
Research Article Open Access

Huang, J Biom Biostat 2014, S12
DOI: 10.4172/2155-6180.S12-004

Research Article Open Access

J Biom Biostat Big Data and Flexible Modeling ISSN: 2155-6180 JBMBS, an open access journal

Keywords: Nonrigid image registration; Fluid dynamics; Mutual
information; Sum of squared differences; Mathematical and statistical 
modeling

Introduction
Image registration is an often encountered problem in many 

application areas such as, medical imaging, satellite imaging, computer 
vision, or statistical modeling [1,2]. The task of image registration is to 
find an optimal geometric transformation that maps one image onto 
the other image, such that the transformed image is similar to the other 
image and corresponding points match [3,4].

Image registration adds value to images, e.g. by allowing multiple 
images acquired using different modalities to be viewed and analyzed 
in the same coordinate system, and facilitates new uses of images, e.g. 
to monitor and quantify disease progression over time in the individual 
or to build statistical models of structural variation in a population.

Though the image registration problem is usually easy to state, 
it is hard to solve. The main reason is that the problem is ill-posed. 
Small changes of the template images can lead to completely different 
registration results. Moreover, the solution may not be unique.

In practice, the concrete types of the geometric transformation as 
well as the notions of optimal and corresponding depend on specific 
applications. Each application has its own demand with respect to the 
meaning of similar and optimal. This is another reason for making 
image registration such a challenging task. For example, for the 
registration of X-ray images of bones, one may consider only rigid 
transformations, whereas for the registration of brain MRI scans one 
has to consider nonrigid transformations. The way one measures the 
similarity between images also depends on specific modalities of the 
images.

To obtain accurate results some applications allow for time-
consuming computations while most applications demand real-time 
implementation. In this age of Big Data, one always intends to speed up 
the existent algorithms to improve the performance of the applications. 
Thus, one also has to compromise between complex modeling and 
accuracy on one hand and computing time and storage requirements 
on the other hand. A fast and efficient algorithm is what researchers go 
in quest of.

A very important application of nonrigid registration is to segment 
a study image using an electronic atlas. Precise registration allows 

syntactic and semantic information from the atlas to be transferred 
to individual images. Another application of registration to an atlas is 
accumulation of data from images of many patients.

There are basically two factors that influence the classification of 
image registration methods: the motion model that determines what 
transformations are allowed and the driving force that drives the 
motion of the images.

Motion models are usually classified into two categories: rigid and 
nonrigid transformations. Rigid registration methods allow images 
of the same object to be registered, which are relatively easy to model 
and are not covered in this article. Nonrigid registration methods can 
be used to combine images from either time study of the same object 
or different objects. It is important to understand that the aim of the 
transformation is to map one image completely onto the other image 
in such a way that information from the first image can be applied to 
the other as well. Practically this means that the transformation must 
accommodate both high complexity and large deformations.

The possible driving forces are usually related to some similarity 
measures, so they can be classified into intensity-based, correlation-
based and mutual information-based similarity measures.

Bajcsy and Kovacic [5] were the first to demonstrate volumetric 
nonrigid registration of medical images. They modeled the image as 
a linear elastic solid and deformed it using forces derived from an 
approximation of the local gradient of a correlation-based similarity 
measure. Miller, Christensen et al. [6,7] also used a global elastic 
model, but derived the driving force from the derivative of a Gaussian 
sensor model. These approaches have all suffered from the use of small 
deformation assumption.
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Abstract
Image registration is one of the fundamental tasks within image processing. It has wide applications in the fields of 

medical imaging, computer vision, statistical modeling etc. It is required when one wants to combine valuable statistical 
information from multiple images, possibly acquired using different modalities, at different time points or from different 
subjects, or to compare or integrate the data obtained from same or different measures. The subject of this article is 
nonrigid image registration. In particular, the main focus is on the application of fluid dynamics and mutual information 
(MI), and the comparison of two different similarity measures, i.e. mutual information and sum of squared differences 
(SSD). Numerical experiments show that fluid registration using SSD is ideal for mono-modal image registration, while 
fluid registration using MI does a better job in multi-modal image registration.
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Christensen et al. [8,9] extended their work and proposed 
the use of a viscous fluid model to control the deformation. It has 
the advantage of allowing for large curved deformations over the 
elastic models. Unfortunately, the fluid model requires the repeated 
solution of Navier-Stokes equations. Christensen solved the equation 
using the Successive Over-Relaxation (SOR) algorithm, which was 
computationally expensive.

Bro-Nielsen and Gramkow [10,11] proposed the use of 
convolution to approximate the solution of Navier-Stokes equations, 
and presented Christensen's fluid registration algorithm in a multi-
resolution framework, which sped up the fluid registration at least 
an order of magnitude. However, the driving force they used was 
essentially intensity-based, which restricted the use of their model to 
mono-modality registration. For images that are acquired from several 
different devices, their intensities cannot be taken directly to measure 
the image similarity.

Studies of Viola, Hermosillo and D'Agostino et al. [12-14] 
showed that maximizing mutual information of images performs very 
successfully for image registration in a multi-modal situation.

In this article, we propose a new approach to do fluid registration. 
We extend the approach of Christensen's viscous fluid model by 
applying the convolution of the elastic filter to solve the Navier-Stokes 
equations and the maximization of mutual information to measure 
similarity. In order to compute mutual information one has to estimate 
the intensity distribution of the given images. This is a tricky problem 
for discrete digital images. We use a Parzen-window estimator by 
convolving the histogram with a truncated Gaussian function. We also 
compare the performance of fluid registration with different similarity 
measures.

The article is structured as follows.

In Section 4, a generic nonrigid image registration problem is 
described. Stated as a minimization problem, it can be formulated under 
a unified variational framework and deal with different applications by 
specific similarity measures and regularizers.

Section 5 introduces the viscous fluid model and discusses its 
application for nonrigid registration.

Two commonly used similarity measures, sum of squared 
differences and mutual information, are presented in Section 6. The 
corresponding driving forces are also formulated there.

Section 7 includes numerical results of fluid registration using sum 
of squared differences in both two-dimensional and three-dimensional 
situations, and also compares that with results of fluid registration using 
mutual information in two-dimensional case. Section 8 concludes with 
some discussion.

Generic Nonrigid Image Registration
An image can be defined as a two-dimensional or three-dimensional 

function, and the amplitude of the function at any pair or triplet of 
spatial coordinates is called the intensity of the image at that point. The 
term gray level is used often to refer to the intensity of monochrome 
images. Color images are formed by a combination of individual 2D 
or 3D images.

In a computer, an image appears as a set of scalar values ordered 
in a two- or three-dimensional array. We view an image I as a function 
defined over a two- or three-dimensional bounded domain Ω  with 
smooth boundary , i.e. : .I∂Ω Ω → The range of an image will be 

considered to be in the interval [0, 255] throughout the article, in other 
words we only deal with 8-bit gray-scale (black-and-white) images 
here.

Image registration aims at finding a suitable spatial transformation 
such that a transformed image becomes similar to the target image. 
The task of image registration is to find an optimal geometric 
transformation between corresponding image data. The registration 
problem typically occurs if the images of the same object are taken 
from different perspectives, times or modalities.

Usually, one of the images is viewed as a reference image 
R and the other one as a deformable template image T. Given 
R and : , ( 2,3),T dΩ → Ω ⊆ =  we are looking for a smooth and 
invertible transformation : ,ϕ Ω → Ω such that the deformed image 

(x) T( (x))Tϕ ϕ= is similar to R.

Obviously similarity between images needs to be measured in an 
appropriate way. If the images are acquired using the same modality, 
it makes sense to measure their similarity by their corresponding 
intensities. However, if the images are taken from different modalities, 
there might not be a correspondence between the intensities of R(x)
and Tφ(x) for an optimal φ. Therefore we may consider other similarity 
measures which are not related to intensities but based on the intensity 
pattern of the images.

Classification of image registration

Image registration algorithms can be classified according to the 
transformation models one uses to relate the template image space to 
the reference image space.

The first broad category of transformation models is called rigid 
transformation. It is composed of a rotation followed by a translation. 
The object in the image therefore retains its shape and form under a 
rigid transformation. Extensions to the basic rigid transformation 
include other linear transformations, such as scaling and other more 
general affine transformations. These transformations are global in 
nature, thus, they cannot model local geometric differences between 
images. In most applications a rigid deformation model does not suffice 
and complex deformations must be estimated. Also rigid registration 
problems can often be reduced to parametric image registration 
problems, which are relatively easier to formulate, so we do not discuss 
these models in this article.

Our main focus is on the second category of transformation models, 
i.e. nonrigid transformations. These transformations are capable 
of locally warping the template image to align with the reference 
image. They are basically nonlinear transformations including elastic 
models, viscous fluid models etc.. Nonrigid registration aims at 
recovering a dense field of displacement vectors that maps each pixel 
individually in one image onto its corresponding pixel in the other, 
allowing the registration to adapt to local distortions instead of being 
restricted to global alignment of images. Usually we deal with them 
as non-parametric registration problems. The idea behind this type 
of registration is to come up with an appropriate measure for the 
similarity of images as well as for the likelihood of a non-parametric 
transformation.

Therefore we can set up a general framework for nonrigid image 
registration. This framework is based on a variational formulation of 
the registration problem, and the numerical schemes to be considered 
are based on the Euler-Lagrange equations which characterize a 
minimizer.
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A general framework of nonrigid image registration

A general approach to image registration is based on a similarity 
measure and a regularizer. The similarity measure can be viewed as 
the driving force of the registration while the regularizer controls the 
transformation.

Given two images, a reference image R and a template image 
: , dT Ω → Ω ⊆ 

 (we may require the boundary ∂Ω  to fulfill 
some regularity constraints e.g. that of being of class C2), we are 
interested in looking for a diffeomorphic (i.e. differentiable and 
isomorphic) transformation :ϕ Ω → Ω  such that the deformed image 

(x) T( (x))Tϕ ϕ= is similar to R in a certain sense.

For the following discussion it is also convenient to split the 
transformation φ into the trivial identity part and the displacement field 
u, i.e. (x) x u(x),ϕ = − where we exploit an Eulerian reference frame. 
Therefore, we are now looking for such a diffeomorphic displacement 
field u instead of φ. The displacement vector field u is searched for in 
a set F of admissible vector fields such that F is a linear subspace of a 
Hilbert space H, which is endowed with a scalar product , .⋅ ⋅

The most intuitive way of approaching the registration problem is 
to minimize a joint-functional

[ , ; ] [ , ; ] [ ], 0,J R T u D R T u S uα α= + > 		                  (4.1)

with a similarity measure D and a regularizer S. The similarity 
measure D rates the similarity between R and the deformed 
template (x) T(x (x)).uT u= −  The regularizer S penalizes unwanted 
deformations. The parameter α weights the similarity of the images 
versus the smoothness of the displacement. In summary, the nonrigid 
registration problem is defined as the solution of the following 
minimization problem,

* arg min [ , ; ].uu J R T u∈= F 			               (4.2)

To compute a solution of the minimization problem (4.2) we make 
use of the fact that the first variation of the joint-functional J has to vanish 
for a minimizer, i.e. u is a minimizer [ ; ] [ ; ] 0, .dD u w dS u w wα⇔ + = ∀

Since we can express the first variation of each term as follows,

[u;w] f(x,u(x)),w(x) x,dD d
Ω

= ∫
[u;w] A[u](x),w(x) x,dS d

Ω
= ∫

where the force field f(x, u(x)) depends on the particular similarity 
measure D and is used to drive the flow, and A is a partial differential 
operator, the minimization problem (4.2) boils down to a problem of 
solving the following partial differential equations (PDE) system,

[u](x)=f(x,u(x)).Aα 				               (4.3)

Rather than solving the system directly, a gradient descent strategy 
is used to search for a minimizer of the joint-functional J. Given an 
initial estimate u0 ∈ H, one can introduce time and a differentiable 
vector field, also noted as u from the interval [0, T] into H and solve the 
following initial value problem:

0

[u]=f(x,u(x)),

u(0)=u .

du A
dt

α +



			                 (4.4)

It has been proved (Faugeras et al. [15]) that if the linear operator A 
is strong elliptic, invertible and the nonlinear f is bounded and Lipschitz 
continuous, there exists a unique classical solution to the above initial 
value problem.

Since image registration is an ill-posed problem, regularization 
is essential and inevitable. The regularizer is used to pick out the 
most likely solution. Actually, it is the regularizer that distinguishes 
the image registration methods. Since elastic models constrain the 
possible deformation by a compromise between internal and external 
forces, elastic displacements do not reach the desired deformation. 
In a viscous fluid model, internal forces disappear over time and the 
desired deformation can be fully achieved. So the fluid registration 
method satisfies the general requirements of both complex and large 
deformations and we therefore regard the fluid registration as the more 
advanced registration method available.

In terms of the similarity measure, we would like to compare 
two different methods, sum of squared differences (SSD) and mutual 
information (MI). The sum of squared differences method is easy 
to implement and widely applied in a lot of mono-modal image 
registration, while the mutual information method can successfully 
deal with multi-modal images.

Fluid Registration
The intention of fluid registration is to mimic a flow of fluid in a 

certain sense [16]. Fluid registration is very useful for some medical 
applications, e.g. the registration of images obtained from different 
brains [17]. Moreover, this approach allows for smooth and large 
deformations while maintaining continuity. Although the viscous fluid 
models seldom have been actual models of the physical phenomena, 
they have enjoyed great success.

The underlying partial differential equations (PDE) for fluid 
registration is

f(x)+ v+( ) ( )=0,µ λ µ∆ + ∇ ∇ ⋅v 		              (5.1)

Where 2∆ = ∇ is the Laplace operator, ∇ ⋅ is the divergence 
operator, f is the force field working on a volume element in the 
interior of the body, v is the velocity field, and µ and λ are the viscosity 
constants. The term v∆ is called the viscous term because it constrains 
and smooths the velocity field spatially. The term ( )v∇ ∇ ⋅  limits the 
gradient of the divergence of the field and allows for contraction or 
expansion of the fluid. Thus, the viscosity coefficients µ and λ represent 
the smoothness and the mass injection or compressibility of the fluid. 
The viscosity constant λ is adjusted to control the rate of growth or 
shrinkage of local regions within the deforming template, and the 
viscosity constant µ is adjusted to control shearing between adjacent 
regions of the template.

In particular, the relationship between the displacement and the 
velocity in the Eulerian reference frame is given as follows (the material 
derivative)

u(x, ) v(x,t) u(x,t)v(x,t).t
t

∂
= − ∇

∂
		                              (5.2)

Christensen crafted the PDE (5.1) using principles obtained 
directly from continuum mechanics for deformable bodies. He 
modified the classical conservation equations of mechanics to account 
for non-mass-conserving deformations, which allowed for the growth 
and shrinkage of regions within the continuum.

Now we formulate a variational model for fluid registration which 
is different from Christensen's approach.

Define the regularizer as
1[u] [u,u],
2

S a=
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for constant force and time, since it is the most time-consuming part 
of the fluid registration.

For constant force term f the PDE is linear, and the linear operator 
L is just the Linear elastic operator acting on the velocity field v. linear 
elastic problems are normally solved using implicit finite element or 
finite difference methods. However, in the case of images, the size of 
the problem is huge and in practice unsolvable with these techniques.

We extend the approach proposed by Bro-Nielsen et al. [10,18] 
to solve the linear PDE with multi-resolution convolution. Using the 
linearity of the PDE and the superposition principle, a linear elasticity 
filter can be created as the impulse response of L and then applied the 
filter to f.

Eigenfunction basis of the linear elastic operator:

First we focus on the linear elastic operator

u u ( ) ( u),µ µ λ= ∆ + + ∇ ∇⋅ 			              (5.10)

where u denotes the displacement field.

By the work of Miller, Christensen et al. [6-8], we can describe the 
linear elastic operator using the eigenfunctions and eigenvalues for a 
specific case of the boundary conditions.

Since mapping the boundary of Ω onto the boundary of Ω  is 
important in our work, the sliding boundary conditions are considered. 
They are defined for the domain 2[0,1]Ω =  using the Dirichlet 
boundary conditions,

1 2 2 1(0, ) ( ,0) 0,u x u x= =

1 2 2 1(1, ) ( ,1) 0,u x u x= =

and Neumann boundary conditions,

1 1
1 1

2 2

( ,0) ( ,1) 0,u ux x
x x

∂ ∂
= =

∂ ∂

2 2
2 2

1 1

(0, ) (1, ) 0.u ux x
x x

∂ ∂
= =

∂ ∂

The sliding boundary conditions map the unit square onto the unit 
square, in such a way that boundary points are allowed to slide along 
the boundary.

With these boundary conditions the eigenfunctions and the 
eigenvalues have been derived as follows. See [8] for the complete 
derivation.

The orthogonal eigenfunctions are given as

1 1

2 2

(x)
(x) ,

(x)

(x)
(x) ,

(x)

φ α

φ α

 
=  

  
− 

=  
  

ij
ij

ij

ij
ij

ij

ip
jq

jp
iq

			            (5.11)

where

1 2

1 2

(x) sin( ) cos( ),

(x) cos( )sin( ).
ij

ij

p i x j x
q i x j x

π π

π π

=

=
			             (5.12)

The eigenvalues corresponding to the eigenfunctions are

where
[u,w] ( , ( u) ( w)) x.

kk x k
k

a u u w dµ λ
Ω

= ∇ + ∂ ∇ + ∇ ⋅ ⋅ ∇ ⋅∑∫
Then the minimization of the energy joint-functional

[ , ; ] [ , ; ] [ ]J R T u D R T u S u= + 			                (5.3)

is equivalent to solving

( ) ( v)+f(x,u(x, ))=0,v tµ λ µ∆ + + ∇ ∇ ⋅ 		               (5.4)
u(x, ) v(x,t) u(x,t)v(x,t).t

t
∂

= − ∇
∂

			            (5.5)

where

Hf(x,u(x, ))= D[R,T;u].t ∇ 			                   (5.6)

Here for simplicity we set the coefficient α as 1. For a constant 
force f this is the PDE for linear elasticity working on the instantaneous 
velocity field v. Consequently, the equation works by elastically 
smoothing the instantaneous velocity field of the fluid in the Eulerian 
reference frame.

Numerical scheme

Solution of the viscous fluid registration problem requires solving 
a system of equations determined by the characterizing viscous fluid 
PDE, the material derivative, and the force field equations. We will 
discuss the details of the force field equations in the next section.

This system of equations includes nonlinearities in both the force 
and the material derivative. To solve it, Euler integration is applied over 
time, using a forward finite difference scheme of the time derivative in 
(5.5),

1 1

1

u(x, ) u(x, ) ( )(I u(x, ))v(x, )
= u(x, ) ( ) (x, )v(x, ).

i i i i i i

i i i i i

t t t t t t
t t t t tϕ

+ +

+

= + − − ∇
+ − ∇

	              (5.7)

The solution can be found by iteratively solving (5.4) for the 
instantaneous velocity, and integrating over time using (5.7).

Regridding

From the Euler integration step (5.7), we note that it requires a 
non-zero Jacobian of the transformation φ

J(x) I u(x, ) (x, ),t tϕ= − ∇ = ∇ 			               (5.8)

which is the gradient of the transformation φ with respect to the 
Eulerian reference frame.

Since the entries of this Jacobian matrix are available during the 
computation, it is easy to check whether this matrix is regular or not. If 
the matrix is not regular, the transformation φ is not bijective and the 
step is not admissible. On the other hand, the transformation is required 
to be homeomorphic. In practice, we require the transformation to be 
bijective and orientation-preserving or to have a positive Jacobian, i.e. 

| J(x) | | (x,t) | 0.J ϕ= = ∇ >

The transformation becomes singular for large curved 
transformations. To circumvent this undesirable situation, Christensen 
[8] suggested a regridding method, which turned out to be the key 
remedy to get the wanted deformation.

Solving the linear PDE

The core problem of the fluid registration is solving the linear PDE,

v v ( ) ( v)= - f,µ µ λ= ∆ + + ∇ ∇⋅ 		              (5.9)
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2 2 2
1

2 2 2
2

(2 )( ),

( ).

π µ λ

π µ

κ

κ

= − + +

= − +
ij

ij

i j

i j
			              (5.13)

For i=j=0, α1=α2=0. Otherwise they are chosen to ensure that the 
eigenfunctions are normalized as follows,

1 2 2 2

4 ,
( )ij i j

α α= =
Γ +

			              (5.14)

1 if 0
.

2 if 0ij

i j
i j

⋅ ≠
Γ =  ⋅ =

			           (5.15)

3D Eigenfunction basis:

For completeness we also give the eigenfunctions and eigenvalues 
for the 3D version of the linear elastic operator (5.10)

u u ( ) ( u),µ µ λ= ∆ + + ∇ ∇⋅
with the sliding boundary conditions on the domain [0, 1]3.

The orthogonal eigenfunctions are

1 1

2 2

3 3

2 2

(x)

(x) (x) ,

(x)

(x)

(x) (x) ,

0

(x)

(x) (x) ,

( ) (x)

ijk

ijk ijk

ijk

ijk

ijk ijk

ijk

ijk ijk

ijk

ip
jq
kr

jp
iq

ikp
jkq

i j r

φ α

φ α

φ α

 
 

=  
 
 

− 
 =  
  
 
 

=  
 
− +  

			             (5.16)

where

1 2 3

1 2 3

1 2 3

(x) sin( ) cos( ) cos( ),

(x) cos( )sin( ) cos( ),

(x) cos( ) cos( )sin( ).

ijk

ijk

ijk

p i x j x k x
q i x j x k x
r i x j x k x

π π π

π π π

π π π

=

=

=
	                             (5.17)

The eigenvalues corresponding to the eigenfunctions are
2 2 2 2

1

2 2 2 2
2 3

(2 )( ),

( ).

κ

κ

π µ λ

π µκ

= − + + +

= = − + +
ijk

ijk ijk

i j k

i j k
		            (5.18)

For i=j=k=0, α1=α2=α3=0. Otherwise they are given by

1 2 2 2

2 2 2

3 2 2 2 2 2

8 ,
( )

8 ,
( )

8 ,
( )( )

ijk

ijk

ijk

i j k

i j

i j i j k

α

α

α

=
Γ + +

=
Γ +

=
Γ + + +

			             (5.19)

with

1 if none of , , are 0
2 if one of , , is 0 .
4 if two of , , are 0

ijk

i j k
i j k
i j k


Γ = 



 			             (5.20)

Decomposition of forces onto the eigenfunction basis:

In two-dimensional case, to solve (5.9), we now can take advantage 
of the work Christensen et al. have done for solving (5.10).

We consider the finite truncation of the decomposition of the 
velocity field under the derived orthonormal basis as follows

2

, 0 1
(x) (x),

N

N ijr ijr
i j r

v a φ
= =

= ∑ ∑ 			             (5.21)

Where aijr are the eigenfunction coefficients for the velocity field.

Now we apply the linear operator L to the field
2

, 0 1

2

, 0 1

2

, 0 1

(x) (x)

(x)

(x),

φ

φ

φκ

= =

= =

= =

=

=

=

∑∑

∑∑

∑∑

N

N ijr ijr
i j r

N

ijr ijr
i j r

N

ijr ijr ijr
i j r

v a

a

a

 

 			               (5.22)

and take the inner product defined as , xTa b a bd= ∫  of the equation 
with the orthogonal basis (x)lmsφ

, ,
(x) f(x), (x) 0,φ φκ + =∑ ijr ijr ijr lms

i j r
a

, ,
(x), (x) f(x), (x) 0,φ φ φκ + =∑ ijr ijr ijr lms lms

i j r
a

f(x), (x) 0.φκ + =lms lms lmsa

We have
1 f(x), (x) .

κ
φ= −lms lms

lms

a 			               (5.23)

Therefore the eigenfunction coefficients are simply the projection 
by the inner product of the force vector field onto the eigenfunctions, 
scaled by the inverse of the eigenvalues.

Convolution filter for linear elasticity:

Now we can derive the convolution filter to solve the linear PDE 
(5.9) as in [19]. The impulse response of the linear operator is first 
computed under the linear elasticity eigenfunctions. To get a discrete 
filter for digital images the impulse response is discretized.

Suppose 2[0,1]Ω = , the impulse response in the direction of x1 
is determined as the velocity field corresponding to an impulse force 

T
cf  = [ (x-c), 0]δ applied at c=[0:5, 0:5] T in the middle of the domain, 

where (x-c)δ is Dirac's delta function.

Using the previous result, we can get the decomposition coefficients 
of the impulse response by applying the decomposition projection to 
the impulse force fc
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1

c
1 f , (x)

1 (c)

κ

φ
κ

φ= − < >

= −

lms lms
lms

x
lms

lms

a
			               (5.24)

Where 1x
lmsφ  is the x1-coordinate of lmsφ .

With the coefficients known, we obtain the impulse response
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i j ij

i j p x
ijq

		           (5.25)

This is the response of the linear operator L for an impulse force 
in the x1 direction applied at c. The impulse responses for the other 
directions are determined by simple rotation of the response for the x1 
direction.

Note that the decomposition of the impulse response based on the 
eigenfunction basis is actually a frequency-based decomposition. Large 
i and j correspond to high frequencies and small to low frequencies. 
Hence an ideal low-pass filtering of the impulse response can be 
implemented by truncating the sequence at number N instead of 
summing up to infinity.

The sampled filter is defined with dimensions D×D, D odd, in the 

domain [0, 1]2. The sampling interval is consequently
1

1D
θ =

−
which 

Shannon's sampling theorem relates to the cut-off frequency f by 
1 .

2 f
θ ≤ From equation (5.25) the frequencies corresponding to the 

summation variables are

1 1,
2 2i jf i f j= = 			                                (5.26)

and the common truncation point becomes i=j=N=D-1.

Consider a 2D filter of sizeD×D, D odd, and let y=[y1,y2]
T, where 

1 1, , 1, 2.
2 2i

D Dy i− − ∈ − ∩ =  
  The filter implementing the 2D 

linear elastic operator L for the x1direction is then
1

2 2 2 2
, 0

2 2

( )4( )
(2 ) ( )

( (2 ) ) ( )
,

( ) (x)

π µ µ λ

µ µ λ
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=
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⋅  

+  

∑
D
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i j ij

ij

ij

p c
v x

i j

i j p x
ijq
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0.51x .
0.51

y
D

 
= +  −  

				            (5.27)

A filter for 3D linear elasticity can be derived in a similar fashion [19].

Consider a 3D filter of size D×D×D, D odd, and let y=[y1,y2,y3]
T, 

where 1 1, , 1, 2,3.
2 2i

D Dy i− − ∈ − ∩ =  
  The filter implementing the 3D 

linear elastic operator L for the x1direction is then

1

2 2 2 2 2
, , 0

2 2 2
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	            (5.28)

 where

0.5
1x 0.5 .

1
0.5

y
D

 
 = +  −
  

				               (5.29)

Implementation details

A few remarks concerning the implementation of fluid registration 
scheme are listed.

Algorithm:

1. Initialization: let i=0 and t0=0;

2. Set u(x, ti)=0;

3. Calculate the force vector field f(x, u(x, ti));

4. If f(x, u(x, ti)) is below the given threshold for all x, STOP;

5. Solve the linear PDE (5.9) for v(x, ti)) by implementing the linear 
elasticity filter;

6. If the Jacobian J is below the other threshold, regrid the template 
andgo to 2;

7. Choose the time step so that 1|| ( ) (x, )v(x, ) || ,i i i i maxt t t t duϕ+ − ∇ <
where maxdu is the maximal ow distance allowed in one iteration;

8. Update the displacement field u(x, ti) (Euler integration step);

9. Let i = i + 1, go to step 3.

Regridding:

Every time the Jacobian | I u(x, ) |iJ t= − ∇  drops below the given 
threshold, a new template is generated by applying the current 
deformation to update the template. In addition, the displacement field 
is set to zero, while the current velocities remain unchanged. It helps us 
to evade singular transformation and keep getting the mapping we want. 
The total deformation becomes the concatenation of the displacement 
fields, associated with the sequence of propagated templates.

Computation of the forces:

Different similarity measures may provide different force vector 
fields. The sum of squared differences is suitable for mono-modal image 
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registration because it compares the intensities of the reference and 
template images to measure their similarity. On the other hand, mutual 
information is a better similarity measure for multi-modal image 
registration. Mutual information essentially measures the entropy of 
the joint density; it is maximal if the images are maximally related. Thus 
we can find the desired transformation via the maximization of mutual 
information.

Multi-resolution:

Because of the limited span of the discrete filter, one can implement 
the viscous fluid registration using the filter in multi-resolution. The 
fluid registration is first performed on a rough scale. The result of 
this scale is then propagated to a finer scale and the fluid registration 
restarts there. This process is continued down to the finest scale of the 
scale-space, yielding the final registration result.

Similarity Measures
An image similarity measure quantifies the degree of similarity 

between intensity patterns in two images. It provides the force vector 
field in the fluid registration. The force field is the link between the 
physical model of the viscous fluid and the image data. It is crucial for 
the success of the registration algorithm.

An image similarity measure can take on many forms, sometimes 
it depends on the modality of the images to be registered. The sum of 
squared intensity differences (SSD) is a similarity measure commonly 
used for registration of images in the same modality, because ideally 
the intensity of the corresponding pixels in those images should be 
identical.

A natural extension of SSD is to use the maximum likelihood 
estimator (MLE) in statistics as the similarity measure, which appears 
more stable with respect to the parameter α. It is worth noting that 
the ordinary least squares (OLS) estimator (which is essentially the 
minimization of SSD) is identical to the MLE under the normality 
assumption for the error terms. However, there is usually no such direct 
correspondence between pixel intensities in multi-modal images. Even 
for images in the same modality, due to different experiment conditions 
perfect intensity match can rarely be achieved. Alternatively we can 
measure the similarity between images by intensity patterns instead of 
intensity values. Mutual information (MI) is the most popular image 
similarity measure for registration of multi-modal images.

Multi-modal image registration is of greater importance in image 
processing today, since it allows us to effectively synthesize information 
from images of different modalities of the same object to fully 
understand the structure and function of the object. It is also useful to 
take full advantage of the complementary information coming from 
multi-modal images. For example, as we know since computerized 
tomography (CT) and magnetic resonance imaging (MRI) are sensitive 
to different tissue properties, the appearance of the images obtained 
with the two techniques differ markedly. By registration we can see 
clearly both soft tissues and bone structure in the same object such as 
human bodies.

Sum of squared differences

A straightforward intensity-based approach to similarity measure 
is based on the minimization of the sum of squared differences.

The measure is defined as L2 norm of the difference of two images 
as follows,

2 ( )

2

1[ , ; ] || ||
2
1 ( (u(x)) (x)) x.
2

Ω

Ω

= −

= −∫

u LD R T u T R

T R d
		             (6.1)

The force field is determined as

u uf(x,u(x)) ( (x) (x)) (x).R T T= − ∇ 		            (6.2)

This force field has two factors. The first factor u (x)T∇ is the gradient 
of the template image. It reflects all intensity changes on the template 
image, such as distinct edges and ridges in the image. The second factor

u(x) (x)R T− scales the first factor, such that in positions with large 
intensity differences, deformation on the template is encouraged and in 
similar regions deformation is discouraged. The force field is therefore 
zero in regions that are locally matched.

Mutual information

A general way of comparing the intensity pattern of two images 
is to use some statistical or information-theoretic similarity measures. 
Among numerous criteria, the mutual information provides us a 
good way to measure similarity between images based on intensity 
distributions. The concept of mutual information is borrowed 
from information theory [20], and was introduced in the context of 
multimodal registration by Viola and Wells III [21].

We define the mutual informationas the reduction in the entropy 
of Y given X,

I(X,Y) = H(Y ) - H(Y|X).				                (6.3)

As Y becomes more dependent on X, H(Y|X) gets smaller and I(X|Y) 
gets bigger.

The mutual information is positive and symmetric, and measures 
the amount of information (entropy) that one random variable contains 
about another random variable. It is the reduction in the uncertainty of 
one random variable due to the knowledge of the other.

Random variables are considered independent when

H(Y|X) = H(Y );

or

I(X,Y ) = 0 = H(X) + H(Y ) - H(X,Y ).

In other words, random variables are considered most dependent 
to each other if their mutual information attains its maximum. This 
is the theoretical basis on which choosing mutual information as a 
similarity measure relies.

Mutual information as similarity measure:

In an image registration problem, we now regard the two images as 
random variables with the joint intensity density , :uR Tp × →    and 
marginal densities , p : .→ 

We consider the definition of mutual information based on 
differential entropy. Mutual information measures how the intensity 
distributions of two images fail to be independent. Since mutual 
information essentially measures the entropy of related joint density, it 
is maximal if the images are maximally related.

Then the desired similarity measure ([13,14,21,22]) is given as

2

,
, ( , )[ , ; ] ( , ) ( , ) log ( , ).

( ) ( )

u
u

u

R T
R TMI

u TR

p r tD R T u I R T p r t d r t
p r p t

= − = −∫
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By adopting the approach of Hermosillo et al. [23], we derive the 
corresponding force field,

,
u uf(x,u(x)) ( (x), (x)) (x),uR TF R T T= ∇ 		                (6.4)

where
u u

u u

,
,

,

( , ) ( )(r, t) .
( , ) ( )

u

R T T
R T t t

R T T

p r t p tF
p r t p t

 ∂ ∂
= − − 

 
		              (6.5)

The force field also has two factors. It has the gradient of the 
template image as one factor as well. Therefore it is of interest to 
interpret the behavior of the other factor.

The first term in , (r, t)uR TF , namely 
u

u

,

,

( , ) ,
( , )

R T
t

R T

p r t
p r t

∂
tries to make 

the intensity t move closer to a local maximum of u, .R Tp It thus tends 

to cluster u, .R Tp On the other hand, the second term,
u

u

( ) ,
( )

T
t

T

p t
p t

∂ tries to 

prevent the marginal distribution uTp from becoming too clustered.

Parzen-window density estimation:

In order to compute mutual information we have to estimate 
the intensity distribution of the given images. The accuracy of 
this estimation plays a very important role for the outcome of the 
registration as well as the needed computational effort.

To evaluate the force (6.4) we have to estimate the densities u,R Tp  
and uTp . We use a Parzen-window estimator as follows,

1 1

1 1( ) ( ) ( ),
M M

h j j
j j

p x K x X K x X
M M= =

= − = −∑ ∑ 	               (6.6)

Where X1,X2, …,XM denote realizations of the random variable X, 
K is the Parzen-window function and Kh(x)=(1/h)K(x/h). The second 
equality holds because we always take kernel width parameter h as 1 in 
image processing.

As Parzen-window function we use a truncated Gaussian
2

221( ) .1{ 3 3 }2
σ σ σσ π

−
= − ≤ ≤

x

K x e x 	                                (6.7)

where the standard deviation σ determines the width of the window.

In practice the Parzen-window estimator is much more flexible 
than other parametric density estimators, because it requires only the 
smoothness of the density without any assumption about the functional 
form of the density.

Intuitively the Parzen-window estimator computes a local, or 
windowed, average of the sample. The window function defines a 
region centered on x in which sample points contribute to the density 
estimate. Points that fall outside of the window do not contribute. 
Getting a reliable estimate depends on having a reasonable number of 
points fall into the window around the query point x.

Numerical Results
2D Fluid registration using SSD

First we did a two-dimensional fluid registration using the sum of 
squared differences as our similarity measure. The reference image was 
a square of intensity 255 and the template image was a disk of the same 
intensity. 

We may take it as a synthetic example to show the performance 
of fluid registration using SSD, since for this case, we may directly 
determine the similarity between two images by the difference of their 
intensities.

The numerical result was perfect. We successfully registered the 
disk to the square (Figure 1).

Then we moved on to a real cell image. The reference image was a 
cell and the template image was generated by a horizontal translation 
by 40 pixels and a clockwise rotation by 30 degrees to the reference 
image. Note that here actually we performed a rigid transformation to 
the reference image.

Again we may take these two images as acquired from the same 
modality due to their correspondence of intensity. Therefore it was 
appropriate to use the sum of squared differences as our similarity 
measure.

Applying fluid registration which is essentially nonrigid image 
registration, we could register the template image satisfactorily (Figure 
2). It was very impressive for that the internal texture of the cell had 
been recovered quite accurately.

From Figure 3 we could see that the difference between the 
registered template image and the reference image was almost 
negligible. The result was satisfactory as we expected.

(a) (b)

(c) (d)

(e) (f)

Figure 1: 2D fluid registration using SSD from a Disk of 255 to a Square 
of 255 with  µ=10, λ=0 and no regirdding: (a) is the reference image; (b) is 
the template image; (c-f) are the deformed template images at iteration 30, 
60, 90 and 133.
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3D Fluid registration using SSD

We implemented fluid registration method in three-dimensional 
situation as well. The biggest problem for three-dimensional registration 

is the memory for storage. Thus we could only restrict ourselves to a 
synthetic experiment to show the performance of our algorithm.

We used a cube of intensity 255 as our reference object and a sphere 
of the same intensity as our template object.

By fluid registration with SSD we successfully deformed the sphere 
to a decent cube very close to the reference object (Figure 4).

Fluid registration using MI

We tried to do two-dimensional image registration between a disk 
and a square of different intensities [24]. The disk is of intensity 255 
and the square is of 128.

We could take it as a synthetic example of multi-modal image 
registration. Our main concern now focused on the intensity pattern 
only. In other words, by deforming a disk we intended to form a square, 
of whatever the intensity values it would be, as the one in the reference 
image.

First we applied SSD as the similarity measure in this image 
registration. We checked the initial step for generating force vector field 
and then computing velocity vector field. Since the initial displacement 
field is set as zero vector fields, the velocity field obtained is actually the 
first deformation to the image.

The initial force and velocity fields were shown in Figure 5. The 
velocity fields had both positive and negative values on the same layer, 

(a) (b)

(c) (d)

(e) (f)

Figure 2: 2D fluid registration using SSD of cell images with µ=10, λ=0 and 
regridding=4: (a) is the reference image of a cell; (b) is the template image; 
(c-f) are the deformed template images at iteration 10, 50, 100 and 123.

Figure 3: 2D fluid registration using SSD: it is the intensity difference 
between (a) and (f) in the previous figure.

(a) (b)

(c) (d)

(e)

Figure 4: 3D fluid registration using SSD with µ=10, λ=0 and no regridding : 
(a) is the reference image; (b) is the template image; (c-e) are the deformed 
template images at iteration 40, 80 and 120.
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which means at the first step some particles would move out and some 
would move in. Hence there was no hope for the disk to fully expand 
into a square by SSD.

Then we turned to apply mutual information as the similarity 
measure. We showed the corresponding initial force and velocity 
fields in Figure 6. This time by the homogeneous initial velocity field 
(essentially the first movement), obviously the disk tended to expand 
outwards, to a square hopefully.

The result was shown in Figure 7. Using SSD the disk could at most 
grow to a bigger disk with a lot of holes inside it. But if we resorted to 
MI as our similarity measure, a clear shade of a square of the same size 
as the one in the reference image has been fully recovered. The square 
was distinguishable but not that obvious because of the sharp contrast 
between different intensity values in the image.

The advantage of mutual information over sum of squared 
differences is more clear when we compared them in the same image 
registration problem (Figure 8). Using SSD the best we could do is 
to reconstruct a disk connected with four long sharp spikes pointing 
outwards. Since those spikes were always connected to the disk, we 
could not remove them as some noises. The pattern appearing in the 
result would at best be a disk with four corners. However we almost 
perfectly reconstructed a disk of the same size as in the reference image 
by MI without any corners.

The research on doing fluid registration with MI on 2D real images 
and even 3D images is still on-going.

Conclusion
We implemented fluid registration using both sum of squared 

differences and mutual information. By the synthetic examples in two-
dimensional and three-dimensional situations, we can conclude that 
SSD performs very well as the similarity measure in the mono-modal 
image registration. The fluid registration model also played a key role 
in the experiment. In the cell image registration, the obscure internal 
texture had been successfully reconstructed by the fluid dynamics 
model. Since the force field for SSD is easy to compute, it is an ideal 
efficient similarity measure for the mono-modal image registration.

But it has no hope to prevail in multi-modal image registration. In 
the experiment of transforming a disk of 255 to a square of 128, the first 
movement by the computed displacement was inhomogeneous, which 
indicated the failure of the process. On the contrary, using MI gave 
the expected homogeneous movement at the beginning which showed 
great prospect of success in the experiment.

The comparison was more self-evident in the other experiment of 
deforming a square of 128 into a disk of 255. With SSD as the similarity 
measure, the best we can do is to obtain a disk with four long sharp 
spikes. While using MI we could almost perfectly reconstruct the disk 
as long as time permitted.

(a) (b)

(c) (d)

(e) (f)

Figure 5: 2D fluid registration using SSD with µ=10, λ=0: (a) is the reference 
image of a square of intensity 128; (b) is the template image of a disk of 
intensity 255; (c),(d) are the horizontal and the vertical components of the 
force field in the initial iteration; (e),(f) are the corresponding displacement 
fields. (white is positive value and black is negative).

(a) (b)

(c) (d)

(e) (f)

Figure 6: 2D fluid registration using MI with µ=10, λ=0: (a) is the reference 
image of a square of intensity 128; (b) is the template image of a disk of 
intensity 255; (c), (d) are the horizontal and the vertical components of the 
force field in the initial iteration; (e), (f) are the corresponding displacement 
fields. (white is positive value and black is negative).
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The only drawback for using mutual information as the similarity 
measure is the computation time. To compute a force field, it involves 
a lot of computation in estimating the probability density functions of 
two images, their joint probability density function and the derivatives 
of these functions. With images of big size or high resolution, the 
computation would take quite a long time. A fast algorithm is necessary 
for us to perform the two-dimensional and even three-dimensional 
fluid registration.
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