [15-18]. It has 
been known that many real-world systems (engineering, chemical or 
economic systems) do not behave in a stochastically Gaussian manner 
but are prone to contain non-Gaussian fluctuations. Thus the primary 
aim of this work is to analyse the effects of non-Gaussian stochastic 
engines on the performance of metaheuristics when implemented in a 
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real-world engineering problem. In this work, the influence of the three 
types of stochastic engines (which are chaos-based, Gaussian-type PDF 
and Non-Gaussian-type PDF [19]) on the multi objective optimization 
of the resin-bonded sand mould system. These approaches are 
compared and discussed in detail. These procedures are executed by 
the implementation of the BFA technique. 

Model Characteristics
In Surekha et al. [10] the model describing the responses and 

the outputs of the optimization process was developed and reported. 
In that work, the mechanical properties of the quartz-based resin 
bonded sand core system was modelled using Mamdani-based fuzzy 
logic [20] and genetic algorithm [21] approaches. The multiobjective 
representation of the optimization model which consists of four 
objectives as developed in Surekha et al. [10] is as follows:

Maximize →  Permeability, f1 

Maximize →  Compression Strength, f2

Maximize →  Tensile Strength, f3

Maximize →  Shear Strength, f4

subject to process constraints.                (1)

The response parameters are; A, percentage of resin (%), B, 
percentage of hardener (%), C, number of strokes and D, curing 
time (minutes). The final formulation of nonlinear regression model 
developed and the associated constraints are given as follows [10]:

2 2
1

2 2
= -333.77 + 614.73A - 27.435B + 630.36C - 18.97D - 168.98A + 0.239B

- 76.08C  + 0.111D + 2.827AB + 0.575AC + 0.047AD 
- 0.7701BC + 0.1323BD - 0.1883CD

f
    (2)

2
2

2 2 2
2765.36 + 877.869A - 112.778B-731.934C + 17.9222D - 357.829A

+ 0.983456B + 52.2310C -0.0276946D  + 14.6571AB+96.8495AC 
- 3.74068AD+7.62554BC - 0.096084BD - 1.27093CD

=f
    (3)

2
3

2 2 2

-354.406 + 211.418A + 17.3611B+ 96.7916C + 2.78503D - 44.7516A  

- 0.173996B  - 10.6696C -0.026223D  - 2.08868AB+6.05542AC 
+ 0.197646AD+2.07847BC - 0.078904BD+1.18561CD

f =
    (4)

2
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2 2 2

318.163 + 726.696A + 33.3432B-721.381C + 2.40622D - 210.057A

 - 0.189623B  + 80.1788C +0.000987D  - 1.89739AB+49.8702AC 
- 0.32471AD-1.70998BC - 0.07323BD+0.306223CD

f =
   (5)

[1.5,2.5], [30,50], [3,5], [60,100]A B C D∈ ∈ ∈ ∈               (6)

The algorithms employed in this work were programmed using 
the C++ programming language on a personal computer with an Intel® 
Core ™ i5 processor running at 3.2 GHz. 

Stochastic Engines
Gaussian distribution

A random variable, x∈X which is distributed with a mean, µ and 
variance, σ2 is said to be a Gaussian or normally distributed when the 
PDF is as follows:

21 1( ) exp
22X

xG x µ
σσ π

 −  = −     
                                 (7)

The Gaussian distribution is very general and widely applicable in 
various fields of studies for modelling real-valued random numbers 
(e.g., Brownian motion [22] and Monte Carlo simulations [23]). In this 
work, the standard normal distribution with µ=0 and σ=1 is employed 

in the stochastic engine to generate random values in the metaheuristic. 

Weibull distribution

The Weibull distribution is a type of non-Gaussian distribution 
which is widely implemented in extreme value statistics. Two-
parameter Weibull distributions function for a random variable x∈X 
is defined as follows:

( ) 1 exp
kxW x

λ

   = − −    

 for (0, )x R∈ +∞                                       (8)

where W(x) is the Weibull distribution, k is the shape parameter and λ 
is the scale parameter. It is required that the scale and shape parameter 
are positive for the Weibull distribution (k >0 and λ > 0). For λ = 1, the 
Weibull distribution takes the form of the exponential distribution. It 
should be noted that the Weibull distributions around λ gets smaller as 
the value of k increases. In this work, shape and scale parameters are 
set such that λ = 1 and k = 1. The Weibull distribution has been widely 
used in areas such as microbiology [24], information systems [25] and 
meteorology [26].

Gamma distribution

Similar to the Weibull distribution, the Gamma distribution is 
another type of non-Gaussian distribution. The Gamma distribution 
is influenced by its shape, α and rate, β parameters. The Gamma 
distribution, γ (x) for a random variable xX is given as follows:

1

0

( )( ) 1 exp( )
!

i

i

xx x
i

α βγ β
−

=

= − −∑  for i Z∀ ∈  such that 0α >  and 0β >    (9)

The PDF of the Gamma distribution becomes near-symmetrical if 
there is an increment in the shape factor and the mean as the skewness 
decreases. As the standard deviation of the distribution increases, the 
PDF gradually skews to the left and becomes heavy-tailed. The Gamma 
distribution has been used successfully in climatology, insurance claim 
models and risk analysis [27-29]. 

Chaotic generator

In this work, a one-dimensional chaotic map was used to initialize 
population of solutions by embedding the map into the random 
number generation component in the algorithm. The one-dimensional 
chaotic map, nψ  is represented as the following:

1 ( )n nfψ ψ+ =                                     (10)

The most widely studied one-dimensional map is the logistic map 
[15] which is as the following:

( ) (1 )n n n nf rψ ψ ψ= −                  (11)

1 0.01n nr r+ = +                     (12)

where [0,5]nr ∈ and [0,5]nr ∈ . In this mapping like all chaotic maps, the 
dynamics of the system varies for different sets of initial conditions (Ψ0 
and ro).

Bacteria Foraging Algorithm
In the BFA, four main levels of loops are present in the technique 

(chemotaxis, swarming, reproduction and elimination-dispersal loops). 
These loops manage the main functional capabilities of the BFA. Each 
of the mentioned loops are designed according to bacteria foraging 
strategies and principles from evolutionary biology. These loops are 
executed iteratively until the total number of iterations, NT is satisfied. 
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For i=1→  NT do

For l=1→  Nr do

For m=1→  Ned do

For j=1→  Nc do

For k=1→  Ns do

Perform chemotaxis – bacterium swim and tumble until maximum 
fitness/loop cycle limit is reached

Perform swarming – bacterium swarm until maximum fitness/loop 
cycle limit is reached

End For

End For

If bacterium healthy/maximally fit then split and reproduce

Else eliminate remaining bacterium

End For

Execute catastrophic elimination by assigning some probability 
of elimination to the swarm. Similarly disperse the remaining swarm 
randomly.

End For

End For

END PROGRAM

The parameter settings specified in all the BFA variants employed 
in this work is shown in Table 1.

Measurement Methods
Hypervolume indicator

The Hyper volume Indicator (HVI) is a strictly Pareto-compliant 
indicator that is used to measure the quality of solution sets in MO 
optimization problems [30,31]. Strictly Pareto-compliant can be defined 
such that if there exists two solution sets to a particular MO problem, 
then the solution set that dominates the other would a higher indicator 
value. The HVI measures the volume of the dominated section of the 
objective space and can be applied for multi-dimensional scenarios. 
When using the HVI, a reference point needs to be defined. Relative 
to this point, the volume of the space of all dominated solutions can be 
measured. The HVI of a solution set xd ∈ X can be defined as follows:

1

1 1
( ,... )

( ) [ , ] ... [ , ]

d

d d
x x X

HVI X vol r x r x
∈

 
 = × ×  
 


                  (15)

Each of the main loops may be iterated until some fitness condition 
is satisfied or until a user-defined loop cycle limit (chemotaxis (Nc), 
swarming (Ns), reproduction (Nr) and elimination-dispersal (Ned)) is 
reached.

In chemotaxis, the bacteria with the use of its flagellum, swims 
and tumbles towards the nutrient source. The tumbling mode allows 
bacterium motion in a fixed direction while the tumbling mode enables 
the bacterium to augment its search direction accordingly. Applied in 
tandem, these two modes give the bacterium capability to stochastically 
move towards a sufficient source of nutrient. Thus, computationally 
chemotaxis is presented as follows:

( )( 1, , , ) ( , , , ) ( )
( ) ( )

i i
T

ij k l m j k l m C i
i i

θ θ ∆
+ = +

∆ ∆
                             (13)

where ( 1, , , )j j k l mθ +  is the ith bacterium at the jth chemotactic step, kth 
swarming step and lth reproductive step and mth elimination-dispersal 
step. C(i) is the size of the step taken in a random direction which is 
fixed by the tumble, and [ 1,1]∆∈ −  is the random vector.

In the swarming phase, the bacterium communicates to the entire 
swarm regarding the nutrient profile it mapped during its movement. 
The communication method adopted by the bacterium is cell-to-cell 
signalling. In E. Coli bacteria, aspartate is released by the cells if it 
is exposed to high amounts of succinate. This causes the bacteria to 
conglomerate into groups and hence move in a swarm of high bacterial 
density. The swarming phase is mathematically presented as follows: 

( ) ( )2 2

1 1 1 1

( , ( , , , )) exp( exp(
S P S P

i i
att att m m rep rep m m

i m i m

J P j k l m D W H Wθ θ θ θ θ
= = = =

   
   = − − − + − − −
      

∑ ∑ ∑ ∑   (14)

where ( , ( , , , ))J P j k l mθ  is the computed dynamic objective function 
value (not the real objective function in the problem), S is the total 
number of bacteria, P is the number of variables to be optimized 
(embedded in each bacterium), Hrep, Wrep, Hatt, and Watt are user-
defined parameters.

During reproduction, the healthy bacteria or the bacteria which are 
successful in securing a high degree of nutrients are let to reproduce 
asexually by splitting into two. Bacteria which do not manage to perform 
according to the specified criteria are eliminated from the group and 
thus not allowed to reproduce causing their genetic propagation (in 
this case their foraging strategies) to come to a halt. Due to this cycle, 
the amount of individual bacterium in the swarm remains constant 
throughout the execution of the BFA.

Catastrophic events in an environment (such as a sudden change 
in physical/chemical properties or rapid decrease in nutrient content) 
can effect in death to a population of bacteria. Such events can cause 
bacteria to be killed and some to be randomly dispersed to different 
locations in the objective space. These events which are set to occur 
in the elimination/dispersal phase help to maintain swarm diversity to 
make sure the search operation is efficient. The pseudo code for the 
BFA algorithm employed in this work is provided below:

START PROGRAM

Initialize all input parameters (P, Hrep, Wrep, Hatt, Watt, NT, Nc, Nr, 
Ns, Ned)

STOCHASTIC GENERATOR - Generate a randomly located 
swarm of bacteria throughout the objective space

Evaluate bacteria fitness in the objective space

Parameters Values
Total Iteration, NT 200
Population Size, P 25
Swimming Loop limit, NS 5
Repellent Signal Width, Wrep 10
Attractant Signal Width, Watt 0.2
Repellent Signal Height, Hrep 0.1
Attractant Signal Height, Hatt 0.1
Reproduction limit, Nr 5
Elimination limit, Ne 5

Table 1: The individual solutions for the G-BFA approach.
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where r1,…,rd is the reference point and vol(.) being the usual Lebesgue 
measure. In this work the HVI is used to measure the quality of the 
approximation of the Pareto front by the GSA and the DE algorithms 
when used in conjunction with the weighted sum approach.

Average explorative rate

A novel metric, the Average Explorative Rate (AER) is introduced 
in this work for the purpose of measuring the thoroughness of the 
search operation carried out by the computational technique in the 
regions of the objective space. The AER performs online measurements 
successively during the execution of the computational technique. This 
metric measures the amount of search region on average covered by the 
computational technique at each iteration. The proposed AER can be 
computed by first determining the deviation of the objective function 
values at each iteration:

1( ) ( )
( )

n n
i i

n n
i

f x f x
f x

δ
+ −

=  
  

                (16)

where ( )n
if x  is the objective function value at the 

nth iteration with xi is the decision variables. Then the 
Heaviside Step Function is employed to return a value if the deviation, 
δ is more than some pre-defined value, L. 

0
( )

1
n

n
n

if L
H

if L
δ

δ
δ

<=  ≥
                 (17)

where ( )nH δ  is the Heaviside Step Function. The AER (ER) is then 
computed as follows:

1

( )N
n

R
n

H
E

N
δ

=

 
=  

 ∑                                   (18)

where n is the iteration count and N is the maximum number of 
iteration. Therefore the larger the AER value, the more objective space 
is covered by the computational technique per iteration. This in effect 
results in a better search operation. It should be noted that when 
comparing computational techniques, the threshold value, L must be 
consistent throughout the computational experiments. 

Computational Results and Analysis
The BFA technique is executed with four of the stochastic engines 

discussed previously. The BFA technique equipped with the Gaussian, 
Weibull and Gamma distributions are termed G-BFA, W-BFA and γ 
-BFA respectively while the BFA coupled with the chaotic generator 
is called the Ch-BFA. The solution sets generated by the BFA variants 
are employed to construct the approximate Pareto frontier. For the 
approximation of the Pareto frontier, 53 solutions for various weights 
were obtained for each of the BFA variants employed in this work. The 
quality of these solution sets was measured using the HVI. The nadir 
point employed as a reference in the HVI is (q1, q2, q3, q4) = (0, 0, 0, 
0). In this work, since the approaches are stochastic in nature, each 
solution point is selected by taking the best solution obtained from 
10 independent runs of the algorithms (for each of the individual 
weights). The individual solutions for specific weights of the BFA 
variants were gauged based on the value of the aggregate objective 
function (weighted-sum approach) given as follows:

[1,4]
i i

i

F w f
∀ ∈

= ∑                    (19)

where F is the aggregate objective function, fi are the individual objective 
functions and wi are the respective weights. This way the best, median 
and worst solution was determined. The individual solutions for the 
G-BFA approach and their aggregate objective values are as in Table 2.

The associated weights (w1, w2, w3, w4) for the best, median 
and worst solution are (0.1, 0.7, 0.1, 0.1), (0.5, 0.1, 0.3, 0.1) 
and (0.1, 0.1, 0.7, 0.1). The approximate Pareto frontier 
obtained using the G-BFA approach is shown in Figure 1. 
The individual solutions for the W-BFA approach and their aggregate 
objective values are as in Table 3 and Figure 2 provides depiction of 
the approximate Pareto frontier obtained using the W-BFA approach. 
The associated weights (w1, w2, w3, w4) for the best, median and 
worst solution provided by the W-BFA approach (refer to Table 2) 
are (0.1, 0.7, 0.1, 0.1), (0.5, 0.1, 0.2, 0.2) and (0.1, 0.1, 0.7, 0.1). The 
individual solutions for the γ -BFA approach and their respective 
values of the aggregate objective functions are shown in Table 4. 
The associated weights (w1, w2, w3, w4) for the best, median and worst 
solutions produced by γ-BFA approach are (0.7, 0.1, 0.1, 0.1), (0.1, 
0.4, 0.2, 0.3) and (0.1, 0.1, 0.6, 0.2). The approximate Pareto frontier 
obtained using the γ -BFA approach is shown in Figure 3.

The individual solutions for the Ch-BFA variant and their aggregate 
objective values are as in Table 5 and Figure 4 shows the approximate 
Pareto frontier obtained using the Ch-BFA approach.

The associated weights (w1, w2, w3, w4) for the best, median and 
worst solutions produced by Ch-BFA approach are (0.1, 0.7, 0.1, 0.1), 
(0.1, 0.4, 0.3, 0.2) and (0.1, 0.1, 0.7, 0.1). The degree of dominance 
for the entire Pareto frontiers produced by all four BFA variants is 
presented in Figure 5.

In Figure 5, it can be observed that the W-BFA generates the most 
dominant Pareto frontier followed by the G-BFA, Ch-BFA and γ -BFA 
respectively. The frontier obtained using the W-BFA approach is more 
dominant than G-BFA, Ch-BFA and γ-BFA by 6.156%, 38.385% and 
71.394% respectively. It can be observed in Figure 2 that the frontier 

Description Best Median Worst

Objective Function

f1 841.718 842.443 876.724
f2 973.687 974.652 1012.8
f3 312.121 312.627 333.673
f4 424.551 424.027 392.404

Decision Variable

A 2.25034 2.24784 2.25402
B 31.2589 31.2535 31.2635
C 4.76753 4.75909 4.77303
D 62.2761 62.2647 62.2825

Aggregated function F 839.42 654.878 461.764

Table 2: The individual solutions for the G-BFA approach.

Description Best Median Worst

Objective Function

f1 763.173 763.105 763.539
f2 1082.75 1082.95 1081.66
f3 329.961 329.88 330.403
f4 438.523 438.221 440.174

Decision Variable

A 2.49418 2.49545 2.48713
B 37.4942 37.4954 37.4871
C 4.7164 4.71767 4.70935
D 89.7164 89.7177 89.7094

Aggregated function F 911.09 643.467 459.819

Table 3: The individual solutions for the W-BFA approach.
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Figure 1: Pareto frontier constructed using the G-BFA approach.

 

Figure 2: Pareto frontier constructed using the W-BFA approach.

produced by the W-BFA is localized at the most optimal regions in 
the objective space. The G-BFA and the Ch-BFA generates solution set 
which are highly localized in certain regions (Figures 1 and 4). Thus, these 
approaches have very limited solution coverage which thus affects the 
overall dominance of the Pareto frontier. The γ -BFA on the other hand 
has a wide spread of solutions and hence high area of coverage (Figure 
3). However, the solutions produced by the γ-BFA are not located on 
the optimal or dominant regions of the objective space. It can be seen 

in this work that wide coverage of solutions on the Pareto frontier is a 
critical criteria for Pareto dominance. Nevertheless, if the solutions are 
not located in the dominant/optimal regions in the objective space, the 
overall frontier may not be the highly dominant albeit widely spread. 
Throughout these executions, the Ch-BFA does not perform well as 
compared to the (Table 5 and Figure 5) γ-BFA and the W-BFA. Thus, 
it is clear that for this problem the chaotic component in the stochastic 
engine does not improve the performance of the metaheuristic 
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approach. Each of the solutions generated BFA variants are ranked 
based on the aggregate objective function value as in Tables 2-5. Table 6 
shows the best individual solution produced by each of the BFA variants. 
Similar to the degree of dominance of the entire Pareto frontier, the 
W-BFA produces outranks the all the other BFA variants in terms of 
best individual solution. The W-BFA outranks the γ -BFA, G-BFA 
and Ch-BFA by 32.857%, 8.538% and 22.113% respectively. From 
Table 6 and Figure 5, the dominance rankings of the Pareto frontier 
and the individual solution rankings produced by the BFA variants 

are synchronous. The computational time of the approaches employed 
in this work was not compared. This is because all the approaches 
employed here are BFA-based and they only vary in terms of their 
stochastic engines which do not significantly contribute to their 
computational complexity. Therefore comparative analysis related to 
computational complexity and computational time of the approaches is 
not investigated in this work. The proposed AER metric was utilized to 
measure the rate of exploration carried out by each of the approaches. 
The values of the obtained AER are shown in Figure 6.

 

Figure 3: Pareto frontier constructed using the γ -BFA approach.

 

Figure 4: Pareto frontier constructed using the Ch-BFA approach.
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In Figure 6, the AER values are observed to be at maximal for 
the W-BFA approach followed by the Ch-BFA and the G-BFA. The 
lowest AER value was produced by the  -BFA. It can be seen the AER 
value is related to the degree of dominance determined by the HVI 
(Figure 5). The W-BFA produces the most dominant Pareto frontier 
and the highest AER value. Similarly the Pareto frontier generated by 
the γ -BFA has the lowest dominance and the lowest AER value while 
Ch-BFA and the G-BFA fall into the middle rank when measured 
with both the metrics. Thus, the explorative rate clearly indicates the 

 

Figure 5: HVI value for the entire Pareto frontiers.

Description Best Median Worst

Objective Function

f1 772.963 771.625 772.975
f2 741.781 741.492 733.283
f3 328.932 328.208 333.422
f4 376.205 375.26 368.473

Decision Variable

A 1.58506 1.57975 1.56785
B 30.1415 30.1386 30.1109
C 3.19791 3.19749 3.15392
D 60.2543 60.2564 60.197

Aggregated function F 685.766 551.979 424.374

Table 4: The individual solutions for the  γ-BFA approach.

Description Best Median Worst

Objective Function

f1 787.754 787.201 788.302
f2 848.311 848.971 847.645
f3 286.073 285.43 286.716
f4 449.033 448.853 449.205

Decision Variable

A 2.26923 2.27358 2.26485
B 30.7692 30.7736 30.7649
C 3.76923 3.77358 3.76485
D 60.7692 60.7736 60.7649

Aggregated function F 746.103 593.708 409.216

Table 5: The individual solutions for the Ch-BFA approach.

Description W-BFA ϒ-BFA G-BFA Ch-BFA

Objective Function

f1 763.173 772.963 841.718 787.754
f2 1082.75 741.781 973.687 848.311
f3 329.961 328.932 312.121 286.073
f4 438.523 376.205 424.551 449.033

Decision Variable

A 2.49418 1.58506 2.25034 2.26923
B 37.4942 30.1415 31.2589 30.7692
C 4.7164 3.19791 4.76753 3.76923
D 89.7164 60.2543 62.2761 60.7692

Aggregated function F 911.09 685.766 839.42 746.103

Table 6: The best individual solutions produced by the BFA variants.

 

Figure 6: AER value for the BFA variants.

effectiveness of the approach in terms of obtaining optimal solutions 
which construct dominant Pareto frontiers. The AER can thus be 
employed as an online metric to gauge and increase the adaptability of 
the approach during execution.

In this work, the weighted-sum scalarization approach was 
employed to construct the Pareto frontier from solutions with 
various weightages. Although the weighted sum approach is very 
apt for Pareto frontier construction in multi-objective scenarios, 
this approach fails to guarantee Pareto optimality [32]. Scalarization 
techniques such as the weighted-sum approach are incapable to 
accurately approximate Pareto frontiers which are concavely shaped. 
Since this problem is a maximization problem, the nadir point 
was chosen such that all the solution points obtained dominate this 
point. This makes the benchmarking results obtained using the HVI 
independent of the choice of the nadir point.

All the BFA-based computational approaches employed in this 
work performed stable computations during program executions. 
All solution points obtained using the approaches were feasible and 
no constraint violations occurred. One of the advantages of the BFA 
approach is that it performs a very thorough search since it has many 
cascaded loops (chemotaxis, swarming, reproduction and elimination-
dispersal. Since this increases the computational complexity of the BFA 
approach, the negative impact on the execution time is inevitable.

Outlook
The introduction of the non-Gaussian approach in the conventional 

stochastic engine has shown very interesting results. It can be observed 
in Table 5 and Figure 6 that the W-BFA which is equipped with a Non-
Gaussian stochastic engine outranks all the other approaches employed 
in this work in terms of individual solution and degree of Pareto 
frontier dominance. However, the γ -BFA does not perform as well the 
W-BFA or the conventional G-BFA although it is equipped with a non-
Gaussian stochastic engine as well. These results show that although 
having a non-Gaussian stochastic engine may be advantageous, it is 
possible that the choice of non-Gaussian distribution employed in the 
solution method may be dependent on the type of solution landscape. 
Due to this dependence, the effectiveness of the computational 
approach with a particular type of non-Gaussian stochastic engine 
would vary based on the problem characteristics and type.

The proposed AER metric was observed to provide good correlation 
with the measurements employed in this work. In future works, the 
AER metric could be employed in more computational approaches 
as an effective tool to direct the search effectively during program 
execution. In addition, other types of non-Gaussian distributions 
such the Gumbel distribution [15] could be tested as a stochastic 
engine in other types of metaheuristics (e.g., evolutionary algorithms: 
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Genetic Programming [33] and Differential Evolution [12]). Besides, 
more real-world multiobjective problems should be explored using 
computational techniques with non-Gaussian stochastic engines to 
investigate and validate the effectiveness of this framework in solving 
optimization problems.
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