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Introduction
A series of the most remarkable results in mathematics are related 

to Grisha Perelman’s proof of the Poincare Conjecture [1-3] built on 
geometrization (Thurston) conjecture [4,5] for three dimensional 
Riemannian manifolds, and R. Hamilton’s Ricci flow theory [6,7] see 
reviews and basic references explained by Kleiner [8-11]. Much of the 
works on Ricci flows has been performed and validated by experts in 
the area of geometrical analysis and Riemannian geometry. Recently, 
a number of applications in physics of the Ricci flow theory were 
proposed, by Vacaru [12-16].Some geometrical approaches in modern 
gravity and string theory are connected to the method of moving 
frames and distributions of geometric objects on (semi) Riemannian 
manifolds and their generalizations to spaces provided with nontrivial 
torsion, nonmetricity and/or nonlinear connection structures [17,18]. 
The geometry of nonholonomic manifolds and non–Riemannian 
spaces is largely applied in modern mechanics, gravity, cosmology 
and classical/quantum field theory expained by Stavrinos [19-35]. 
Such spaces are characterized by three fundamental geometric objects: 
nonlinear connection (N–connection), linear connection and metric. 
There is an important geometrical problem to prove the existence 
of the ” best possible” metric and linear connection adapted to a N–
connection structure. From the point of view of Riemannian geometry, 
the Thurston conjecture only asserts the existence of a best possible 
metric on an arbitrary closed three dimensional (3D) manifold. It 
is a very difficult task to define Ricci flows of mutually compatible 
fundamental geometric structures on non–Riemannian manifolds 
(for instance, on a Finsler manifold). For such purposes, we can also 
apply the Hamilton’s approach but correspondingly generalized in 
order to describe nonholonomic (constrained) configurations. The 
first attempts to construct exact solutions of the Ricci flow equations 
on nonholonomic Einstein and Riemann–Cartan (with nontrivial 
torsion) manifolds, generalizing well known classes of exact solutions 
in Einstein and string gravity, were performed and explanied by Vacaru 
[13-16].

We take a unified point of view towards Riemannian and 
generalized Finsler–Lagrange spaces following the geometry of 
nonholonomic manifolds and exploit the similarities and emphasize 

differences between locally isotropic and anisotropic Ricci flows. In 
our works, it will be shown when the remarkable Perelman–Hamilton 
results hold true for more general non–Riemannian configurations. 
It should be noted that this is not only a straightforward technical 
extension of the Ricci flow theory to certain manifolds with additional 
geometric structures. The problem of constructing the Finsler–Ricci 
flow theory contains a number of new conceptual and fundamental 
issues on compatibility of geometrical and physical objects and their 
optimal configurations.There are at least three important arguments 
supporting the investigation of nonholonomic Ricci flows: 1) The Ricci 
flows of a Riemannian metric may result in a Finsler– like metric if the 
flows are subjected to certain nonintegrable constraints and modelled 
with respect to nonholonomic frames (we shall prove it in this work). 
2) Generalized Finsler– like metrics appear naturally as exact solutions 
in Einstein, string, gauge and noncommutative gravity, parametrized 
by generic off–diagonal metrics, nonholonomic frames and generalized 
connections and methods explained by Vacaru S [33-35]. It is an 
important physical task to analyze Ricci flows of such solutions as well of 
other physically important solutions (for instance, black holes, solitonic 
and/pp–waves solutions, Taub NUT configurations [13-15] resulting in 
nonholonomic geometric configurations. 3) Finally, the fact that a 3D 
manifold establishes an appropriate Riemannian metric, which implies 
certain fundamental consequences (for instance) for our spacetime 
topology, allows us to consider other types of "also not bad" metrics with 
possible local anisotropy and nonholonomic gravitational interactions. 
What are the natural evolution equations for such configurations and 
how can we relate them to the topology of nonholonomic manifolds? 
We shall address such questions here (for regular Lagrange systems) 
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and in further works. The notion of nonholonomic manifold was 
introduced independently by G. Vranceanu [36] and Horak [37] 
as there was a need for geometric interpretation of nonholonomic 
mechanical systems modern approaches, criticism and historical 
remarks explained by Vacaru [34,38,39]. A pair ( , )M  , where M is 
a manifold and   is a nonintegrable distribution on M, is called a 
nonholonomic manifold. Three well known classes of nonholonomic 
manifolds, where the nonholonomic distribution defines a nonlinear 
connection (N–connection) structure, are defined by the Finsler 
spaces [40-42] and their generalizations as Lagrange and Hamilton 
spaces [34,43] (usually such geometries are modelled on the tangent 
bundle TM) More recent examples, related to exact off–diagonal 
solutions and nonholonomic frames in Einstein/string/gauge/ 
noncommutative gravity and nonholonomic Fedosov manifolds 
[33,34,44] also emphasize nonholonomic geometric structures.Let us 
now sketch the Ricci flow program for nonholonomic manifolds and 
Lagrange–Finsler geometries. Different models of "locally anisotropic" 
spaces can be elaborated for different types of fundamental geometric 
structures (metric, nonlinear and linear connections). In general, such 
spaces contain nontrivial torsion and nonmetricity fields. It would be 
a very difficult technical task to generalize and elaborate new proofs 
for all types of non–Riemannian geometries. Our strategy will be 
different: We shall formulate the criteria to determine when certain 
types of Finsler like geometries can be "extracted" (by imposing 
the corresponding nonholonomic constraints) from "well defined" 
Ricci flows of Riemannian metrics. This is possible because such 
geometries can be equivalently described in terms of the Levi Civita 
connections or by metric configurations with nontrivial torsion 
induced by nonholonomic frames. By nonholonomic transforms of 
geometric structures, we shall be able to generate certain classes of 
nonmetric geometries and/or generalized torsion configurations.The 
aim of this paper (the first one in a series of works) is to formulate 
the Ricci flow equations on nonholonomic manifolds and prove the 
conditions under which such configurations (of Finsler–Lagrange 
type and in modern gravity) can be extracted from well defined flows 
of Riemannian metrics and evolution of preferred frame structures. 
Further works will be dedicated to explicit generalizations of Perelman 
results [1-3] for nonholonomic manifolds and spaces provided with 
almost complex structure generated by nonlinear connections. We 
shall also construct new classes of exact solutions of nonholonomic 
Ricci flow equations, with noncommutative and/or Lie algebroid 
symmetry, defining locally anisotropic flows of black hole, wormhole 
and cosmological configurations and developing the results from work 
of Vacaru [13-15,33-35]. The paper is organized as follows: We start 
with preliminaries on geometry of nonholonomic manifolds provided 
with nonlinear connection (N–connection) structure in Section 2. We 
show how nonholonomic configurations can be naturally defined in 
modern gravity and the geometry of Riemann–Finsler and Lagrange 
spaces in Section 3. Section 4 is devoted to the theory of anholonomic 
Ricci flows: we analyze the evolution of distinguished geometric 
objects and speculate on nonholonomic Ricci flows of symmetric and 
nonsymmetric metrics. In Section 5, we prove that the Finsler–Ricci 
flows can be extracted from usual Ricci flows by imposing certain 
classes of nonholonomic constraints and deformations of connections. 
We also study regular Lagrange systems and consider generalized 
Lagrange–Ricci flows. The Appendix outlines some necessary results 
from the local geometry of N–anholonomic manifolds.

Notation remarks

We shall use both the free coordinate and local coordinate formulas 
which are both convenient to introduce compact denotations and 

sketch some proofs. The left up/lower indices will be considered as labels 
of geometrical objects, for instance, on a nonholonomic Riemannian 
of Finsler space. The boldfaced letters will be used to denote that the 
objects (spaces) are adapted (provided) to (with) nonlinear connection 
structure.

Preliminaries: Nonholonomic Manifolds
We recall some basic facts in the geometry of nonholonomic 

manifolds provided with nonlinear connection (N–connection) 
structure. The reader can refer to the concepts explained by Etayo 
[33,34,38,44] for details and proofs (for some important results we shall 
sketch the key points for such proofs). On nonholonomic vectors and 
(co–) tangent bundles and related Riemannian–Finsler and Lagrange–
Hamilton geometries [34,41,42].

N–connections

Consider a (n+m)–dimensional manifold V, with 2n ≥  and 1m ≥  
(for a number of physical applications, it is equivalently called to be a 
physical and/or geometric space). In a particular case, ,TMV =  with 
n=m (i.e. a tangent bundle), or = ( , ),E MV = E  dim = ,M n  is a vector 
bundle on M, with total space E. In a general case, we can consider a 
manifold V provided with a local fibred structure into conventional 
”horizontal” and ”vertical” directions. The local coordinates on V are 
denoted in the form = ( , ),u x y  or ( )= , ,i au x yα  where the ”horizontal” 
indices run the values , , , = 1,2, ,i j k n   and the ”vertical” indices run 
the values , , , = 1, 2, , .a b c n n n m+ + +  We denote by :T TMπ Τ →V  the 
differential of a map : Vπ →V  defined by fiber preserving morphisms 
of the tangent bundles TV and TM. The kernel of π Τ  is only the vertical 
subspace vV with a related inclusion mapping : .i v T→V V

Definition 2.1: A nonlinear connection (N–connection) N on a 
manifold V is defined by the splitting on the left of an exact sequence 

0 / 0,
i

v T T v→ → → →V V V V

i. e. by a morphism of submanifolds T v→N : V V  such that N i  is the 
unity in vV 

Locally, a N–connection is defined by its coefficients ( ),a
iN u

= ( ) .a i
i aN u dx

y
∂

⊗
∂

N 				                  (1)

Globalizing the local splitting, one proves:

Proposition 2.1: Any N–connection is defined by a Whitney sum of 
conventional horizontal (h) subspace, ( ) ,hV  and vertical (v) subspace, 
( ) ,vV  

= .T h v⊕V V V 					                     (2)

The sum (2) states on TV a nonholonomic (equivalently, 
anholonomic, or nonintegrable) distribution of horizontal and 
vertical subspaces. The well known class of linear connections consists 
of a particular subclass with the coefficients being linear on ,ay  i.e. 

( ) = ( ) .a a b
i bjN u x yΓ

The geometric objects on V can be defined in a form adapted to 
a N–connection structure, following certain decompositions being 
invariant under parallel transports preserving the splitting (2). In this 
case, we call them to be distinguished (by the N–connection structure), 
i.e. d–objects. For instance, a vector field T∈X V  is expressed 

= ( , ), = = ,i a
i ahX vX or X X X eα

α +X X e e

where = i
ihX X e  and = a

avX X e  state, respectively, the adapted to the 
N–connection structure horizontal (h) and vertical (v) components 



Citation: Alexiou M, Stavrinos PC, Vacaru S (2016) Nonholonomic Ricci Flows of Riemannian Metrics and Lagrange-Finsler Geometry. J Phys Math 
7: 162. doi:10.4172/2090-0902.1000162

Page 3 of 14

Volume 7 • Issue 2• 1000162
J Phys Math
ISSN: 2090-0902 JPM, an open access journal

of the vector. In brief, X is called a distinguished vector, in brief, d–
vector). In a similar fashion, the geometric objects on TV like tensors, 
spinors, connections,... are called respectively d–tensors, d–spinors, d–
connections if they are adapted to the N–connection splitting (2).

Definition 2.2: The N–connection curvature is defined as the 
Neijenhuis tensor,

( ) , ] [ ] [ ] [ ].vX vY v v vX v vY+ − −X,Y X,Y ,Y X,W  		                  (3)

In local form, we have for (3) 
1= ,
2

a i j
ij ad dΩ ∧ ⊗∂W

with coefficients

= .
a aa a
j ja b bi i

ij i jj i b b

N NN NN N
x x y y

∂ ∂∂ ∂
Ω − + −

∂ ∂ ∂ ∂
			                 (4)

Any N–connection N may be characterized by an associated frame 
(vierbein) structure = ( , ),i aeνe e  where 

= ( ) = ,a
i i ai a aN u and e

x y y
∂ ∂ ∂

−
∂ ∂ ∂

e 			                    (5)

and the dual frame (coframe) structure = ( , ),i aeµe e  where 

= = ( ) .i i a a a i
ie dx and dy N u dx+e 			                   (6)

These vielbeins are called respectively N–adapted frames 
and coframes. In order to preserve a relation with the previous 
denotations [33,34] we emphasize that = ( , )i aeνe e  and = ( , )i aeµe e  
are correspondingly the former "N–elongated" partial derivatives 

= / = ( , )i auν
νδ δ δ∂ ∂  and N–elongated differentials = = ( , ).i au dµ µδ δ δ  

This emphasizes that the operators (5) and (6) define certain “N–
elongated” partial derivatives and differentials which are more 
convenient for tensor and integral calculations on such nonholonomic 
manifolds.The vielbeins (6) satisfy the nonholonomy relations 

[ , ] = = W γ
α β α β β α αβ γ−e e e e e e e 			                  (7)

with (antisymmetric) nontrivial anholonomy coefficients =b b
ia a iW N∂  

and = .a a
ji ijW Ω  The above presented formulas present the proof of

Proposition 2.2: A N–connection on V defines a preferred 
nonholonomic N–adapted frame (vierbein) structure = ( , )he vee  and 
its dual ( )= ,he vee    with e and e  linearly depending on N–connection 
coefficients. 

For simplicity, we shall work with a particular class of nonholonomic 
manifolds:

Definition 2.3: A manifold V is N–anholonomic if its tangent space 
TV is enabled with a N–connection structure (2). 

There are two important examples of N–anholonomic manifolds, 
when V=E, or TM:

Example 2.1: A vector bundle = ( , , , ),E MπE N  defined by a surjective 
projection : ,E Mπ →  with M being the base manifold, dim = ,M n  and 
E being the total space, dim = ,E n m+  and provided with a N–connection 
splitting (2) is called N–anholonomic vector bundle. A particular case 
is that of N–anholonomic tangent bundle = ( , , , ),TM MπTM N  with 
dimensions n=m 

In a similar manner, we can consider different types of (super) 
spaces, Riemann or Riemann–Cartan manifolds, noncommutative 
bundles, or superbundles, provided with nonholonomc distributions 
(2) and preferred systems [33,34].

Torsions and curvatures of d–connections and d–metrics

One can be defined N–adapted linear connection and metric 
structures:

Definition 2.4: A distinguished connection (d–connection) D on 
a N–anholonomic manifold V is a linear connection conserving under 
parallelism the Whitney sum (2). 

For any d–vector X, there is a decomposition of D into h– and v–
covariant derivatives,

= .X vX X XhX vX Dh D hD vD  +  + +XD X D = D D = 	                (8)

The symbol ” "  in (8) denotes the interior product. We shall write 
conventionally that ( , ),hD vDD =  or = ( , ).i aD DαD  For convenience, 
in the Appendix, we present some local formulas for d–connections 

( )= , , , },i a i a
jk bk jc bcL L C Cγ

αβD = {G  with = ( , )i a
jk bkhD L L  and = ( , ),i a

jc bcvD C C  
see (6).

Definition 2.5: The torsion of a d–connection ( , )hD vDD = ,  for any 
d–vectors X,Y is defined by d–tensor field 

− −X YT(X,Y) D Y D X [X,Y]. 			                   (9)

One has a N–adapted decomposition 

, , , ,hX hY hX vY vX hY vX vY+ + +T(X,Y) = T( ) T( ) T( ) T( ). 	              (10)

Considering h- and v–projections of (10) and taking into account 
that [ , ] = 0,h vX vY  one proves

Theorem 2.1: The torsion T of a d–connection D is defined by five 
nontrivial d–tensor fields adapted to the h– and v–splitting by the N–
connection structure

( , ) [ ],hX hYhT hX hY D hY D hX h− − X,Y

( , ) [ , ],vT hX hY v hY hX

( , ) [ , ],vYvT hX vY vD hX h hX vY− −

( , ) [ , ],hXvT hX vY vD vY v hX vY−

( , ) [ , ].X YvT vX vY vD vY vD vX v vX vY− −

The d–torsions ( , ), ( , ),...hT hX hY vT vX vY  are called respectively the 
h (hh)–torsion, ( )v vv –torsion and so on. The local formulas (9) for 
torsion T are given in the Appendix.

Definition 2.6: The curvature of a d–connection D is defined 

− −X Y Y X [X,Y]R(X,Y) D D D D D 			                 (11)

for any d–vectors X,Y 

By straightforward calculations, one check the properties

( ) = 0, ( ) = 0,hR vZ vR hZX,Y X,Y

,hR hZ vR vZ+R(X,Y)Z = (X,Y) (X,Y)

for any for any d–vectors X,Y,Z.

Theorem 2.2: The curvature R of a d–connection D is completely 
defined by six d–curvatures 

( )[ , ] [ , ] ,hX hY hY hX hX hY hX hYhX hY hZ D D D D D vD hZ− − −R( , ) =

( )[ , ] [ , ] ,hX hY hY hX hX hY hX hYhX hY vZ D D D D D vD vZ− − −R( , ) =

( )[ , ] [ , ] ,hX hY hY vX X hY vX hYvX hY hZ D D D D D vD hZ− − −vR( , ) =

( )[ , ] [ , ] ,vX hY hY vX h vX hY v X hYvX hY vZ D D D D D D vZ− − − vR( , ) =
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( )[ , ] ,vX vY vY vX v vX vYvX vY hZ D D D D D hZ− −R( , ) =

( )[ , ] .vX vY vY vX v vX vYvX vY vZ D D D D D vZ− −R( , ) =

The formulas for local coefficients of d–curvatures α
βγδR = {R }  are 

given in the Appendix, see (11).

Definition 2.7: A metric structure g  on a N–anholonomic 
manifold V is a symmetric covariant second rank tensor field which is 
non degenerated and of constant signature in any point ∈u V.  

In general, a metric structure is not adapted to a N–connection 
structure.

Definition 2.8: A d–metric = Nhg vg⊕g  is a usual metric tensor 
which contracted to a d–vector results in a dual d–vector, d–covector (the 
duality being defined by the inverse of this metric tensor). 

The relation between arbitrary metric structures and d–metrics is 
established by

Theorem 2.3: Any metric g  can be equivalently transformed into 
a d–metric 

= ( , ) ( , )hg hX hY vg vX vY+g 			                (12)

adapted to a given N–connection structure. 

Proof: e introduce ( , ) = ( , )hg hX hY hg hX hY  and ( ,vg vX  
) = ( , )vY vg vX vY  and try to find a N–connection when 

( , ) = 0g hX vY 					                   (13)

for any d–vectors X,Y. In local form, the equation (13) is an algebraic 
equation for the N–connection coefficients ,a

iN  see formulas (1) and 
(2) in the Appendix. 

A distinguished metric (in brief, d–metric) on a N–anholonomic 
manifold V is a usual second rank metric tensor g which with respect 
to a N–adapted basis (6) can be written in the form

= ( , ) ( , )i j a b
ij abg x y e e h x y⊗ + ⊗g e e 			                   (14)

defining a N–adapted decomposition = [ , ].hg vg hg vg⊕Ng =

From the class of arbitrary d–connections D on V, one distinguishes 
those which are metric compatible (metrical d–connections) satisfying 
the condition

Dg = 0 					                   (15)

including all h- and v-projections 

= 0, = 0, = 0, = 0.j kl a kl j ab a bcD g D g D h D h

Different approaches to Finsler–Lagrange geometry modelled 
on TM (or on the dual tangent bundle ∗T M,  in the case of Cartan–
Hamilton geometry) were elaborated for different d–metric structures 
which are metric compatible [34,40] or not metric compatible [34,42].

(Non) adapted linear connections

For any metric structure g on a manifold V, there is the unique 
metric compatible and torsionless Levi Civita connection ∇  for which 

= 0α∇  and ∇g = 0.  This is not a d–connection because it does not 
preserve under parallelism the N–connection splitting (2) (it is not 
adapted to the N–connection structure).

Theorem 2.4 For any d–metric = [ , ]hg vgg  on a N–anholonomic 
manifold V, there is a unique metric canonical d–connection D  
satisfying the conditions  0Dg =  and with vanishing ( )h hh –torsion, 

( )v vv –torsion, i. e. ( , ) = 0hT hX hY  and ( , ) = 0.vT vX vY  

 Proof: y straightforward calculations, we can verify that the d–
connection with coefficients     ( )= , , , ,

i a i a
jk bk jc bcL L C C

γ
αβG  see (15) in the 

Appendix, satisfies the condition of Theorem.

Definition 2.9: A N–anholonomic Riemann–Cartan manifold RCV  
is defined by a d–metric g and a metric d–connection D structures. For 
a particular case, we can consider that a space RV  is a N–anholonomic 
Riemann manifold if its d–connection structure is canonical, i.e., .D = D  

The d–metric structure g on RCV  is of type (14) and satisfies the 
metricity conditions (15). With respect to a local coordinate basis, 
the metric g is parametrized by a generic off–diagonal metric ansatz 
(2). For a particular case, we can take D = D  and treat the torsion 
T  as a nonholonomic frame effect induced by a nonintegrable N–

splitting. We conclude that a N–anholonomic Riemann manifold 
is with nontrivial torsion structure (9) (defined by the coefficients of 
N–connection (1), and d–metric (14) and canonical d–connection 
(15)). Nevertheless, such manifolds can be described alternatively, 
equivalently, as a usual (holonomic) Riemann manifold with the 
usual Levi Civita for the metric (1) with coefficients (2). We do not 
distinguish the existing nonholonomic structure for such geometric 
constructions.For more general applications, we have to consider 
additional torsion components, for instance, by the so–called H–field 
in string gravity [45].

Theorem 2.5: The geometry of a (semi) Riemannian manifold V with 
prescribed (n+m)–splitting (nonholonomic h- and v–decomposition) is 
equivalent to the geometry of a canonical .R V  

 Proof: et gαβ  be the metric coefficients, with respect to a local 
coordinate frame, on V.  The (n+m)–splitting states for a parametrization 
of type (2) which allows us to define the N–connection coefficients 

a
iN  by solving the algebraic equations (3) (roughly speaking, the N–

connection coefficients are defined by the "off–diagonal" N–coefficients, 
considered with respect to those from the blocks n n×  and ).m m×  
Having defined = { },a

iNN  we can compute the N–adapted frames 
αe  (5) and βe  (6) by using frame transforms (4) and (5) for any fixed 

values ( )i
ie u  and ( );a

ae u  for instance, for coordinate frames =i i
i ie δ  

and = .a a
a ae δ  As a result, the metric structure is transformed into a 

d–metric of type (14). We can say that V is equivalently re–defined as 
a N–anholonomic manifold V.

It is also possible to compute the coefficients of canonical d–
connection D  following formulas (15). We conclude that the geometry 
of a (semi) Riemannian manifold V with prescribed (n+m)–splitting 
can be described equivalently by geometric objects on a canonical 
N–anholonomic manifold 

R V  with induced torsion T  with the 
coefficients computed by introducing (15) into (9). The inverse 
construction also holds true: A d–metric (14) on 

R V  is also a metric 
on V but with respect to certain N–elongated basis (6). It can be also 
rewritten with respect to a coordinate basis having the parametrization 
(2). From this Theorem, by straightforward computations with respect 
to N–adapted bases (6) and (5), one follows

Corollary 2.1: The metric of a (semi) Riemannian manifold provided 
with a preferred N–adapted frame structure defines canonically two 
equivalent linear connection structures: the Levi Civita connection and 
the canonical d–connection. 

 Proof. n a manifold ,R V  we can work with two equivalent linear 
connections. If we follow only the methods of Riemannian geometry, 
we have to choose the Levi Civita connection. In some cases, it may 



Citation: Alexiou M, Stavrinos PC, Vacaru S (2016) Nonholonomic Ricci Flows of Riemannian Metrics and Lagrange-Finsler Geometry. J Phys Math 
7: 162. doi:10.4172/2090-0902.1000162

Page 5 of 14

Volume 7 • Issue 2• 1000162
J Phys Math
ISSN: 2090-0902 JPM, an open access journal

be optimal to elaborate a N–adapted tensor and differential calculus 
for nonholnomic structures, i.e. to choose the canonical d–connection. 
With respect to N–adapted frames, the coefficients of one connection 
can be expressed via coefficients of the second one, see formulas (16) 
and (15). Both such linear connections are defined by the same off–
diagonal metric structure. For diagonal metrics with respect to local 
coordinate frames, the constructions are trivial.

Having prescribed a nonholonomic n+m splitting on a manifold 
V, we can define two canonical linear connections ∇  and .D  
Correspondingly, these connections are characterized by two curvature 
tensors,  ( )Rα

βγδ ∇  (computed by introducing α
βγΓ  into (7) and (10)) and 



 ( )α
βγδR D  (with the N–adapted coefficients computed following formulas 

(11)). Contracting indices, we can compute the Ricci tensor ( )Ric ∇  and 
the Ricci d–tensor ( )Ric D  following formulas (12), correspondingly 
written for ∇  and .D  Finally, using the inverse d–tensor αβg  for both 
cases, we compute the corresponding scalar curvatures ( )s R ∇  and 



sR(D),  see formulas (13) by contracting, respectively, with the Ricci 
tensor and Ricci d–tensor.

Metrization procedure and preferred linear connections

On a N–anholonomic manifold V, with prescribed fundamental 
geometric structures g and N, we can consider various classes of d–
connections D, which, in general, are not metric compatible, i.e. 

≠Dg 0.  The canonical d–connection D  is the ”simplest” metrical one, 
with respect to which other classes of d–connections D =   +D Z  can 
be distinguished by their deformation (equivalently, distorsion, or 
deflection) d–tensors Z. Every geometric construction performed for 
a d–connection D can be redefined for ,D  and inversely, if Z is well 
defined.

Let us consider the set of all possible nonmetrical and metrical 
d–connections constructed only from the coefficients of a d–metric 
and N–connection structure, ,ij abg h  and ,a

iN  and their partial 
derivatives. Such d–connections can be generated by two procedures 
of deformation, 



[ ] [ ]= ( 1, 2) ,K K Kawaguchi s metrization kaw kaw
γ γ γ γ
αβ αβ αβ αβ ′→ + ZG G G



[ ] [ ]= ,M Mor
γγ γ
αβαβ αβ→ + ZG G

where [ ]K γ
αβZ  and [ ]M γ

αβZ  are deformation d–tensors.

Theorem 2.6: For given d–metric = [ , ]ij abg hαβg  and N–connection 
= { }a

iNN  structures, the deformation d–tensor 

] [ ] [ ]1 1= { = , = ,
2 2

K K i im K a ac
jk j mk bk k cbZ g D g Z h D hγ

αβZ

[ ] [ ]1 1= , = }
2 2

K i im K a ad
ja a mj bc c dbZ g D g Z h D h

transforms a d–connection ( )= , , ,i a i a
jk bk jc bcL L C Cγ

αβG  into a metric d–
connection

( )[ ] [ ] [ ] [ ] [ ]= , , , .K i K i a K a i K i a K a
jk jk bk bk jc ja bc bcL Z L Z C Z C Zγ

αβ + + + +G

Proof: t comes from a straightforward verification that the 
metricity conditions [ ]K Dg = 0  are satisfied (similarly to Chapter 1 in 
for generalized Finsler–affine spaces). 

Theorem 2.7: For fixed d–metric, = [ , ],ij abg hαβg  and N–connection, 
= { },a

iNN  structures the set of metric d–connections 

[ ] [ ]=M Mγγ γ
αβαβ αβ+ ZG G  

is defined by the deformation d–tensors 

] [ ] [ ] [ ] [ ]= { = , = ,M M i li m M a ea m
jk km lj bk bd ejZ O Y Z O Yγ

αβ
− −Z

[ ] [ ] [ ] [ ]= , = }M i mi k M a ea d
ja jk mc bc bd ecZ O Y Z O Y+ +

where the so–called Obata operators are defined 

( ) ( )[ ] [ ]1 1= =
2 2

li l i li ea e a ea
km k m km bd b d bdO g g and O h hδ δ δ δ± ±± ±

and ,m
ljY  , ,m k

ej mcY Y  d
ecY  are arbitrary d–tensor fields. 

Proof: t also comes from a straightforward verification. Here we 
note, that [ ]M γ

αβG  are generated with prescribed nontrivial torsion 
coefficients. If [ ] = 0,M γ

αβZ  the canonical d–connection 
γ
αβG  contains 

a nonholonomically induced torsion.

We can generalize the concept of N–anholonomic Riemann–
Cartan manifold RC V  (see Definition 2.9):

Definition 2.10: A N–anholonomic metric–affine manifold maV 
is defined by three fundamental geometric objects: 1) a d–metric 

= [ , ],ij abg hαβg  2) a N–connection = { }a
iNN  and 3) a general d–

connection D, with nontrivial nonmetricity d–tensor field Q = Dg.  

The geometry and classification of metric–affine manifolds and 
related generalized Finsler–affine spaces is considered in Part I of 
monograph explained by Vacaru [34]. From Theorems 2.6, 2.7 and 2.5, 
follows

Conclusion 2.1: The geometry of any manifold maV can be 
equivalently modelled by deformation tensors on Riemann manifolds 
provided with preferred frame structure. The constructions are 
elaborated in N–adapted form if we work with the canonical d–
connection, or not adapted to the N–connection structure if we apply 
the Levi Civita connection. 

Finally, in this section, we note that if the torsion and nonmetricity 
fields of maV are defined by the d–metric and N–connection coefficients 
(for instance, in Finsler geometry with Chern or Berwald connection, 
see below section 5.1) we can equivalently (nonholonomically) 
transform maV into a Riemann manifold with metric structure of type 
(1) and (2).

Gravity and Lagrange–Finsler Geometry
We study N–anholonomic structures in Riemmann–Finsler and 

Lagrange geometry modelled on nonholonomic Riemann–Cartan 
manifolds.

Generalized lagrange spaces

If a N–anholonomic manifold is stated to be a tangent bundle, 
V=TM the dimension of the base and fiber space coincide, = ,n m  and 
we obtain a special case of N–connection geometry. For such geometric 
models, a N–connection is defined by Whithney sum 

=T h v⊕TM TM TM, 				                   (16)

with local coefficients = { ( , )},a i a
iN x yN  where it is convenient to 

distinguish h–indices , , ...i j k  from v–indices , , ,...a b c On TM, there is 
an almost complex structure  β

αF = {F }  associated to N defined by

,i i i ie and e−F(e ) = F( ) = e 				                   (17)

where = / /∂ ∂ − ∂ ∂e i k k
i ix N y  and = / i

ie y∂ ∂  and   = .β γ β
α β αδ−F F  Similar 

constructions can be performed on N–anholonomic manifolds Vn+n 
where fibred structures of dimension n+n are modelled.

A general d–metric structure (14) on Vn+n, together with a 
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prescribed N–connection N, defines a N–anholonomic Riemann–
Cartan manifold of even dimension.

Definition 3.1: A generalized Lagrange space is modelled on Vn+n  
(by a d–metric with = ,a b

ij i j abg hδ δ  i.e.

( ) = ( , ) .c i j i j
ijh x y e e⊗ + ⊗g e e 			                 (18)

One calls = ( , ) a b
abh x y y yε  to be the absolute energy associated to a 

abh  of constant signature.

Theorem 3.1: For nondegenerated Hessians 



21= ,
2

ab a bh
y y
ε∂

∂ ∂ 					                     (19)

when det | | 0,h ≠  there is a canonical N–connection completely defined 
by ,ijh

 ( , ) =
a

c a
i i

GN x y
y

∂
∂

				                  (20)

where



21= .
2

aba k k
bb k kG h y

y x x
ε εδ

 ∂ ∂
− ∂ ∂ ∂ 

Proof: ne has to consider local coordinate transformation laws for 
some coefficients a

iN  preserving splitting (16). We can verify that  c a
iN  

satisfy such conditions. The sketch of proof is given and expained by 
Vacaru [34] for TM. We can consider any nondegenerated quadratic 

form 
  ( , ) = ( , )a b

' ' ' ' aba b a b
h x y e e h x y  on Vn+n if we redefine the v–coordinates in 

the form = ( , )
' 'a a i ay y x y  and = .

'i ix x x

Finally, in this section, we state:

Theorem 3.2: For any generalized Lagrange space, there are 
canonical N–connection cN,  almost complex c F,  d–metric  cg  and 
d–connection  cD  structures defined by an effective regular Lagrangian 
 ( , ) = | |L x yε ε  and its Hessian  ( , )abh x y  (19). 

Proof: t follows from formulas (19), (20), (17) and (19) and 
adapted d–connection (21) and d–metric structures (20) all induced 
by a  = | |.Lε ε  

Lagrange–finsler spaces

The class of Lagrange–Finsler geometries is usually defined on 
tangent bundles but it is possible to model such structures on general 
N–anholonomic manifolds, for instance, in (pseudo) Riemannian and 
Riemann–Cartan geometry, if nonholonomic frames are introduced 
into consideration [33,34]. Let us consider two such important 
examples when the N–anholonomic structures are modelled on TM. 
One denotes by  = \{0}TM TM  where {0} means the set of null sections 
of surjective map : .TM Mπ →

Example 3.1: A Lagrange space is a pair [ ]= , ( , )nL M L x y  with a 
differentiable fundamental Lagrange function ( , )L x y  defined by a map 

: ( , ) ( , )L x y TM L x y∈ → ∈  of class ∞  on TM  and continuous on the 

null section 0 : M TM→  of .π  The Hessian (19) is defined 
21 ( , )( , ) =

2
L

ij i j
L x yg x y
y y

∂
∂ ∂

				                 (21)

when =ijrank g n  on TM  and the left up "L" is an abstract label 
pointing that certain values are defined by the Lagrangian L. 

The notion of Lagrange space was introduced by Kern [43] and 
elaborated as a natural extension of Finsler geometry. In a more 
particular case, we have

Example 3.2: A Finsler space defined by a fundamental Finsler 
function ( , ),F x y  being homogeneous of type ( , ) = ( , ),F x y F x yλ λ  for 
nonzero ,λ∈  may be considered as a particular case of Lagrange 
geometry when 2= .L F  

Our approach to the geometry of N–anholonomic spaces (in 
particular, to that of Lagrange, or Finsler, spaces) is based on canonical 
d–connections. It is more related to the existing standard models of 
gravity and field theory allowing to define Finsler generalizations of 
spinor fields, noncommutative and supersymmetric models, discussed 
in by Vacaru [33,34]. Nevertheless, a number of schools and authors 
on Finsler geometry prefer linear connections which are not metric 
compatible (for instance, the Berwald and Chern connections, 
see below Definition 5.1) which define new classes of geometric 
models and alternative physical theories with nonmetricity field, see 
details in [34,40-42]. From a geometrical point of view [46,47], all 
such approaches are equivalent. It can be considered as a particular 
realization, for nonholonomic manifolds, of the Poincare’s idea on 
duality of geometry and physical models stating that physical theories 
can be defined equivalently on different geometric spaces [48].

From the Theorem 3.2, one follows:

Conclusion 3.1: Any mechanical system with regular Lagrangian 
( , )L x y  (or any Finsler geometry with fundamental function ( , ))F x y  

can be modelled as a nonhlonomic Riemann geometry with canonical 
structures LN,  Lg  and LD  (or F N,  F g  and ,F D  for 2= )L F  defined on 
a N–anholonomic manifold Vn+n. In equivalent form, such Lagrange–
Finsler geometries can be described by the same metric and N–
anholonomic distributions but with the corresponding not adapted 
Levi Civita connections

Let us denote by ( ) = (1,4) ( ),CRic D R D  where (1, 4)C  means the 
contraction on the first and fourth indices of the curvature ( ),R D  and 

( ) = (1,2) ( ) = ,sCSc D Ric D R  where (1, 2)C  is defined by contracting 
( )Ric D  with the inverse d–metric, respectively, the Ricci tensor and 

the curvature scalar defined by any metric d–connection D and d–
metric g on RCV, see also the component formulas (12), (13) and (14) in 
Appendix. The Einstein equations are 

1( ) ( ) ( ) =
2

−En D Ric D g Sc D ,¡ 			                 (22)

where the source ¡ reflects any contributions of matter fields and 
corrections from, for instance, string/brane theories of gravity. In a 
physical model, the equations (22) have to be completed with equations 
for the matter fields and torsion (for instance, in the Einstein–Cartan 
theory one considers algebraic equations [49] for the torsion and 
its source). It should be noted here that because of nonholonomic 
structure of RCV, the tensor Ric(D) is not symmetric and [ ]( ) 0.≠D En D  
This imposes a more sophisticated form of conservation laws on such 
spaces with generic "local anisotropy" [34], (a similar situation arises 
in Lagrange mechanics when nonholonomic constraints modify the 
definition of conservation laws). For D = D,  all constructions can 
be equivalently redefined for the Levi Civita connection ,∇  when 
[ ]( ) = 0.En∇ ∇  A very important class of models can be elaborated 

when ( ) , ( ) ,h vdiag h vλ λ  = u g u g¡  which defines the so–called N–
anholonomic Einstein spaces with "nonhomogeneous" cosmological 
constant (various classes of exact solutions in gravity and nonholonomic 
Ricci flow theory were constructed and analyzed in [13-15,33,34].

Anholonomic Ricci Flows
The Ricci flow theory was elaborated by Hamilton [6,7] and applied 

as a method approaching the Poincaré Conjecture and Thurston 
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Geometrization Conjecture [4,5] Perelman’s works [1-3] and reviews 
of results [8,10].

Holonomic Ricci flows

For a one parameter τ family of Riemannian metrics 
( ) = { ( , )}g g uγ

αβ
τ τ  on a N–anholonomic manifold V, one introduces 

the Ricci flow equation

= 2 ,
g

Rαβ
αβτ

∂
−

∂ 
					                  (23)

where Rαβ  is the Ricci tensor for the Levi Civita connection = { }α
βγ∇ Γ  

with the coefficients defined with respect to a coordinate basis 
= / .uα

α∂ ∂ ∂  The equation (23) is a tensor nonlinear generalization of 
the scalar heat equation / = ,φ τ φ∂ ∂ ∆  where ∆  is the Laplace operator 
defined by .g  Usually, one considers normalized Ricci flows defined by 

2= 2 ,
5
rg R gα β α β α βτ

∂
− +

∂  				                 (24)

[0]
| =0

= ( ),g g uα β α βτ
					                 (25)

where the normalizing factor = /r RdV dV∫  is introduced in order to 
preserve the volume V, the boundary conditions are stated for τ=0 and 
the solutions are searched for 0 > 0.τ τ ≥  For simplicity, we shall work 
with equations (23) if the constructions do not result in ambiguities.It 
is important to study the evolution of tensors in orthonormal frames 
and coframes on nonholonomic manifolds. Let ( ( )),0 <gα β τ τ≤V,  0 ,τ  
be a Ricci flow with = Rαβ Rα β  and consider the evolution of basis 
vector fields 

( ) = ( ) ( ) = ( ) e e and e e duβα β β
α α α βτ τ τ τ∂

which are (0)g –orthonormal on an open subset ⊂U V.  We evolve this 
local frame flows according to the formula

=   .e g R eα β γα
α β γ ατ

∂
∂ 

				                  (26)

There are unique solutions for such linear ordinary differential 
equations for all time 00, ).τ τ∈

Using the equations (24), (25) and (26), one can define the 
evolution equations under Ricci flow, for instance, for the Riemann 
tensor, Ricci tensor, Ricci scalar and volume form stated in coordinate 
frames (see, for example, the Theorem 3.13 in [10]. In this section, we 
shall consider such nonholnomic constraints on the evolution equation 
where the geometrical object will evolve in N–adapted form; we shall 
also model sets of N–anholnomic geometries, in particular, flows of 
geometric objects on nonholonomic Riemann manifolds and Finsler 
and Lagrange spaces.

Ricci flows and N–anholonomic distributions

On manifold V, the equations (24) and (25) describe flows not 
adapted to the N–connections ( , ).a

iN uτ  For a prescribed family of such 
N–connections, we can construct from ( , )g uγ

αβ
τ  the corresponding 

set of d–metrics ( , )uαβ τg = [ ( , ), ( , )]ij abg u h uτ τ  and the set of N–adapted 

frames on ( ( )),0 <αβ τ τ≤V,g 0.τ  The evolution of such N–adapted 
frames is not defined by the equations (26) but satisfies the

Proposition 4.1: For a prescribed n+m splitting, the solutions of the 
system (24) and (25) define a natural flow of preferred N–adapted frame 
structures. 

 Proof: Following formulas (1), (2) and (3), the boundary conditions 
(25) state the values ( = 0, )a

iN uτ  and ( = 0, ) = [ ( = 0, ), ( = 0, )].αβ τ τ τg ij abu g u h u  
Having a well defined solution ( , ),g u

αβ
τ  we can construct the 

coefficients of N–connection ( , )a
iN uτ  and d–metric ( , )uτg

= [ ( , ), ( , )]g u h uτ τ  for any 00, ) :τ τ∈  the associated set of frame (vielbein) 
structures ( ) = ( ( ), ),i aeν τ τe e  where 

( ) = ( , ) = ,a
i i ai a aN u and e

x y y
τ τ∂ ∂ ∂

−
∂ ∂ ∂

e 		                (27)

and the set of dual frame (coframe) structures ( ) = ( , ( )),i aeµ τ τe e  where 

= ( ) = ( , ) .i i a a a i
ie dx and dy N u dxτ τ+e 			                (28)

We conclude that prescribing the existence of a nonintegrable 
( )n m+ –decomposition on a manifold for any 00, ),τ τ∈  from any 
solution of the Ricci flow equations (26), we can extract a set of preferred 
frame structures with associated N–connections, with respect to which 
we can perform the geometric constructions in N–adapted form.

We shall need a formula relating the connection Laplacian on 
contravariant one–tensors with Ricci curvature and the corresponding 
deformations under N–anholonomic maps. Let A be a d–tensor of rank 
k. Then we define 2∇ A,  for ∇  being the Levi Civita connection, to be 
a contravariant tensor of rank k+2 given by 

2
∇∇ ⋅ ∇ ∇ ⋅ −∇ ⋅X Y YX

A( , X,Y) = ( A)( ) A( ). 			               (29)

This defines the (Levi Civita) Laplacian connection 

( )( )2 , ,αβ
α β∆ ∇A g A e e 				                    (30)

for tensors, and 

( )2 2 = ,f tr f fαβ

αβ
∆ ∇ ∇g

for a scalar function on V. In a similar manner, by substituting ∇  
with ,D  we can introduce the canonical d–connection Laplacian, for 
instance, 

 ( )( )2
, .αβ

α β∆A g D A e e 				                  (31)

Proposition 4.2 The Laplacians ∆  and ∆  are related by formula

=  ∆ ∆ + ∆A A A
					                   (32)

where the deformation d–tensor of the Laplacian,  ,∆  is defined 
canonically by the N–connection and d–metric coefficients. 

 Proof: e sketch the method of computation  .∆  Using the formula 
(17), we have

= Z∇ +XX XD 
					                   (33)

where =  Z Zα γ
αβX X   is defined for any αX  with γ

αβZ  computed 
following formulas (17); all such coefficients depend on N–connection 
and d–metric coefficients and their derivatives, i.e. on generic off–
diagonal metric coefficients (2) and their derivatives. Introducing (33) 
into (29) and (30), and separating the terms depending only on XD  we 
get ∆A  (31). The rest of terms with linear or quadratic dependence on 
Z γ
αβ

 and their derivatives define 

( )  ,αβ
∆∆A g ZA 

where 
 ( ) ( ) ( ) Z Z Z Z∆ + +X YY X X YZA = D A D A A   





Z ZZ Z− − − YY D YX X
D A A A.  

In a similar form as for Proposition 4.2, we prove
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Proposition 4.3: The curvature, Ricci and scalar tensors of the Levi 
Civita connection ∇  and the canonical d–connection D  are defined by 
formulas

  =  R Z+(X,Y) R(X,Y) (X,Y), 

 ( ) = ( ) ( ),Ric Ric Z∇ +Ric D  
 ( ) = ( ) ( ),Sc Sc Z∇ +Sc D  

where
 =Z Z Z Z− −X Y Y X [X,Y] (X,Y) D D   

   ( ) = (1,4) , ( ) = (1,2) ( )Ric C Z Sc C Ric Z Z   Z     

for R  computed following formula (11) and  ( ) = sSc D R . 

In the theory of Ricci flows, one considers tensors quadratic in the 
curvature tensors, for instance, for any given 'ββg  and D  

= ,
' '

' ' ' ' ' '
ββ δδ

αβγδαγα γ α β γ δ
B g g R R 			                    (34)

,' ' ' ' ' ' ' ' ' 'αγα γ αγα γ αγα γ αγ γα αγα γ
− − +B B B B B

( ).'s
' ' ' ' ' '

ββ
αγ α α αβγ β γ β β γ

− +B D D R g D D R D D R

Using the connections ,∇  or D,  we similarly define and compute 
the values , ' '' 'B Bαγα γαγα γ

     and ,'Bαγ   or  ,' ' ' 'αγα γ αγα γB B  and  .'αγB

Evolution of distinguished geometrical objects

There are d–objects (d–tensors, d–connections) with N–adapted 
evolution completely defined by solutions of the Ricci flow equations 
(26).

Definition 4.1: A geometric structure/object is extracted from 
a (Riemannian) Ricci flow (for the Levi Civita connection) if the 
corresponding structure/ object can be redefined equivalently, prescribing 
a ( )n m+ –splitting, as a N–adapted structure/ d–object subjected to N–
anholonomic flows. 

Following the Propositions 4.2 and 4.3 and formulas (34), we prove

Theorem 4.1: The evolution equations for the Riemann and Ricci 
tensors and scalar curvature defined by the canonical d–connection are 
extracted respectively: 

   = 2 ,αβγδ αβγδ αβγδαβγδτ
∂

∆ + +
∂

R R B Q

  = ,αβ αβ αβτ
∂

∆ +
∂

R R Q

     = 2s s αβ
αβ

τ
∂

∆ + +
∂

R R R R Q

where, for

  = , = , = ,R Z B Z Z Zαβ
αβγδ αβγδ αβγδ αβγδαβγδ αβγδ αβ+ +R  B  g     

   = , = , = ,s s
' ' 'R Z B Z R Zαβ αγ αγ αγαβ αβ+ + +R   B   R    

the Q–terms (defined by the coefficients of canonical d–connection, 
a
iN  and = ,ij abg hαβ   g  and their derivatives) are 

  =  2 ,Z Zαβγδαβγδ αβγδαβγδτ
∂

− + ∆ +
∂

Q  R    

  =  ,Z Zαβαβ αβαβτ
∂

− + ∆ +
∂

Q  R    

    =  2 2 2 .sZ Z Z Z Z Z
αβαβ αβ

αβ αβ αβτ
∂

− + ∆ + ∆ + + +
∂

Q R R   R       

In Ricci flow theory, it is important to have the formula for the 

evolution of the volume form:

Remark 4.1: The deformation of the volume form is stated by 
equation 

( ) ( ) ( ), = ,sdvol u Z dvol uα ατ τ
τ
∂

− +
∂

R

which is just that for the Levi Civita connection and 

( ) ( ), | det , |,dvol u g uα γ
αβ

τ τ  where ( )g
αβ

τ  are metrics of type (1). 

The evolution equations from Theorem 4.1 and Remark 4.1 
transform into similar ones from Theorem 3.13 [10].

For any solution of equations (24) and (25), on ⊂U V,  we 
can construct for any 00, )τ τ∈  a parametrized set of canonical d–
connections  ( ) = { ( )}

γ
αβτ τD G  (15) defining the corresponding canonical 

Riemann d–tensor (11), nonsymmetric Ricci d–tensor αβR  (12) and 
scalar (13). The coefficients of d–objects are defined with respect to 
evolving N–adapted frames (27) and (28). One holds

Conclusion 4.1: The evolution of corresponding d–objects on N–
anholonomic Riemann manifolds can be canonically extracted from the 
evolution under Ricci flows of geometric objects on Riemann manifolds. 

In the sections 5.3 and 5.1, we shall consider how Finsler 
and Lagrange configurations can be extracted by more special 
parametrizations of metric and nonholonomic constraints.

Nonholonomic ricci flows of (non) symmetric metrics

The Ricci flow equations were introduced by Hamilton [6] in a 
heuristic form similarly to how A. Einstein proposed his equations 
by considering possible physically grounded equalities between the 
metric and its first and second derivatives and the second rank Ricci 
tensor. On (pseudo) Riemannian spaces the metric and Ricci tensors 
are both symmetric and it is possible to consider the parameter 
derivative of metric and/or correspondingly symmetrized energy–
momentum of matter fields as sources for the Ricci tensor.On N–
anholonomic manifolds there are two alternative possibilities: The first 
one is to postulate the Ricci flow equations in symmetric form, for the 
Levi Civita connection, and then to extract various N–anholonomic 
configurations by imposing corresponding nonholonomic constraints. 
The bulk of our former and present work is related to symmetric metric 
configurations.

In the second case, we can start from the very beginning with a 
nonsymmetric Ricci tensor for a non–Riemannian space. In this 
section, we briefly speculate on such geometric constructions: 
The nonholonomic Ricci flows even beginning with a symmetric 
metric tensor may result naturally in nonsymmetric metric tensors 
 = ,g g gαβ αβαβ

+


 where = .g gαβ βα−
 

 Nonsymmetric metrics in gravity 

were originally considered by Einstein [50] and Eisenhart [51], see 
modern approaches [52].

Theorem 4.2: With respect to N–adapted frames, the canonical 
nonholonomic Ricci flows with nonsymmetric metrics defined by 
equations 

= 2 2 ( ),c d
ijij ij cd i jg R g h N Nλ

τ τ
∂ ∂

− + −
∂ ∂

			              (35)

= 2 2 ,abab abh R hλ
τ
∂

− +
∂

				                 (36)
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 = , =ia aiia aig R g R
τ τ
∂ ∂
∂ ∂

 

				                (37)

where = [ , ]ij abg g h
αβ  with respect to N–adapted basis (6), = / 5,rλ  

3 =y v  and τ can be, for instance, the time like coordinate, = ,tτ  or 
any parameter or extra dimension coordinate. 

Proof. t follows from a redefinition of equations (24) with respect 
to N–adapted frames (by using the frame transform (4) and (5)), and 
considering respectively the canonical Ricci d–tensor (12) constructed 
from [ , ].ij abg h  Here we note that normalizing factor r is considered for 
the symmetric part of metric. 

One follows:

Conclusion 4.2: Nonholonomic Ricci flows (for the canonical d–
connection) resulting in symmetric d–metrics are parametrized by the 
constraints 

 = 0 = = 0.ia aig and R Rαβ



				                      (38)

The system of equations (35), (36) and (38), for "symmetric" 
nonholonomic Ricci flows, was introduced and analyzed in [13,14].

Example 4.1: The conditions (38) are satisfied by any ansatz of type 
(14) in 3D, 4D, or 5D, with coefficients of type 

3 4= ( ), = ( , ), = ( , ), = ( , ),k k k k
i i a a i i i ig g x h h x v N w x v N n x v 	              (39)

for , ,... = 1,2,3i j  and , ,... = 4,5a b  (the 3D and 4D being parametrized 
by eliminating the cases = 1i  and, respectively, = 1,2);i  4 =y v  being 
the so–called "anisotropic" coordinate. Such metrics are off–diagonal 
with the coefficients depending on 2 and 3 coordinates but positively 
not depending on the coordinate 5.y  

We constructed and investigated various types of exact solutions 
of the nonholonomc Einstein equations and Ricci flow equations [33-
35] and [13-15]. They are parametrized by ansatz of type (39) which 
positively constrains the Ricci flows to be with symmetric metrics. 
Such solutions can be used as backgrounds for investigating flows of 
Eisenhart (generalized Finsler–Eisenhart geometries) if the constraints 
(38) are not completely imposed. We shall not analyze this type of N–
anholonomic Ricci flows in this series of works.

Generalized Finsler–Ricci Flows
The aim of this section is to provide some examples illustrating 

how different types of nonholonomic constraints on Ricci flows of 
Riemannian metrics model different classes of N–anholonomic spaces 
(defined by Finsler metrics and connections, geometric models of 
Lagrange mechanics and generalized Lagrange geometries).

Finsler–Ricci flows
Let us consider a τ–parametrized family (set) of fundamental 

Finsler functions ( ) = ( , , ),i aF F x yτ τ  see Example 3.2. For a family of 
nondegenerated Hessians

2 21 ( , , )( , , ) = ,
2

F
ij i j

F x yh x y
y y
ττ ∂

∂ ∂
			                (40)

see formula (21) for effective 2( ) = ( ) = ( ),L Fε τ τ τ  we can model Finsler 
metrics on  Vn+n (or on TM) and the corresponding family of canonical 
N–connections, see (20), 

( ) ( ) = ,
a

c a
i i

GN
y
ττ ∂

∂
				                  (41)

where 
2 2 21 ( ) ( )( ) = ( )

2
a F ab k k

bb k k
F FG h y
y x x

τ ττ τ δ
 ∂ ∂

− ∂ ∂ ∂ 
 and ( )F abh τ  are inverse to ( ).F

ijh τ

Proposition 5.1: Any family of fundamental Finsler functions ( )F τ  
with nondegenerated ( )F

ijh τ  defines a corresponding family of Sasaki 
type metrics 

( ) ( ) = ( , , )  ( )  ( ) ,c F i j c i c j
ijh x y e eτ τ τ τ⊗ + ⊗g e e 		               (42)

with ( ) = ( , , ),F F
ij ijg h x yτ τ where  ( ) =  ( , )c a a c a i

idy N u dxτ τ+e  are defined 
by the N–connection (41). 

Proof. t follows from the explicit construction (42).

For = = ( , , , )n n c a
iTM M Nπ+V TM with injective : ,TM Mπ →  we 

can model by ( )F τ  various classes of Finsler geometries. In explicit 
form, we work on  \{0}TM TM  and consider the pull–buck bundle 

.TMπ ∗  One generates sets of geometric objects on pull–back cotangent 
bundle T Mπ ∗ ∗  and its tensor products:

on ,T M T M T Mπ π π∗ ∗ ∗ ∗ ∗ ∗⊗ ⊗  a corresponding family of Cartan tensors

( ) = ( ) ,i j k
ijkA A dx dx dxτ τ ⊗ ⊗

( )( )( ) ;
2

ij
ijk k

gFA
y
τττ

∂
∂



on ,π ∗ ∗T M  a family of Hilbert forms ( )( ) i
k

F dx
y
τω τ ∂

∂
  and the d–

connection 1–form
 ( ) = ( )i i k
j jkL dxω τ τ 				                 (43)

1( ) = (    ).
2

i F ih c F c F c F
jk k jh j kh h jkL g g g gτ + −e e e

Theorem 5.1: The set of fundamental Finsler functions ( )F τ  
defines on TMπ ∗  a unique set of linear connections, called the Chern 
connections, characterized by the structure equations:

  ( ) ( ) = ( ) = 0,i i i i i
i id dx dx dxω τ ω τ− ∧ − ∧

i.e. the torsion free condition;

  ( )
( ) ( ) ( ) ( ) ( ) = 2  ( ),

( )
ijaF k F k c a

ij kj i ik j

A
dg g g

F
τ

τ τ ω τ τ ω τ τ
τ

− − e

i.e. the almost metric compatibility condition. 

Proof: t follows from straightforward computations. For any fixed 
value 0= ,τ τ  it is just the Chern’s Theorem 2.4.1. from, In order to 
elaborate a complete geometric model on TM, which also allows us to 
perform the constructions for N–anholonomic manifolds, we have to 
extend the above considered forms with nontrivial coefficients with 
respect to  ( ).c a τe

Definition 5.1: A family of fundamental Finsler metrics ( )F τ  defines 
models of Finsler geometry (equivalently, space) with d–connections 

( ) = ( ( ),i
jkLα

βγ τ τΓ  ( ))i
jkC τ  on a corresponding N–anholonomic manifold 

V:

• of Cartan type if ( )i
jkL τ  is that from (43) and 

1( ) = ( )( ( ) ( ) ( )),
2

i F ih F F F
jk jh kh jkk j hC g g g g

x x x
τ τ τ τ τ∂ ∂ ∂

+ −
∂ ∂ ∂

	               (44)

which is similar to formulas (21) but for 2= ( );L F τ

• of Chern type if ( )i
jkL τ  is given by (43) and ( ) = 0;i

jkC τ

• of Berwald type if ( ) =  /i c i k
jk jL N yτ ∂ ∂  and ( ) = 0;i

jkC τ

• of Hashiguchi type if ( ) =  /i c i k
jk jL N yτ ∂ ∂  and ( )i

jkC τ  is given by (44). 

Various classes of remarkable Finsler connections have been 
investigated by Bejancu [41,42]. On modelling Finsler like structures in 
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Einstein and string gravity and in noncommutative gravity. It should be 
emphasized that the models of Finsler geometry with Chern, Berwald 
or Hashiguchi type d–connections are with nontrivial nonmetricity 
field [33,34]. So, in general, a family of Finsler fundamental metric 
functions ( )F τ  may generate various types of N–anholonomic metric–
affine geometric configurations, see Definition 2.10, but all components 
of such induced nonmetricity and/or torsion fields are defined by the 
coefficients of corresponding families of generic off–diagonal metrics 
of type (1), when the ansatz (2) is parametrized for = = ( )F

ij ij ijg h h τ  and 
=a

iN  ( ).c a
iN τ  Applying the results of Theorem 2.7, we can transform 

the families of “nonmetric” Finsler geometries into corresponding 
metric ones and model the Finsler configurations on N–anholonomic 
Riemannian spaces, see Conclusion 2.1. In the “simplest” geometric 
and physical manner (convenient both for applying the former 
Hamilton–Perelman results on Ricci flows for Riemannian metrics, as 
well for further generalizations to noncommutative Finsler geometry, 
supersymmetric models and so on...), we restrict our analysis to 
Finsler–Ricci flows with canonical d–connection of Cartan type when 
 ( ) = ( ( ),F i

jkL
α
βγ τ τG  ( ))i

jkC τ  is with ( )i
jkL τ  from (43) and ( )i

jkC τ  from 
(44). This provides a proof for

Lemma 5.1: A family of Finsler geometries defined by ( )F τ  can be 
characterized equivalently by the corresponding canonical d–connections 
(in N–adapted form) and Levi Civita connections (in not N–adapted 
form) related by formulas

= F F Z
γγ γ
αβαβ αβΓ +G  				                (45)

where Z γ
αβ  is computed following formulas (18) for = = ( )F

ij ij ijg h h τ  
and =a

iN  ( ).c a
iN τ  

Following the Lemma 5.1 and section 4.1, we obtain the proof of

Theorem 5.2: The Finsler–Ricci flows for fundamental metric 
functions

( )F τ  can be extracted from usual Ricci flows of Riemannian 
metrics parametrized in the form

   
( ) =

 

F c a c b F c eF
F ij i j ab j ae

c e F F
i be ab

g N N g N g
g

N g gα β τ
 +
 
 

		             (46)

nd satisfying the equations (for instance, for normalized flows) 

2= 2 ,
5

F F Frg R gα β α β α βτ
∂

− +
∂ 

[0]
| =0

= ( ).F Fg g uα β α βτ

The Finsler–Ricci flows are distinguished from the usual 
(unconstrained) flows of Riemannian metrics by existence of additional 
evolutions of preferred N–adapted frames (see Proposition 2.2):

Corollary 5.1 The evolution, for all "time" 00, ),τ τ∈  of preferred 
frames on a Finsler space 

( ) = ( , )F F uα
α α ατ τ ∂e e

is defined by the coefficients 

( , )  ( , ) ( , )
( , ) = ,

0 ( , )

F i c b F a
F i i b

F a
a

e u N u e u
u

e u
α
α

τ τ τ
τ

τ
 
 
 

e 		               (47)

with ( ) = ( , ) ( , ) ,jF F i F
ij i j i jg e u e uτ τ τ η  where = [ 1,... 1]i j diagη ± ±  establish 

the signature of [0] ( ),F g uα β  is given by equations 

=   ,F F F Fe g R eα β γα
α β γ ατ

∂
∂  				                 (48)

where F gα β  is inverse to (46) and F Rβ γ  is the Ricci tensor constructed 

from the Levi Civita coefficients of (46). 

Proof. e have to introduce the metric and N–connection 
coefficients (42) and (41), defined by ( ),F τ  into (4). The equations (48) 
are similar to (26), but in our case for the N–adapted frames (47). We 
note that the evolution of the Riemann and Ricci tensors and scalar 
curvature defined by the Cartan d–connection, i.e. the canonical d–
connection,  ,F γ

αβG  can be extracted as in Theorem 4.1 when the values 
are redefined for the metric (46) and (45).Finally, in this section, we 
conclude that the Ricci flows of Finsler metrics can be extracted from 
Ricci flows of Riemannian metrics by corresponding metric ansatz, 
nonholonomic constraints and deformations of linear connections, all 
derived canonically from fundamental Finsler functions.

Ricci flows of regular lagrange systems

There were elaborated different approaches to geometric mechanics. 
We follow those related to formulations in terms of almost symplectic 
geometry [27] and generalized Finsler and Lagrange geometry [43]. 
We note that Lagrange–Finsler spaces can be equivalently modelled 
as almost Kähler geometries (see formulas (17) defining the almost 
complex structure) and, which is important for applications of the 
theory of anholonomic Ricci flows, modelled as nonholonomic 
Riemann manifolds, see Conclusion 3.1.

For regular mechanical systems, we can formulate the problem: 
Which fundamental Lagrange function ( ) = ( , , )i jL L x yτ τ  from a class 
of Lagrangians parametrized by 00, )τ τ∈  will define the evolution 
of Lagrange geometry, from a theory of Ricci flows? The aim of this 
section is to present the key results solving this problem.

Following the formulas from Result 6.1 and the methods elaborated 
in previous section 5.1, when 2 ( ) ( );F Lτ τ→  ( ) ( ),F L

ij ijh gτ τ→  see (40) 

and (21);  ( )c a
iN τ →  ( ),L i

jN τ  see (41) and (19);  ( ) ( )c Lτ τ→g g ,  see 

(42) and (20);  ( )F α
βγ τ →G   ( ),L α

βγ τG  see (45) and (21), where all values 
labeled by up–left " "L  are canonically defined by ( ),L τ  we prove 
(generalizations of Theorem 5.2 and Corollary 5.1):

Theorem 5.3: The Lagrange–Ricci flows for regular Lagrangians 
( )L τ  can be extracted from usual Ricci flows of Riemannian metrics 

parametrized as 

   
( ) =

 

L L a L b L L eL
L ij i j ab j ae

L e L L
i be ab

g N N g N g
g

N g gα β τ
 +
 
 

and satisfying the equations (for instance, normalized) 

2= 2 ,
5

L L Lrg R gα β α β α βτ
∂

− +
∂ 

[0]
| =0

= ( ),L Lg g uα β α βτ

where ( )LRα β τ  are the Ricci tensors constructed from the Levi Civita 
connections of metrics ( ).L gα β τ  

The Lagrange–Ricci flows are are characterized by the evolutions of 
preferred N–adapted frames (see Proposition 2.2):

Corollary 5.2: The evolution, for all time 00, ),τ τ∈  of preferred 
frames on a Lagrange space 

( ) = ( , )L L uα
α α ατ τ ∂e e
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is defined by the coefficients 

( , )  ( , ) ( , )
( , ) = ,

0 ( , )

L i L b L a
L i i b

L a
a

e u N u e u
u

e u
α
α

τ τ τ
τ

τ
 
 
 

e

with ( ) = ( , ) ( , ) ,jL L i L
ij i j i jg e u e uτ τ τ η  where = [ 1,... 1]i j diagη ± ±  establish 

the signature of [0] ( ),L g uα β  is given by equations 

=   .L L L Le g R eα β γα
α β γ ατ

∂
∂ 

We conclude that the Ricci flows of Lagrange metrics can be 
extracted from Ricci flows of Riemannian metrics by corresponding 
metric ansatz, nonholonomic constraints and deformations of linear 
connections, all derived canonically for regular Lagrange functions.

Generalized Lagrange–Ricci flows

We have the result that any mechanical system with a regular 
Lagrangian ( , )L x y  can be geometrized canonically in terms of 
nonholonomic Riemann geometry, see Conclusion 3.1, and for 
certain conditions such configurations generate exact solutions of the 
gravitational field equations in the Einstein gravity and/or its string/
gauge generalizations, see Result 6.2 and Theorem 6.1. In other words, 
for any symmetric tensor = a

ij ig δ  ( , )b
j abh x yδ  on a manifold n n+V  we 

can generate a Lagrange space model, see section 3.1. The aim of this 
section is to show how we can construct nonholonomic Ricci flows 
with effective Lagrangians starting from an arbitrary family ( ) = a

ij ig τ δ  
( , , ).b

j abh x yδ τ

The values ( )abh τ  of constant signature defines a family of absolute 
energies ( ) = ( , , ) a b

abh x y y yε τ τ and d–metrics of type (18),

( ) ( ) = ( , , )  ( )  ( ) ,i j i j
ijh x y e eε ε ετ τ τ τ⊗ + ⊗g e e

 ( ) =  ( , , ) ,i i a i
idy N x y dxε ετ τ+e 			                   (49)

where the τ–parametrized N–connection coefficients 

 ( ) ( , , ) =
a

a
i i

GN x y
y

ε
ε ττ ∂

∂
				                  (50)

with 

21 ( ) ( ) ( ) =  ( )
2

aba k k
bb k kG h y

y x x
ε ε ε τ ε ττ τ δ

 ∂ ∂
− ∂ ∂ ∂ 

 are defined for nondegenerated 
Hessians 



21 ( ) ( ) = ,
2

ab a bh
y y

ε ε ττ ∂
∂ ∂

				                   (51)

when det | | 0.h ≠

For any fixed value of τ, the existence of fundamental geometric 
objects (49), (50) and (51) follows from Theorem 3.1. Similarly, the 
Theorem 3.2 states a modelling by ( )abh τ  of families of Lagrange spaces 
enabled with canonical N–connections ε τN( ),  almost complex structure 
c τF( ),  d–metrics  ( )c τg  and d–connections  ( )c τD  structures defined 
respectively by effective regular Lagrangians  ( , , ) = | ( , , ) |L x y x yε τ ε τ  
and theirHessians  ( , , )abh x yε τ  (51). The results of previous section 5.3 
can be reformulated in the form (with proofs being similar for those 
for Theorem 5.2 and Corollary 5.1, but with  Lε  instead of 2F  and  a

iNε  
instead of  ,...c a

iN ):

Theorem 5.4: The generalized Lagrange–Ricci flows for regular 
effective Lagrangians  ( )Lε τ  derived from a family of symmetric tensors 

( , , )abh x yτ  can be extracted from usual Ricci flows of Riemannian metrics 
parametrized in the form

  

 

      
( ) =

   

a b e
ij ab aei j j

e
be abi

h N N h N h
g

N h h

ε ε ε ε ε ε
ε

α β ε ε ε
τ

 +
 
  

and satisfying the equations (for instance, normalized) 

2= 2 ,
5
rg R gε ε ε

α β α β α βτ
∂

− +
∂ 

[0]
| =0

= ( ),g g uε ε
α β α βτ

where ( )Rε α β τ  are the Ricci tensors constructed from the Levi Civita 
connections of metrics ( ).gε α β τ  

The evolutions of preferred N–adapted frames (see Proposition 
2.2) defined by generalized Lagrange–Ricci flows is stated by

Corollary 5.3: The evolution, for all time 00, ),τ τ∈  of preferred 
frames on an effective Lagrange space 

 ( ) = ( , )uε ε α
α α ατ τ ∂e e

is defined by the coefficients 

 ( , )  ( , ) ( , )
 ( , ) = ,

0  ( , )

i b a
i i b

a
a

e u N u e u
u

e u

ε ε ε
ε α

α ε

τ τ τ
τ

τ
 
 
 

e

with  ( ) = ( , ) ( , ) ,ji
ij i j i jh e u e uε ε ετ τ τ η  where = [ 1,... 1]i j diagη ± ±  establish the 

signature of [0] ( ),g uε
α β  is given by equations 

 =    .e g R eα β γε α ε ε ε
α β γ ατ

∂
∂ 

In Introduction and Part I of the monograph [34], it was proven 
that certain types of gravitational interactions can be modelled as 
generalized Lagrange–Finsler geometries and inversely, certain classes 
of generalized Finsler geometries can be modelled on N–anholonomic 
manifolds, even as exact solutions of gravitational field equations. 
The approach elaborated by Romanian geometers and physicists 
[33-35] originates from Vranceanu G and Horac Z works [36,37] on 
nonholonomic manifolds and mechanical systems, see a review of 
results and recent developments explained by Bejancu [38]. Recently, 
there were proposed various models of ” analogous gravity”, a review  
[53], which do not apply the methods of Finsler geometry and the 
formalism of nonlinear connections.

Local Geometry Of N–Anholonomic Manifolds
Let us consider a metric structure on N–anholonomic manifold V,

( )=g g u du duα β
αβ

⊗ 				                  (1)

defined with respect to a local coordinate basis ( )= ,i adu dx dyα  by 
coefficients

= .
a b e

ij i j ab j ae
e
i be ab

g N N h N h
g

N h hαβ

 +
 
 

			                (2)

Such a metric (2) is generic off–diagonal, i.e. it can not be 
diagonalized by coordinate transforms if ( )a

iN u  are any general 
functions. The condition (13), for hX e→  and ,avY e→  transforms 
into 

( , ) = 0, = 0,b
i a i abia

g e e equivalently g N h− 		                (3)

where ia
g  ( / , / ),i ag x y∂ ∂ ∂ ∂  which allows us to define in a unique 

form the coefficients =b ab
i ia

N h g  where abh  is inverse to .abh  We can 
write the metric g  with ansatz (2) in equivalent form, as a d–metric 
(14) adapted to a N–connection structure, see Definition 2.8, if we 
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define ( ),ij i jg e eg  and ( ),ab a bh e eg  and consider the vielbeins αe  
and αe  to be respectively of type (5) and (6).

We can say that the metric g  (1) is equivalently transformed into 
(14) by performing a frame (vielbein) transform 

= = .and duβα β β
α α α β∂e e e e

with coefficients

( ) ( ) ( )
( ) = ,

0 ( )

i b a
i i b

a
a

e u N u e u
u

e u
α
α

 
 
 

e 			                   (4)

( ) ( ) ( )
( ) = ,

0 ( )

i b k
i k i

a
a

e u N u e u
u

e u
β
β

 −
 
  

e 			                  (5)

being linear on .a
iN  We can consider that a N–anholonomic manifold 

V provided with metric structure g  (1) (equivalently, with d–metric 
(14)) is a special type of a manifold provided with a global splitting into 
conventional “horizontal” and “vertical” subspaces (2) induced by the 
“off–diagonal” terms ( )b

iN u  and a prescribed type of nonholonomic 
frame structure (7).

The N–adapted components α
βγG  of a d–connection = ( ),α α D e D  

where “ ” denotes the interior product, are defined by the equations 

( ) ( )= , = .or uγ γ γ
α β αβ γ αβ α β D e e D e eG G 		                  (6)

The N–adapted splitting into h– and v–covariant derivatives is 
stated by 

( ) ( )= { = , }, = { = , },i a i a
k jk bk c jc bch L L and v C CD D D D

where, by definition, 

( ) ( ) ( ) ( )= , = , = , = .i i a a i i a a
jk k j bk k b jc c j bc c bL e L e C e C e   D e D e D e D e

The components ( )= , , ,i a i a
jk bk jc bcL L C Cγ

αβG  completely define a d–
connection D on a N–anholonomic manifold V.

The simplest way to perform computations with d–connections is 
to use N–adapted differential forms like 

=α α γ
β βγeG G 					                   (7)

with the coefficients defined with respect to (6) and (5). For instance, 
torsion can be computed in the form 

= .dα α α α β
β+ Γ ∧De e e  				                    (8)

Locally it is characterized by (N–adapted) d–torsion coefficients 

= , = = , = ,i i i i i i a a
jk jk kj ja aj ja ji jiT L L T T C T− − Ω

= = , = .
a

a a a a a ai
bi ib bi bc bc cbb

NT T L T C C
y

∂
− − −

∂
			                (9)

By a straightforward d–form calculus, we can find the N–adapted 
components of the curvature 

 = = ,dα α α γ α α γ δ
β β β β γ βγδ− ∧ ∧D R e eG G G G  		                  (10)

of a d–connection D, i.e. the d–curvatures from Theorem 2.2: 

= ,i i i m i m i i a
hjk k hj j hk hj mk hk mj ha kjR e L e L L L L L C− + − − Ω

= ,a a a c a c a a c
bjk k bj j bk bj ck bk cj bc kjR e L e L L L L L C− + − − Ω

= ,i i i i b
jka a jk k ja jb kaR e L D C C T− + 			                 (11)

= ,c c c c c
bka a bk k ba bd kaR e L D C C T− +

= ,i i i h i h i
jbc c jb b jc jb hc jc hbR e C e C C C C C− + −

= .a a a e a e a
bcd d bc c bd bc ed bd ecR e C e C C C C C− + −

Contracting respectively the components of (11), one proves that 
the Ricci tensor αβ αβτR R  is characterized by h- v–components, i.e. 
d–tensors,

, , , .k k b c
ij ijk ia ika ai aib ab abcR R R R R R R R−    		                (12)

It should be noted that this tensor is not symmetric for arbitrary 
d–connections D. The scalar curvature of a d–connection is 

= ,s ij ab
ij abg R h Rαβ

αβ +R g R 			                (13)

defined by a sum the h– and v–components of (12) and d–metric (14).

The Einstein tensor is defined and computed in standard form 
1=
2

s
αβ αβ αβ−G R g R 				                  (14)

There is a minimal extension of the Levi Civita connection ∇  to 
a canonical d–connection D  which is defined only by a metric g  
is metric compatible, with  = 0

i
jkT  and  = 0

a
bcT  but  ,

i a
ja jiT T  and 

a
biT  

are not zero, see (9). The coefficient     ( )= , , ,
i a i a
jk bk jc bcL L C C

γ
αβG  of this 

connection, with respect to the N–adapted frames, are defined : 

 ( )1= ,
2

i ir
jk k jr j kr r jkL g e g e g e g+ − 			                  (15)

 ( )1= ( ) ,
2

a a ac d d
bk b k k bc dc b k db c kL e N h e h h e N h e N+ − −

  ( )1 1= , = .
2 2

i aik ad
jc bcc jk c bd c cd d bcC g e g C h e h e h e h+ −

The Levi Civita linear connection = { },α
βγ∇ Γ  uniquely defined by 

the conditions  = 0  and = 0,g∇  is not adapted to the distribution (2). 
Let us parametrize the coefficients in the form 

( )= , , , , , , , ,i a i a i a i a
jk jk bk bk jb jb bc bcL L L L C C C Cα

βγΓ        

where 

( ) = , ( ) = ,i a i a
j jk i jk a b bk i bk ak k

L L e e L L e∇ + ∇ +e ee e e   

( ) = , ( ) = .i a i a
e j jb i jb a e b bc i bc ab c

C C e e C C e∇ + ∇ +e e e   

A straightforward calculus1 shows that the coefficients of the Levi-
Civita connection can be expressed in the form

1= , = ,
2

i i a i ab a
jk jk jk jb ik jkL L L C g h− − Ω 

			                 (16)

1 1= ( ) ,
2 2

i c ji i h ih j
bk jk cb j k jk hbL h g g g Cδ δΩ − −

1= ( ) ( ) ,
2

a a a b ab c c
bk bk c d cd bk b kL L h h L e Nδ δ  + + − 

1 1= ( ) ,
2 2

i i a ji i h ih j
kb kb jk cb j k jk hbC C h g g g Cδ δ+ Ω + −

1= ( ) ( ) , = ,
2

a a d ad c c a a
jb c b cb dj d j bc bcC h h L e N C Cδ δ  − − −  

{ }= ( ) ( ) ,
2

ij
i c c c c
ab aj a j cb bj b j ca

gC L e N h L e N h   − − + −   

where a
jkΩ  are computed as in formula (4). For certain considerations, 

it is convenient to express 
1Such results were originally considered by R. Miron and M. Anastasiei for vector 
bundles provided with N–connection and metric structures, see Ref. [?]. Similar 
proofs hold true for any nonholonomic manifold provided with a prescribed N–
connection structures.
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= Z
γγ γ
αβαβ αβΓ +G 

				                  (17)

where the explicit components of distorsion tensor Z γ
αβ  can be defined 

by comparing the formulas (16) and (15):

1= 0, = ,
2

i a i ab a
jk jk jb ik jkZ Z C g h− − Ω 

1 1= ( ) ,
2 2

i c ji i h ih j
bk jk cb j k jk hbZ h g g g Cδ δΩ − −

1= ( ) ( ) ,
2

a a b ab c c
bk c d cd bk b kZ h h L e Nδ δ  + − 

1 1= ( ) ,
2 2

i a ji i h ih j
kb jk cb j k jk hbZ h g g g Cδ δΩ + −

= ( ) ( ) , = 0,a a d ad c c a
jb c b cb dj d j bcZ h h L e N Zδ δ  − − −  

		                 (18)

{ }= ( ) ( ) .
2

ij
i c c c c
ab aj a j cb bj b j ca

gZ L e N h L e N h   − − + −   

It should be emphasized that all components of ,
γγ
αβαβΓ G  and Z γ

αβ  
are defined by the coefficients of d–metric (14) and N–connection (1), 
or equivalently by the coefficients of the corresponding generic off–
diagonal metric (2).

For a differentiable Lagrangian ( , ),L x y  i.e. a fundamental Lagrange 
function, is defined by a map : ( , ) ( , )L x y TM L x y∈ → ∈  of class ∞  on 
 = {̀0}TM TM  and continuous on the null section 0 : M TM→  of π  [34] 

the following results are derived:

Result 
1. The Euler–Lagrange equations

= 0i i
d L L
d y xτ

 ∂ ∂
− ∂ ∂ 

where =
i

i dxy
dς

 for ( )ix ς  depending on parameter ,ς  are equivalent to 

the “nonlinear” geodesic equations 
2

2 2 ( , ) = 0
i j

i kd x dxG x
d dτ ς

+

defining paths of a canonical semispray

= 2 ( , )i i
i iS y G x y

x y
∂ ∂

−
∂ ∂

where 
212 ( , ) =

2
i L ij k

i k i
L LG x y g y

y x x
 ∂ ∂

− ∂ ∂ ∂ 

with L ijg  being inverse to (21).

2. There exists on V  TM  a canonical N–connection 

( , )=
i

L i
j i

G x yN
y

∂
∂

					                   (19)

defined by the fundamental Lagrange function ( , ),L x y  which prescribes 
nonholonomic frame structures of type (5) and (6), = ( , )L

i aeνe e  and 
= ( , ).L i aeµe e

3. There is a canonical metric structure
= ( , ) ( , )L i j i j

ij ijg x y e e g x y⊗ + ⊗g e e 			                 (20)

constructed as a Sasaki type lift from M for ( , ) = ( , ),L
ij ijg x y g x y  see (21).

4. There is a unique metrical and, in this case, torsionless canonical 

d–connection = ( , )L hD vDD  with the nontrivial coefficients with 
respect to L

νe  and L µe  parametrized respectively   = ( , ),
i aL

jk bcL C
α
βγG  for 

 

1 1= ( ), = ( )
2 2

i iih ih
jk jkk jh j kh h jk k jh j kh h jkL g g g g C g e g e g e g+ − + −e e e    (21)

defining the generalized Christoffel symbols, where (for simplicity, we 
omitted the left up labels ( )L  for N–adapted bases). 

We conclude that any regular Lagrange mechanics can be 
geometrized as a nonholonomic Riemann manifold V equipped with 
canonical N–connection (19) and adapted d–connection (21) and d–
metric structures (20) all induced by a ( , ).L x y

Let us show how N–anholonomic configurations can defined 
in gravity theories explained by  Vacaru [33,34]. In this case, it is 
convenient to work on a general manifold ,dim = n m+V V  enabled 
with a global N–connection structure, instead of the tangent bundle 
.TM

Result 6.2: Various classes of vacuum and nonvacuum exact solutions 
of (22) parametrized by generic off–diagonal metrics, nonholonomic 
vielbeins and Levi Civita or non–Riemannian connections in Einstein 
and extra dimension gravity models define explicit examples of N–
anholonomic Einstein–Cartan (in particular, Einstein) spaces. 

It should be noted that a subclass of N–anholonomic Einstein 
spaces was related to generic off–diagonal solutions in general relativity 
by such nonholonomic constraints when ( ) = ( )Ric ∇Ric D  even  ,≠ ∇D  
where D  is the canonical d–connection and ∇  is the Levi–Civita 
connection.

A direction in modern gravity is connected to analogous gravity 
models when certain gravitational effects and, for instance, black hole 
configurations are modelled by optical and acoustic media. Following 
our approach on geometric unification of gravity and Lagrange regular 
mechanics in terms of N–anholonomic spaces, one holds

Theorem 6.1: A Lagrange (Finsler) space can be canonically 
modelled as an exact solution of the Einstein equations (22) on a N–
anholonomic Riemann–Cartan space if and only if the canonical N–
connection LN  ( F N ) ,  d–metric Lg  ( Fg)  and d–connection 

LD  
( )F D  structures defined by the corresponding fundamental Lagrange 
function ( )L x,y  (Finsler function ( ))F x,y  satisfy the gravitational field 
equations for certain physically reasonable sources  

Proof. t can be performed in local form by considering the Einstein 
tensor (14) defined by the LN  ( F N ) in the form (19) and Lg  ( Fg)  in 
the form (20) inducing the canonical d–connection 

LD  ( ).F D  For 
certain zero or nonzero ¡, such N–anholonomic configurations may be 
defined by exact solutions of the Einstein equations for a d–connection 
structure [53].
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