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Abstract

The aim of this paper is to investigate the cohomologies for ternary algebras of asso-
ciative type. We study in particular the cases of partially associative ternary algebras and
weak totally associative ternary algebras. Also, we consider the Takhtajan’s construc-
tion, which was used to construct a cohomology of ternary Nambu-Lie algebras using
Chevalley-Eilenberg cohomology of Lie algebras, and discuss it in the case of ternary
algebras of associative type. One of the main results of this paper states that a usual
deformation cohomology does not exist for partially associative ternary algebras which
implies that their operad is not a Koszul operad.
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1 Introduction

The paper is dedicated to studying cohomologies adapted to deformation theory of ternary
algebraic structures appearing more or less naturally in various domains of theoretical and
mathematical physics and data processing. Indeed, theoretical physics progress of quantum
mechanics and the discovery in 1973 of the Nambu mechanics (see [48]), as well as a work
of Okubo on Yang-Baxter equation (see [49]), gave impulse to a significant development on
ternary algebras and more generally n-ary algebras. The ternary operations, in particular
cubic matrices, were already introduced in the nineteenth century by Cayley. The cubic
matrices were considered again and generalized by Kapranov, Gelfand, and Zelevinskii in
1994 (see [30]) and Sokolov in 1972 (see [54]). Another recent motivation to study ternary
operation comes from string theory and M-branes where appeared naturally a so-called
Bagger-Lambert algebra (see [3]). For other physical applications, see [1, 31, 32, 33, 34, 35].

The concept of ternary algebras was introduced first by Jacobson (see [29]). In connection
with problems from Jordan theory and quantum mechanics, he defined the Lie triple systems.
A Lie triple system consists of a space of linear operators on vector space V that is closed
under the ternary bracket [x, y, z]T = [[x, y], z], where [x, y] = xy − yx. Equivalently, a Lie
triple system may be viewed as a subspace of the Lie algebra closed relative to the ternary
product. A Lie triple system arose also in the study of symmetric spaces (see [43]). We
distinguish two kinds of generalization of binary Lie algebras: ternary Lie algebras (resp., n-
ary Lie algebras) in which the Jacobi identity is generalized by considering a cyclic summation
over S5 (resp., S2n−1) instead of S3 (see [25, 47]), and ternary Nambu algebras (resp., n-ary
Nambu algebras) in which the fundamental identity generalizes the fact that the adjoint maps
are derivations. The fundamental identity appeared first in Nambu mechanics (see [48]), see
also [55] for the algebraic formulation of the Nambu mechanics. The abstract definitions
of ternary and more generally n-ary Nambu algebras or n-ary Nambu-Lie algebras (when
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the bracket is skew-symmetric) were given by Fillipov in 1985 (see [13] in Russian). While
the n-ary Leibniz algebras were introduced and studied in [8]. For deformation theory and
cohomologies of ternary algebras of Lie type, we refer to [14, 15, 26, 38, 56, 57].

In another hand, ternary algebras or more generally n-ary algebras of associative type were
studied by Carlsson, Lister, and Loos (see [6, 40, 42]). The typical and founding example of
totally associative ternary algebra was introduced by Hestenes (see [27]) defined on the linear
space of rectangular matrices A,B,C ∈ Mm,n with complex entries by AB∗C where B∗ is
the conjugate transpose matrix of B. This operation is strictly speaking not a ternary algebra
product on Mm,n as it is linear on the first and the third arguments but conjugate-linear
on the second argument. The ternary operation of associative type leads to two principal
classes: totally associative ternary algebras and partially associative ternary algebras. Also
they admit some variants. The totally associative ternary algebras are also called associative
triple systems. The operads of n-ary algebras were studied by Gnedbaye (see [20, 21]), see
also [22, 28]. The cohomology of totally associative ternary algebras was studied by Carlsson
through the embedding (see [7]). In [2], we extended to ternary algebras of associative type,
the 1-parameter formal deformations introduced by Gerstenhaber [16, 17, 18], see [44] for a
review. We built a 1-cohomology and 2-cohomology of partially associative ternary algebras
fitting with the deformation theory.

The generalized Poisson structures and n-ary Poisson brackets were discussed in [9, 10,
24, 47]. While the quantization problem was considered in [11, 12]. Further generalizations
and related works could be found in [4, 5, 23, 50, 51, 52].

In this paper, we summarize in Section 2 the definitions of ternary algebras of associa-
tive type and Lie type with examples, and recall the basic settings of homological algebra.
Section 3 is devoted to study the cohomology of partially associative ternary algebras with
values in the algebra. We provide the first and the second coboundary operators and show
that their extension to a usual 3-coboundary does not exist. This shows that the operad
of partially ternary algebras is not a Koszul operad. In Section 4, we consider weak totally
associative ternary algebras for which we construct a p-coboundary operator extending, to
any p, the 2-coboundary operators already defined by Takhtajan (see [56]). In Section 5,
we discuss Takhtajan’s construction for ternary algebras of associative type. The process
was introduced by Takhtajan to construct a cohomology for ternary algebras of Lie type
starting from a cohomology of binary algebras. It was used to derive the cohomology of
ternary Nambu-Lie algebras from the Chevalley-Eilenberg cohomology of Lie algebras. We
show that a usual cohomology of ternary algebras of partially associative type cannot be
constructed from binary algebras of associative type. We also show in Section 6, that the
skew-associative binary algebras do not carry a usual cohomology fitting with deformation
theory and therefore their operad is not Koszul as well.

2 Generalities

In this section, we summarize the definitions of different ternary algebra structures of as-
sociative type and Lie type and provide some examples, and then give general settings for
cohomology theories.

2.1 Ternary algebra structures

Let K be an algebraically closed field of characteristic zero and let V be a K-vector space.
A ternary operation on V is a linear map m : V ⊗ V ⊗ V −→ V or a trilinear map m :
V × V × V −→ V . If V is n-dimensional vector space and B = {e1, . . . , en} is a basis of V ,
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the ternary operation m is completely determined by its structure constants {Csijk}, where

m
(
ei ⊗ ej ⊗ ek

)
=

n∑
s=1

Csijkes

A ternary operation is said to be symmetric (resp., skew-symmetric) if

m
(
xσ(1) ⊗ xσ(2) ⊗ xσ(3)

)
= m

(
x1 ⊗ x2 ⊗ x3

)
, ∀σ ∈ S3 and ∀x1, x2, x3 ∈ V

and, respectively,

m
(
xσ(1) ⊗ xσ(2) ⊗ xσ(3)

)
= Sgn(σ)m

(
x1 ⊗ x2 ⊗ x3

)
, ∀σ ∈ S3 and ∀x1, x2, x3 ∈ V

where Sgn(σ) denotes the signature of the permutation σ ∈ S3.
We have the following type of “associative” ternary operations.

Definition 2.1. A totally associative ternary algebra is given by a K-vector space V and
a ternary operation m satisfying, for every x1, . . . , x5 ∈ V ,

m
(
m
(
x1 ⊗ x2 ⊗ x3

)
⊗ x4 ⊗ x5

)
= m

(
x1 ⊗m

(
x2 ⊗ x3 ⊗ x4

)
⊗ x5

)
= m

(
x1 ⊗ x2 ⊗m

(
x3 ⊗ x4 ⊗ x5

))
Example 2.2. Let {e1, e2} be a basis of a 2-dimensional space V = K2, the ternary operation
on V given by

m
(
e1 ⊗ e1 ⊗ e1

)
= e1, m

(
e2 ⊗ e2 ⊗ e1

)
= e1 + e2

m
(
e1 ⊗ e1 ⊗ e2

)
= e2, m

(
e2 ⊗ e2 ⊗ e2

)
= e1 + 2e2

m
(
e1 ⊗ e2 ⊗ e2

)
= e1 + e2, m

(
e1 ⊗ e2 ⊗ e1

)
= e2

m
(
e2 ⊗ e1 ⊗ e1

)
= e2, m

(
e2 ⊗ e1 ⊗ e2

)
= e1 + e2

defines a totally associative ternary algebra.

Definition 2.3. A weak totally associative ternary algebra is given by a K-vector space V
and a ternary operation m, satisfying for every x1, . . . , x5 ∈ V ,

m
(
m
(
x1 ⊗ x2 ⊗ x3

)
⊗ x4 ⊗ x5

)
= m

(
x1 ⊗ x2 ⊗m

(
x3 ⊗ x4 ⊗ x5

))
Naturally, every totally associative ternary algebra is a weak totally associative ternary

algebra.

Definition 2.4. A partially associative ternary algebra is given by a K-vector space V and
a ternary operation m satisfying, for every x1, . . . , x5 ∈ V ,

m
(
m
(
x1 ⊗ x2 ⊗ x3

)
⊗ x4 ⊗ x5

)
+m

(
x1 ⊗m

(
x2 ⊗ x3 ⊗ x4

)
⊗ x5

)
+m

(
x1 ⊗ x2 ⊗m

(
x3 ⊗ x4 ⊗ x5

))
= 0

Example 2.5. Let {e1, e2} be a basis of a 2-dimensional space V = K2, the ternary operation
on V given by m(e1 ⊗ e1 ⊗ e1) = e2 defines a partially associative ternary algebra.

We introduce in the following some variants of partial total associativity of ternary oper-
ations.
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Definition 2.6. An alternate partially associative ternary algebra of first kind is given by
a K-vector space V and a ternary operation m satisfying, for every x1, . . . , x5 ∈ V ,

m
(
m
(
x1 ⊗ x2 ⊗ x3

)
⊗ x4 ⊗ x5

)
−m

(
x1 ⊗m

(
x2 ⊗ x3 ⊗ x4

)
⊗ x5

)
+m

(
x1 ⊗ x2 ⊗m

(
x3 ⊗ x4 ⊗ x5

))
= 0

The alternate partially associative ternary algebra is of second kind it satisfies

m
(
m
(
x1 ⊗ x2 ⊗ x3

)
⊗ x4 ⊗ x5

)
−m

(
x1 ⊗m

(
x2 ⊗ x3 ⊗ x4

)
⊗ x5

)
−m

(
x1 ⊗ x2 ⊗m

(
x3 ⊗ x4 ⊗ x5

))
= 0

Remark 2.7. Let (V, ·) be a bilinear associative algebra. Then, the ternary operation, de-
fined by m(x1 ⊗ x2 ⊗ x3) = (x1 · x2 · x3), determines on the vector space V a structure of
totally associative ternary algebra which is not partially associative.

Definition 2.8. A ternary operation m is said to be commutative if∑
σ∈S3

Sgn(σ)m
(
xσ(1) ⊗ xσ(2) ⊗ xσ(3)

)
= 0, ∀x1, x2, x3 ∈ V

Remark 2.9. A symmetric ternary operation is commutative.

In the following, we recall the definitions of ternary algebras of Lie type.

Definition 2.10. A ternary Lie algebras is a skew-symmetric ternary operation [ , , ] on
a K-vector space V satisfying ∀x1, . . . , x5 ∈ V the following generalized Jacobi condition:∑

σ∈S3

Sgn(σ)
[[
xσ(x1), xσ(x2), xσ(x3)

]
, xσ(x4), xσ(x5)

]
= 0

As in the binary case, there is a functor which makes correspondence to any partially
associative ternary algebra a ternary Lie algebra (see [20, 21]).

Proposition 2.11. To any partially associative ternary algebra on a vector space V with
ternary operation m, one associates a ternary Lie algebra on V defined ∀x1, x2, x3 ∈ V by
the bracket[

x1, x2, x3

]
=
∑
σ∈S3

Sgnm
(
xσ(1) ⊗ xσ(2) ⊗ xσ(3)

)
There is another kind of ternary algebras of Lie type, they are called ternary Nambu

algebra. They appeared naturally in Nambu mechanics which is a generalization of classical
mechanics.

Definition 2.12. A ternary Nambu algebra is a ternary bracket on a K-vector space V
satisfying a so-called fundamental or Filippov identity:[

x1, x2,
[
x3, x4, x5

]]
=
[[
x1, x2, x3

]
, x4, x5

]
+
[
x3,
[
x1, x2, x4

]
, x5

]
+
[
x3, x4,

[
x1, x2, x5

]]
, ∀x1, . . . , x5 ∈ V

When the bracket is skew-symmetric, the ternary algebra is called ternary Nambu-Lie
algebra.

The Lie triple system is defined as a vector space V equipped with a ternary bracket
that satisfies the same fundamental identity as a Nambu-Lie bracket but instead of skew-
symmetry, it satisfies the condition[

x1, x2, x3

]
+
[
x2, x3, x1

]
+
[
x3, x1, x2

]
= 0
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Example 2.13. The polynomial algebra of 3 variables x1, x2, x3, endowed with a ternary
operation defined by the functional Jacobian:

[
f1, f2, f3

]
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

δf1

δx1

δf1

δx2

δf1

δx3

δf2

δx1

δf2

δx2

δf2

δx3

δf3

δx1

δf3

δx2

δf3

δx3

∣∣∣∣∣∣∣∣∣∣∣∣∣
is a ternary Nambu-Lie algebra.

We have also the following fundamental example.

Example 2.14. Let V = R4 be the 4-dimensional oriented Euclidian space over R. The
bracket of 3 vectors

→
x1,

→
x2,

→
x3 is given by

[→
x1,

→
x2,

→
x3

]
=
→
x1 ×

→
x2 ×

→
x3 =

∣∣∣∣∣∣∣∣∣∣
x11 x12 x13

→
e1

x21 x22 x23
→
e2

x31 x32 x33
→
e3

x41 x42 x43
→
e4

∣∣∣∣∣∣∣∣∣∣
where (x1r, . . . , x4r)r=1,2,3 are the coordinates of

→
xr with respect to orthonormal basis {er}.

Then, (V, [·, ·, ·]) is a ternary Nambu-Lie algebra.

Remark 2.15. Every ternary Nambu-Lie algebra on R4 could be deduced from the previous
example (see [14]).

2.2 Homological algebra of ternary algebras

The basic concepts of homological algebra are those of a complex and homomorphisms of
complexes, defining the category of complexes (see, e.g., [58]). A chain complex C. is a
sequence C = {Cp}p of abelian groups or more generally objects of an abelian category and
an indexed set δ = {δp}p of homomorphisms δp : Cp → Cp−1 such that δp−1◦δp = 0 for all p. A
chain complex can be considered as a cochain complex by reversing the enumeration Cp = C−p
and δp = δ−p. A cochain complex C is a sequence of abelian groups and homomorphisms

· · · δ
p−1

−→ Cp δp

−→ Cp+1 δp+1

−→ · · · with the property δp+1 ◦ δp = 0 for all p.
The homomorphisms δp are called coboundary operators or codifferentials. A cohomology

of a cochain complex C is given by the groups Hp(C) = Kerδp/Imδp−1.
The elements of Cp are p-cochains, the elements of Zp := Kerδp are p-cocycles, and the

elements of Bp := Imδp−1 are p-coboundaries. Because δp+1 ◦ δp = 0 for all p, we have
0 ⊆ Bp ⊆ Zp ⊆ Cp for all p. The pth cohomology group is the quotient Hp = Zp/Bp.

We introduce in the following the p-cochains for a ternary algebra of associative type
A = (V,m).

Definition 2.16. We call p-cochain of a ternary algebra A = (V,m) a linear map ϕ :
V ⊗2p+1 −→ V . The p-cochains set on V is

Cp(A,A) =

ϕ : V ⊗2p+1 = V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸
2p+1 times

−→ V


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Remark 2.17. The set Cp(A,A) is an abelian group.

We define a circle operation on cochains as usual, that is, a map

◦ : Cp(A,A)× Cq(A,A) −→ Cp+q(A,A) (ϕ,ψ) 7−→ ϕ ◦ ψ

such that

(ϕ ◦ ψ)
(
x1 ⊗ · · · ⊗ x2p+2q+1

)
=

2p∑
i=0

ϕ
(
x1 ⊗ · · · ⊗ ψ

(
xi+1 ⊗ · · · ⊗ xi+2q+1

)
⊗ · · · ⊗ x2p+2q+1

)
One has a cochain complex for ternary algebras A with values in A if there exists a

sequence of abelian groups and homomorphisms · · · δ
p−1

−→ Cp(A,A) δp

−→ Cp+1(A,A) δp+1

−→ · · ·
such that for all p, δp+1 ◦ δp = 0.

3 Cohomology of partially associative ternary algebras

We have studied in [2] deformations of partially associative ternary algebras which are in-
timately linked to cohomology groups. We have introduced the operators δ1 and δ2 which
should correspond to a complex of partially associative ternary algebra defining a deforma-
tion cohomology. In the following, we recall the definitions of δ1 and δ2 and show that it is
impossible to extend these operators to a usual operator δ3. As a consequence, we deduce
that the operad of partially associative ternary algebras is not Koszul, see [45, 19] about
Koszulity.

Let A = (V,m) be a partially associative ternary algebra on a K-vector space V .

Definition 3.1. We call ternary 1-coboundary operator the map

δ1 : C0(A,A) −→ C1(A,A), f 7−→ δ1f

defined by

δ1f
(
x1 ⊗ x2 ⊗ x3

)
= f

(
m
(
x1 ⊗ x2 ⊗ x3

))
−m

(
f
(
x1

)
⊗ x2 ⊗ x3

)
−m

(
x1 ⊗ f

(
x2

)
⊗ x3

)
−m

(
x1 ⊗ x2 ⊗ f

(
x3

))
Definition 3.2. We call ternary 2-coboundary operator the map

δ2 : C1(A,A) −→ C2(A,A), ϕ 7−→ δ2ϕ

defined by

δ2ϕ
(
x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗ x5

)
= m

(
ϕ
(
x1 ⊗ x2 ⊗ x3

)
⊗ x4 ⊗ x5

)
+m

(
x1 ⊗ ϕ

(
x2 ⊗ x3 ⊗ x4

)
⊗ x5

)
+m

(
x1 ⊗ x2 ⊗ ϕ

(
x3 ⊗ x4 ⊗ x5

))
+ ϕ

(
m(x1 ⊗ x2 ⊗ x3

)
⊗ x4 ⊗ x5

)
+ ϕ

(
x1 ⊗m

(
x2 ⊗ x3 ⊗ x4

)
⊗ x5

)
+ ϕ

(
x1 ⊗ x2 ⊗m

(
x3 ⊗ x4 ⊗ x5

))
Remark 3.3. The operator δ2 can also be defined by δ2ϕ = ϕ ◦m+m ◦ ϕ.
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Proposition 3.4. We have δ2 ◦ δ1 = 0.

Proof. Let f be a 0-cochain. We compute δ2(δ1f).
We have for all x1, x2, x3, x4, x5 ∈ V ,

δ2
(
δ1f
)(
x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗ x5

)
= m

(
f
(
m
(
x1 ⊗ x2 ⊗ x3

))
⊗ x4 ⊗ x5

)
−m

(
m
(
f(x1

)
⊗ x2 ⊗ x3

)
⊗ x4 ⊗ x5

)
−m

(
m
(
x1 ⊗ f

(
x2

)
⊗ x3

)
⊗ x4 ⊗ x5

)
−m

(
m
(
x1 ⊗ x2 ⊗ f

(
x3

))
⊗ x4 ⊗ x5

)
+m

(
x1 ⊗ f

(
m
(
x2 ⊗ x3 ⊗ x4

))
⊗ x5

)
−m

(
x1 ⊗m

(
f
(
x2

)
⊗ x3 ⊗ x4

)
⊗ x5

)
−m

(
x1 ⊗m

(
x2 ⊗ f

(
x3

)
⊗ x4

)
⊗ x5

)
−m

(
x1 ⊗m

(
x2 ⊗ x3 ⊗ f

(
x4

))
⊗ x5

)
+m

(
x1 ⊗ x2 ⊗

(
f
(
m
(
x3 ⊗ x4 ⊗ x5

))))
−m

(
x1 ⊗ x2 ⊗m

(
f
(
x3

)
⊗ x4 ⊗ x5

))
−m

(
x1 ⊗ x2 ⊗m

(
x3 ⊗ f

(
x4

)
⊗ x5

))
−m

(
x1 ⊗ x2 ⊗m

(
x3 ⊗ x4 ⊗ f

(
x5

)))
+ f

(
m
(
m
(
x1 ⊗ x2 ⊗ x3

)
⊗ x4 ⊗ x5

))
−m

(
f
(
m
(
x1 ⊗ x2 ⊗ x3

))
⊗ x4 ⊗ x5

)
−m

(
m
(
x1 ⊗ x2 ⊗ x3

)
⊗ f

(
x4

)
⊗ x5

)
−m

(
m
(
x1 ⊗ x2 ⊗ x3

)
⊗ x4 ⊗ f

(
x5

))
+ f

(
m
(
x1 ⊗m

(
x2 ⊗ x3 ⊗ x4

)
⊗ x5

))
−m

(
f
(
x1

)
⊗m

(
x2 ⊗ x3 ⊗ x4

)
⊗ x5

)
−m

(
x1 ⊗ f

(
m
(
x2 ⊗ x3 ⊗ x4

))
⊗ x5

)
−m

(
x1 ⊗m

(
x2 ⊗ x3 ⊗ x4

)
⊗ f

(
x5

))
+ f

(
m
(
x1 ⊗ x2 ⊗m

(
x3 ⊗ x4 ⊗ x5

)))
−m

(
f
(
x1

)
⊗ x2 ⊗m

(
x3 ⊗ x4 ⊗ x5

))
−m

(
x1 ⊗ f

(
x2

)
⊗m

(
x3 ⊗ x4 ⊗ x5

))
−m

(
x1 ⊗ x2 ⊗ f

(
m
(
x3 ⊗ x4 ⊗ x5

)))
=0

The cohomology spaces relative to these coboundary operators are as follows.

Definition 3.5. The 1-cocycles space of A is

Z 1(A,A) =
{
f : V −→ V : δ1f = 0

}
The 2-coboundaries space of A is

B2(A,A) =
{
ϕ : V ⊗3 −→ V : ϕ = δ1f, f ∈ C0(A,A)

}
The 2-cocycles space of A is

Z 2(A,A) =
{
f : V ⊗3 −→ V : δ2f = 0

}
Remark 3.6. One has B2(A,A)⊂Z 2(A,A), because δ2 ◦ δ1 = 0. Note also that Z 1(A,A)
corresponds to the derivations space, denoted also by Der(A), of the partially associative
ternary algebra A.

Definition 3.7. We call the pth cohomology group (p = 0, 1) of the partially associative
ternary algebra A the quotient

H p(A,A) =
Z p(A,A)
Bp(A,A)

, p = 1, 2

The following proposition shows that we cannot extend the 1-cohomology and 2-cohomolo-
gy corresponding to the operators δ1 and δ2 to a usual 3-cohomology.
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Proposition 3.8. Let A = (V,m) be a partially associative ternary algebra. There is no
usual 3-cohomology extending the 2-cohomology corresponding to the coboundary operator

δ2 : C1(A,A) −→ C2(A,A)

defined for all x1, x2, x3, x4, x5 ∈ V by

δ2ϕ
(
x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗ x5

)
= m

(
ϕ
(
x1 ⊗ x2 ⊗ x3

)
⊗ x4 ⊗ x5

)
+m

(
x1 ⊗ ϕ

(
x2 ⊗ x3 ⊗ x4

)
⊗ x5

)
+m

(
x1 ⊗ x2 ⊗ ϕ

(
x3 ⊗ x4 ⊗ x5

))
+ ϕ

(
m
(
x1 ⊗ x2 ⊗ x3

)
⊗ x4 ⊗ x5

)
+ ϕ

(
x1 ⊗m

(
x2 ⊗ x3 ⊗ x4

)
⊗ x5

)
+ ϕ

(
x1 ⊗ x2 ⊗m

(
x3 ⊗ x4 ⊗ x5

))
Proof. We consider a 3-cochain f , that is, a map f : V ⊗5 → V , and set

δ3f
(
x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗ x5 ⊗ x6 ⊗ x7

)
= a1m

(
x1 ⊗ x2 ⊗ f

(
x3 ⊗ x4 ⊗ x5 ⊗ x6 ⊗ x7

))
+ a2m

(
x1 ⊗ f

(
x2 ⊗ x3 ⊗ x4 ⊗ x5 ⊗ x6

)
⊗ x7

)
+ a3m

(
f
(
x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗ x5

)
⊗ x6 ⊗ x7

)
+ a4f

(
m
(
x1 ⊗ x2 ⊗ x3

)
⊗ x4 ⊗ x5 ⊗ x6 ⊗ x7

)
+ a5f

(
x1 ⊗m

(
x2 ⊗ x3 ⊗ x4

)
⊗ x5 ⊗ x6 ⊗ x7

)
+ a6f

(
x1 ⊗ x2 ⊗m

(
x3 ⊗ x4 ⊗ x5

)
⊗ x6 ⊗ x7

)
+ a7f

(
x1 ⊗ x2 ⊗ x3 ⊗m

(
x4 ⊗ x5 ⊗ x6

)
⊗ x7

)
+ a8f

(
x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗m

(
x5 ⊗ x6 ⊗ x7

))
where a1, . . . , a8 ∈ K.

Let g be a 2-cochain, that is, a map f : V ⊗5 → V . We compute δ3(δ2g)(x1 ⊗ x2 ⊗ x3 ⊗
x4 ⊗ x5 ⊗ x6 ⊗ x7) and substitute m(y1 ⊗ y2 ⊗m(y3 ⊗ y4 ⊗ y5)) by

−m
(
y1 ⊗m

(
y2 ⊗ y3 ⊗ y4

)
⊗ y5

)
−m

(
m
(
y1 ⊗ y2 ⊗ y3

)
⊗ y4 ⊗ y5

)
Then, we obtain

δ3
(
δ2g
)(
x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗ x5 ⊗ x6 ⊗ x7

)
=
(
a7 − a8

)
g
(
x1 ⊗ x2 ⊗m

(
x3 ⊗m

(
x4 ⊗ x5 ⊗ x6

)
⊗ x7

))
+
(
a6 − a8

)
g
(
x1 ⊗ x2 ⊗m

(
m
(
x3 ⊗ x4 ⊗ x5

)
⊗ x6 ⊗ x7

))
+
(
a5 + a8

)
g
(
x1 ⊗m

(
x2 ⊗ x3 ⊗ x4

)
⊗m

(
x5 ⊗ x6 ⊗ x7

))
+
(
a6 − a7

)
g
(
x1 ⊗m

(
x2 ⊗m

(
x3 ⊗ x4 ⊗ x5

)
⊗ x6

)
⊗ x7

)
+
(
a5 − a7

)
g
(
x1 ⊗m

(
m
(
x2 ⊗ x3 ⊗ x4

)
⊗ x5 ⊗ x6

)
⊗ x7

)
+
(
a4 + a8

)
g
(
m
(
x1 ⊗ x2 ⊗ x3

)
⊗ x4 ⊗m

(
x5 ⊗ x6 ⊗ x7

))
+
(
a4 + a7

)
g
(
m
(
x1 ⊗ x2 ⊗ x3

)
⊗m

(
x4 ⊗ x5 ⊗ x6

)
⊗ x7

)
+
(
a5 − a6

)
g
(
m
(
x1 ⊗m

(
x2 ⊗ x3 ⊗ x4

)
⊗ x5

)
⊗ x6 ⊗ x7

)
+
(
a4 − a6

)
g
(
m
(
m
(
x1 ⊗ x2 ⊗ x3

)
⊗ x4 ⊗ x5

)
⊗ x6 ⊗ x7

)
+
(
a1 + a8

)
m
(
x1 ⊗ x2 ⊗ g

(
x3 ⊗ x4 ⊗m

(
x5 ⊗ x6 ⊗ x7

)))
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+
(
a1 + a7

)
m
(
x1 ⊗ x2 ⊗ g

(
x3 ⊗m

(
x4 ⊗ x5 ⊗ x6

)
⊗ x7

))
+
(
a1 + a6

)
m
(
x1 ⊗ x2 ⊗ g

(
m
(
x3 ⊗ x4 ⊗ x5

)
⊗ x6 ⊗ x7

))
+
(
a2 + a7

)
m
(
x1 ⊗ g

(
x2 ⊗ x3 ⊗m

(
x4 ⊗ x5 ⊗ x6

))
⊗ x7

)
+
(
a2 + a6

)
m
(
x1 ⊗ g

(
x2 ⊗m

(
x3 ⊗ x4 ⊗ x5

)
⊗ x6

)
⊗ x7

)
+
(
a2 + a5

)
m
(
x1 ⊗ g

(
m
(
x2 ⊗ x3 ⊗ x4

)
⊗ x5 ⊗ x6

)
⊗ x7

)
+
(
a5 − a1

)
m
(
x1 ⊗m

(
x2 ⊗ x3 ⊗ x4

)
⊗ g
(
x5 ⊗ x6 ⊗ x7

))
+
(
a2 − a1

)
m
(
x1 ⊗m

(
x2 ⊗ x3 ⊗ g

(
x4 ⊗ x5 ⊗ x6

))
⊗ x7

)
+
(
a2 − a1

)
m
(
x1 ⊗m

(
x2 ⊗ g

(
x3 ⊗ x4 ⊗ x5

)
⊗ x6

)
⊗ x7

)
+
(
a2 − a8

)
m
(
x1 ⊗m

(
g
(
x2 ⊗ x3 ⊗ x4

)
⊗ x5 ⊗ x6

)
⊗ x7

)
+
(
a7 − a8

)
m
(
g
(
x1 ⊗ x2 ⊗ x3

)
⊗m

(
x4 ⊗ x5 ⊗ x6

)
⊗ x7

)
+
(
a3 + a6

)
m
(
g
(
x1 ⊗ x2 ⊗m

(
x3 ⊗ x4 ⊗ x5

))
⊗ x6 ⊗ x7

)
+
(
a3 + a5

)
m
(
g
(
x1 ⊗m

(
x2 ⊗ x3 ⊗ x4

)
⊗ x5

)
⊗ x6 ⊗ x7

)
+
(
a3 + a4

)
m
(
g
(
m
(
x1 ⊗ x2 ⊗ x3

)
⊗ x4 ⊗ x5

)
⊗ x6 ⊗ x7

)
+
(
a4 − a1

)
m
(
m
(
x1 ⊗ x2 ⊗ x3

)
⊗ x4 ⊗ g

(
x5 ⊗ x6 ⊗ x7

))
+
(
a4 − a1

)
m
(
m
(
x1 ⊗ x2 ⊗ x3

)
⊗ g
(
x4 ⊗ x5 ⊗ x6

)
⊗ x7

)
+
(
a3 − a1

)
m
(
m
(
x1 ⊗ x2 ⊗ g

(
x3 ⊗ x4 ⊗ x5

))
⊗ x6 ⊗ x7

)
+
(
a3 − a8

)
m
(
m
(
x1 ⊗ g

(
x2 ⊗ x3 ⊗ x4

)
⊗ x5

)
⊗ x6 ⊗ x7

)
+
(
a3 − a8

)
m
(
m
(
g
(
x1 ⊗ x2 ⊗ x3

)
⊗ x4 ⊗ x5

)
⊗ x6 ⊗ x7

)
= 0

The equation is satisfied for all x1, x2, x3, x4, x5, x6, x7 ∈ V if and only if a1, . . . , a8 are all
equal to 0.

Corollary 3.9. A usual deformation cohomology of partially associative ternary algebras
does not exist. Then, the operad of the partially associative ternary algebras pAss(3) is not
a Koszul operad.

Remark 3.10. In [28], it is shown that the operad of totally associative ternary algebras
is Koszul because it has a Poincaré-Birkhoff-Witt basis. Moreover, its dual, the operad of
partially associative ternary algebras, is also Koszul when the operations are in degree one.
See also [22] for constructions in this case and the recent preprint [53]. The corollary claims
that the operad is not a Koszul operad when the operations are in degree zero.

Remark 3.11. Using the same approach, we can show that the alternate partially associative
ternary algebras of first and second kind do not carry a usual deformation cohomology as
well, then their operads are not koszul operads.

4 Cohomology of weak totally associative ternary algebras

In this section, we generalize to p-cohomology, for all p, the 1-cohomology and 2-cohomology
of weak totally associative ternary algebra defined by Takhtajan (see [56]). Let A = (V,m)
be a weak totally associative ternary algebras on a K-vector space V .

The 1-coboundary and 2-coboundary operators for weak totally associative ternary alge-
bras A are defined as follows
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Definition 4.1. A 1-coboundary operator of a weak totally associative ternary algebra
A = (V,m) is the map

δ1 : C1(A,A) −→ C2(A,A), f 7−→ δ1f

defined for all x1, x2, x3 ∈ V by

δ1f
(
x1 ⊗ x2 ⊗ x3

)
= m

(
f
(
x1

)
⊗ x2 ⊗ x3

)
+m

(
x1 ⊗ f

(
x2

)
⊗ x3

)
+m

(
x1 ⊗ x2 ⊗ f

(
x3

))
− f

(
m
(
x1 ⊗ x2 ⊗ x3

))
A 2-coboundary operator of a weak totally associative ternary algebra A is the map

δ2 : C2(A,A) −→ C3(A,A)

ϕ 7−→ δ2ϕ

defined for all x1, . . . , x5 ∈ V by

δ2ϕ
(
x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗ x5

)
= m

(
x1 ⊗ x2 ⊗ ϕ

(
x3 ⊗ x4 ⊗ x5

))
−m

(
ϕ
(
x1 ⊗ x2 ⊗ x3

)
⊗ x4 ⊗ x5

)
+ ϕ

(
x1 ⊗ x2 ⊗m

(
x3 ⊗ x4 ⊗ x5

))
− ϕ

(
m
(
x1 ⊗ x2 ⊗ x3

)
⊗ x4 ⊗ x5

)
Remark 4.2. One can easily show that δ2 ◦ δ1 = 0. Indeed,

δ2 ◦ δ1
(
f
)(
x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗ x5

)
= m

(
x1 ⊗ x2 ⊗m

(
f
(
x3

)
⊗ x4 ⊗ x5

))
+m

(
x1 ⊗ x2 ⊗m

(
x3 ⊗ f

(
x4

)
⊗ x5

))
+m

(
x1 ⊗ x2 ⊗m

(
x3 ⊗ x4 ⊗ f

(
x5

)))
−m

(
x1 ⊗ f

(
x2

)
⊗m

(
x3 ⊗ x4 ⊗ x5

))
−m

(
x1 ⊗ f

(
m
(
x2 ⊗ x3 ⊗ x4

))
⊗ x5

)
−m

(
m
(
x1 ⊗ x2 ⊗ x3

)
⊗ f

(
x4

)
⊗ x5

)
−m

(
m
(
x1 ⊗ x2 ⊗ x3

)
⊗ x4 ⊗ f

(
x5

))
+ f

(
m
(
m
(
x1 ⊗ x2 ⊗ x3

)
⊗ x4 ⊗ x5

))
+m

(
f
(
x1

)
⊗ x2 ⊗m

(
x3 ⊗ x4 ⊗ x5

))
+m

(
x1 ⊗ f

(
x2

)
⊗m

(
x3 ⊗ x4 ⊗ x5

))
+m

(
x1 ⊗ x2 ⊗ f

(
m
(
x3 ⊗ x4 ⊗ x5

)))
− f

(
m
(
x1 ⊗ x2 ⊗m

(
x3 ⊗ x4 ⊗ x5

)))
−m

(
m
(
f
(
x1

)
⊗ x2 ⊗ x3

)
⊗ x4 ⊗ x5

)
−m

(
m
(
x1 ⊗ f

(
x2

)
⊗ x3

)
⊗ x4 ⊗ x5

)
−m

(
m
(
x1 ⊗ x2 ⊗ f

(
x3

))
⊗ x4 ⊗ x5

)
+m

(
f
(
m
(
x1 ⊗ x2 ⊗ x3

))
⊗ x4 ⊗ x5

)
+ f

(
m
(
x1 ⊗m

(
x2 ⊗ x3 ⊗ x4

)
⊗ x5

))
−m

(
x1 ⊗m

(
x2 ⊗ x3 ⊗ f

(
x4

))
⊗ x5

)
−m

(
x1 ⊗m

(
x2 ⊗ x3 ⊗ x4

)
⊗ f

(
x5

))
+m

(
x1 ⊗m

(
x2 ⊗ f

(
x3

)
⊗ x4

)
⊗ x5

)
−m

(
x1 ⊗m

(
f
(
x2

)
⊗ x3 ⊗ x4

)
⊗ x5

)
−m

(
f
(
x1

)
⊗m

(
x2 ⊗ x3 ⊗ x4

)
⊗ x5

)
= 0

We introduce for weak associative ternary algebras the following generalized coboundary
map.

Definition 4.3. Let f be a (p−1)-cochain of a weak associative ternary algebra A = (V,m)
and f ∈ Cp−1(A,A), that is, f : V ⊗2p−1 −→ V . We set

δpf
(
x1 ⊗ · · · ⊗ x2p+1

)
= m

(
x1 ⊗ x2 ⊗ f

(
x3 ⊗ · · · ⊗ x2p+1

))
+

p∑
i=1

(−1)if
(
x1 ⊗ · · · ⊗m

(
x2i−1 ⊗ x2i ⊗ x2i+1

)
⊗ · · · ⊗ x2p+1

)
+ (−1)p+1m

(
f
(
x1 ⊗ · · · ⊗ x2p−1

)
⊗ x2p ⊗ x2p+1

)
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In particular, we have

δ3ϕ
(
x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗ x5 ⊗ x6 ⊗ x7

)
= m

(
ϕ
(
x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗ x5

)
⊗ x6 ⊗ x7

)
− ϕ

(
m
(
x1 ⊗ x2 ⊗ x3

)
⊗ x4 ⊗ x5 ⊗ x6 ⊗ x7

)
+ ϕ

(
x1 ⊗ x2 ⊗m

(
x3 ⊗ x4 ⊗ x5

)
⊗ x6 ⊗ x7

)
− ϕ

(
x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗m

(
x5 ⊗ x6 ⊗ x7

))
+m

(
x1 ⊗ x2 ⊗ ϕ

(
x3 ⊗ x4 ⊗ x5 ⊗ x6 ⊗ x7

))
Proposition 4.4. We have δp+1 ◦ δp = 0 for all p ≥ 1.

Proof. We have δ2 ◦ δ1 = 0. Assume δp ◦ δp−1 = 0. We have to show that δp+1 ◦ δp = 0.
Let ϕ be a p-cochain and x1, . . . , x2p+3 ∈ V .

δpϕ
(
x1 ⊗ · · · ⊗ x2p+1

)
= m

(
x1 ⊗ x2 ⊗ ϕ

(
x3 ⊗ · · · ⊗ x2p+1

))
+ (−1)p+1m

(
ϕ
(
x1 ⊗ · · · ⊗ x2p−1

)
⊗ x2p ⊗ x2p+1

)
+

p∑
i=1

(−1)iϕ
(
x1 ⊗ · · · ⊗m

(
x2i−1 ⊗ x2i ⊗ x2i+1

)
⊗ · · · ⊗ x2p+1

)
Then δp+1(δpϕ)(x1 ⊗ · · · ⊗ x2p+3) vanishes. Really,

δp+1
(
δpϕ
)(
x1 ⊗ · · · ⊗ x2p+3

)
= m

(
x1 ⊗ x2 ⊗ δpϕ

(
x3 ⊗ · · · ⊗ x2p+3

))
+ (−1)p+2m

(
δpϕ
(
x1 ⊗ · · · ⊗ x2p+1

)
⊗ x2p+2 ⊗ x2p+3

)
+

p+1∑
k=1

(−1)kδpϕ
(
x1 ⊗ · · · ⊗m

(
x2k−1 ⊗ x2k ⊗ x2k+1

)
⊗ · · · ⊗ x2p+3

)
= m

(
x1 ⊗ x2 ⊗m

(
x3 ⊗ x4 ⊗ ϕ

(
x5 ⊗ · · · ⊗ x2p+3

)))
+ (−1)p+1m

(
x1 ⊗ x2 ⊗m

(
ϕ
(
x3 ⊗ · · · ⊗ x2p+1

)
⊗ x2p+2 ⊗ x2p+3

))
+

p∑
i=1

(−1)im
(
x1 ⊗ x2 ⊗ ϕ

(
x3 ⊗ · · · ⊗m

(
x2i+1 ⊗ x2i+2 ⊗ x2i+3

)
⊗ · · · ⊗ x2p+3

))
+ (−1)p+2m

(
x1 ⊗ x2 ⊗m

(
ϕ(x3 ⊗ · · · ⊗ x2p+1

)
⊗ x2p+2 ⊗ x2p+3

))
+ (−1)2p+3m

(
m
(
ϕ
(
x1 ⊗ · · · ⊗ x2p−1

)
⊗ x2p ⊗ x2p+1

)
⊗ x2p+2 ⊗ x2p+3

)
+ (−1)p+2

p∑
i=1

(−1)im
(
ϕ
(
x1 ⊗ · · · ⊗m

(
x2i−1 ⊗ x2i ⊗ x2i+1

)
⊗ · · · ⊗ x2p+1

)
⊗ x2p+2 ⊗ x2p+3

)
+

p+1∑
k=1

(−1)km
(
x1 ⊗ x2 ⊗ ϕ

(
x3 ⊗ · · · ⊗m

(
x2k−1 ⊗ x2k ⊗ x2k+1

)
⊗ · · · ⊗ x2p+3

))
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+
p+1∑
k=1

(−1)k(−1)p+1m
(
ϕ(x1 ⊗ · · · ⊗m

(
x2k−1 ⊗ x2k ⊗ x2k+1

)
⊗ · · · ⊗ x2p+1

)
⊗ x2p+2 ⊗ x2p+3

)
+

p+1∑
k=3

k−2∑
i=1

(−1)k+iϕ
(
x1 ⊗ · · · ⊗m

(
x2i−1 ⊗ x2i ⊗ x2i+1

)
⊗ · · · ⊗m

(
x2k−1 ⊗ x2k ⊗ x2k+1

)
⊗ · · · ⊗ x2p+3

)
+

p∑
k=1

(−1)2kϕ
(
x1⊗· · ·⊗m

(
m
(
x2k−1⊗x2k⊗x2k+1

)
⊗x2k+2⊗x2k+3

)
⊗· · ·⊗x2p+3)

+
p∑

k=1

(−1)2k+1ϕ
(
x1⊗· · ·⊗m

(
x2k−1⊗x2k⊗m

(
x2k+1⊗x2k+2⊗x2k+3

))
⊗· · ·⊗x2p+3

)
+

p−2∑
k=1

p+1∑
i=2k+2

(−1)k+i+1ϕ
(
x1 ⊗ · · · ⊗m

(
x2k−1 ⊗ x2k ⊗ x2k+1

)
⊗ · · · ⊗m

(
x2i−1 ⊗ x2i ⊗ x2i+1)⊗ · · · ⊗ x2p+3

)
= 0

5 Takhtajan’s construction

In this section, we aim to extend to ternary algebras of associative type a process introduced
by Takhtajan to construct a complex of ternary algebras starting from a complex of binary
algebras (see [56]). Let (V,m) be a ternary algebra of a given type. We associate to it a
binary algebra on W = V ⊗V and a map ∆. Assume that (C, δ) is a complex for the ternary
algebras and (M,d) is a complex for the binary algebras.

We define a map ∆ such that ∆p associates to any p-cochain on V a p-cochain on W . It
is defined by

∆0 : C0 = Hom(V, V ) −→ M0 = Hom(W,W )
f 7−→ ∆0(f)

such that, for example, ∆0(f)(x1 ⊗ x2) = f(x1)⊗ x2 + αx1 ⊗ f(x2), ∀xi ∈ V with α ∈ K.
One extends this operation to

∆p : Cp = Hom(V ⊗2p+1, V ) −→ Mp = Hom
(
W p+1,W

)
ϕ 7−→ ∆pϕ

defined, for example, using the remark that W⊗p+1 ∼= V ⊗2p+2, by

∆pϕ
(
y1 ⊗ · · · ⊗ y2p+2

)
= ϕ

(
y1 ⊗ · · · ⊗ y2p+1

)
⊗ y2p+2 + α y1 ⊗ ϕ

(
y2 ⊗ · · · ⊗ y2p+2

)
Let us assume that one has a complex (M,d):

· · · −→Mp−1 dp−1

−−−−→Mp dp

−−→Mp+1 −→ · · ·

i.e., for all p, dp ◦ dp−1 = 0.
Consider for any p > 0, the linear maps δp : Cp −→ Cp+1 satisfying

∆p+1 ◦ δp = dp ◦∆p, ∀p

The equality is well defined.
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Indeed, one has for p ≥ 1,

Cp ∆p−−−→Mp dp

−−→Mp+1 and Cp δp

−−→ Cp+1 ∆p+1−−−−→Mp+1

Lemma 5.1. Let p > 1. If dp ◦ dp−1 = 0, then δp ◦ δp−1 = 0.

Proof. One has ∆p+1◦δp = dp◦∆p, then ∆p+1◦δp◦δp−1 = dp◦∆p◦δp−1 = dp◦dp−1◦∆p−1 = 0,
because dp ◦ dp−1 = 0.

As a consequence of the previous lemma, one may obtain a complex of ternary algebras
starting from a complex of binary algebras and a map ∆. This process was used by Takhta-
jan to construct a cohomology of ternary Nambu algebras using the Chevalley-Eilenberg
cohomology of Lie algebras. The binary multiplication used to that end is defined as follows:

Let (V, [ , , ]) be a ternary Nambu algebra. Set W = V ⊗ V . The multiplication on W is
defined for x1 ⊗ x2, y1 ⊗ y2 ∈W by[

x1 ⊗ x2, y1 ⊗ y2

]
W

=
[
x1, x2, y1

]
⊗ y2 + y1 ⊗

[
x1, x2, y2

]
5.1 Takhtajan’s construction and ternary algebras of associative type

In the sequel, we show that we cannot derive a cohomology of a partially associative ternary
algebra from a cohomology of binary algebras of associative type. A construction is possi-
ble in the case of totally associative ternary algebras but the cohomology obtained is the
cohomology of weak totally associative ternary algebras described above.

A binary algebra is called of associative type if it is given by a vector space V and a
multiplication µ satisfying an identity of the form

µ
(
µ(u⊗ v)⊗ w

)
+ λµ

(
u⊗ µ(v ⊗ w)

)
= 0

where λ is a scalar element different from zero. In particular, we have associative algebras
for λ = −1 and skew-associative algebras for λ = 1. In the last section, we show that the
skew-associative algebras cannot carry a usual cohomology adapted to deformation theory.

In the following, we try to adapt the Takhatjan’s procedure to ternary algebras of asso-
ciative type. We set

µ
((
x1 ⊗ x2

)
⊗
(
y1 ⊗ y2

))
= m

(
x1 ⊗ x2 ⊗ y1

)
⊗ y2 + αx1 ⊗m

(
x2 ⊗ y1 ⊗ y2

)
where α ∈ K.

In order to check whether µ is a binary operation of associative type, we compute

A1 = µ
(
µ
((
x1 ⊗ x2

)
⊗
(
y1 ⊗ y2

))
⊗
(
z1 ⊗ z2

))
= µ

((
m
(
x1⊗x2⊗y1

)
⊗y2

)
⊗
(
z1⊗z2

))
+ αµ

((
x1⊗m

(
x2⊗y1⊗y2

))
⊗
(
z1⊗z2

))
= m

(
m
(
x1 ⊗ x2 ⊗ y1

)
⊗ y2 ⊗ z1

)
⊗ z2 + αm

(
x1 ⊗ x2 ⊗ y1

)
⊗m

(
y2 ⊗ z1 ⊗ z2

)
+ αm

(
x1 ⊗m

(
x2 ⊗ y1 ⊗ y2

)
⊗ z1

)
⊗ z2 + α2x1 ⊗m

(
m
(
x2 ⊗ y1 ⊗ y2

)
⊗ z1 ⊗ z2

)
and

A2 = µ
((
x1 ⊗ x2

)
⊗ µ

((
y1 ⊗ y2

)
⊗
(
z1 ⊗ z2

)))
= µ

((
x1⊗x2

)
⊗
(
m
(
y1⊗y2⊗z1

)
⊗z2

))
+ αµ

((
x1⊗x2

)
⊗
(
y1⊗m

(
y2⊗z1⊗z2

)))
= m

(
x1 ⊗ x2 ⊗m

(
y1 ⊗ y2 ⊗ z1

))
⊗ z2 + αx1 ⊗m

(
x2 ⊗m

(
y1 ⊗ y2 ⊗ z1

)
⊗ z2

)
+ αm

(
x1 ⊗ x2 ⊗ y1

)
⊗m

(
y2 ⊗ z1 ⊗ z2

)
+ α2x1 ⊗m

(
x2 ⊗ y1 ⊗m

(
y2 ⊗ z1 ⊗ z2

))
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The multiplication µ is of associative type if A1 + λA2 = 0, that is,

A1 + λA2 =
[
m
(
m
(
x1 ⊗ x2 ⊗ y1

)
⊗ y2 ⊗ z1

)
+ αm

(
x1 ⊗m

(
x2 ⊗ y1 ⊗ y2

)
⊗ z1

)
+ λm

(
x1 ⊗ x2 ⊗m

(
y1 ⊗ y2 ⊗ z1

))]
⊗ z2

+ αx1⊗
[
αm
(
m
(
x2⊗y1⊗y2

)
⊗z1⊗z2

)
+ λm

(
x2⊗m

(
y1⊗y2⊗z1

)
⊗z2

)
+ αλm

(
x2 ⊗ y1 ⊗m

(
y2 ⊗ z1 ⊗ z2

))]
+ α

(
1 + λ

)
m
(
x1 ⊗ x2 ⊗ y1

)
⊗m

(
y2 ⊗ z1 ⊗ z2

)
If m is a ternary operation which defines a partially associative ternary algebra of a given

type, then A1 + λA2 = 0 if α(1 + λ) = 0 and the coefficients (1, α, λ), (α2, λα, λα2) are
proportional.

The first condition is satisfied when α = 0 or λ = −1. The case α = 0 is impossible.
If λ = −1, the coefficients (1, α,−1) and (α2,−α,−α2) should be proportional. This is

possible only over C with α = ±i. The associativity condition needed must be of one of the
following forms:

m
(
m
(
x1 ⊗ x2 ⊗ x3

)
⊗ x4 ⊗ x5

)
+ im

(
x1 ⊗m

(
x2 ⊗ x3 ⊗ x4

)
⊗ x5

)
−m

(
x1 ⊗ x2 ⊗m

(
x3 ⊗ x4 ⊗ x5

))
= 0

m
(
m
(
x1 ⊗ x2 ⊗ x3

)
⊗ x4 ⊗ x5

)
− im

(
x1 ⊗m

(
x2 ⊗ x3 ⊗ x4

)
⊗ x5

)
−m

(
x1 ⊗ x2 ⊗m

(
x3 ⊗ x4 ⊗ x5

))
= 0

In the both cases, one may construct a cohomology of ternary algebras according to Takhta-
jan’s construction and using the Hochschild complex of associative binary multiplication.

Therefore, we have the following proposition.

Proposition 5.2. It is impossible to construct, using Takhtajan’s construction, a cohomology
of ternary algebras (V,m) which are partially associative (resp., alternate partially associa-
tive) starting from a complex of binary algebra of associative type.

Remark 5.3. If the ternary algebra m is totally associative, then the corresponding binary
algebra is of associative type if

1 + α+ λ = 0, α2 + λα+ λα2 = 0, α(1 + λ) = 0

which implies that α = 0 and λ = −1.
Therefore, using Takhtajan procedure, we can construct a cohomology of totally associa-

tive ternary algebras (V,m) with a binary multiplication µ defined on W = V ⊗ V by

µ
((
x1 ⊗ x2

)
⊗
(
y1 ⊗ y2

))
= m

(
x1 ⊗ x2 ⊗ y1

)
⊗ y2 ∀x1 ⊗ x2, y1 ⊗ y2 ∈W

Let ϕ : V ⊗2p−1 → V be a p-cochain of the totally associative ternary algebra (V,m). We
set ∆ϕ(x1⊗ · · · ⊗ x2p) = ϕ(x1⊗ · · · ⊗ x2p−1)⊗ x2p. It turns out that in this case, we recover
the coboundary map of the weak totally associative ternary algebras discussed in Section 4.

Really, using the Hochschild coboundary of the binary associative algebra (W,µ), we have

dp∆ϕ
(
x1 ⊗ · · · ⊗ x2p+2

)
= µ

(
x1 ⊗ x2 ⊗∆ϕ

(
x3 ⊗ · · · ⊗ x2p+2

))
+

p∑
i=1

∆ϕ
(
x1 ⊗ · · · ⊗ µ

(
x2i−1 ⊗ x2i ⊗ x2i+1 ⊗ x2i+2

)
⊗ · · · ⊗ x2p+2

)
+
(
− 1
)p
µ
(
∆ϕ
(
x1 ⊗ · · · ⊗ x2p

)
⊗ x2p+1 ⊗ x2p+2

)
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= m
(
x1 ⊗ x2 ⊗ ϕ

(
x3 ⊗ · · · ⊗ x2p+1

))
⊗ x2p+2

+
p∑
i=1

ϕ
(
x1 ⊗ · · · ⊗m

(
x2i−1 ⊗ x2i ⊗ x2i+1

)
⊗ · · · ⊗ x2p+1

)
⊗ x2p+2

+
(
− 1
)p
m
(
ϕ
(
x1 ⊗ · · · ⊗ x2p−1

)
⊗ x2p ⊗ x2p+1

)
⊗ x2p+2

Then, we set

δpϕ
(
x1 ⊗ · · · ⊗ x2p+1

)
= m

(
x1 ⊗ x2 ⊗ ϕ

(
x3 ⊗ · · · ⊗ x2p+1

))
+

p∑
i=1

ϕ
(
x1 ⊗ · · · ⊗m

(
x2i−1 ⊗ x2i ⊗ x2i+1

)
⊗ · · · ⊗ x2p+1

)
+ (−1)pm

(
ϕ
(
x1 ⊗ · · · ⊗ x2p−1

)
⊗ x2p ⊗ x2p+1

)
and recover the cohomology of weak totally associative ternary algebras defined above.

6 On deformation cohomology of skew-associative algebras

In this section, we show that the 1-cohomology and 2-cohomology guided by 1-parameter
formal deformations cannot be extended to a usual 3-cohomology. Therefore, the operad of
skew-associative binary algebras is not Koszul.

Definition 6.1. A skew-associative binary algebra is given by a K-vector space V and a
bilinear multiplication µ satisfying, for every x1, x2, x3 ∈ V ,

µ
(
µ
(
x1 ⊗ x2

)
⊗ x3

)
= −µ

(
x1 ⊗ µ

(
x2 ⊗ x3

))
The formal deformation theory leads to the following 1-coboundary and 2-coboundary

operators for a cohomology of skew-associative binary algebra A = (V, µ) adapted to formal
deformation theory. The 1-coboundary operator of A is the map

δ1 : C0(A,A) −→ C1(A,A), f 7−→ δ1f

defined by

δ1f
(
x1 ⊗ x2

)
= f

(
µ
(
x1 ⊗ x2

))
− µ

(
f
(
x1

)
⊗ x2

)
− µ

(
x1 ⊗ f

(
x2

))
The 2-coboundary operator of A the map

δ2 : C1(A,A) −→ C2(A,A), ϕ 7−→ δ2ϕ

defined by

δ2ϕ
(
x1 ⊗ x2 ⊗ x3

)
= µ

(
ϕ
(
x1 ⊗ x2

)
⊗ x3

)
+ µ

(
x1 ⊗ ϕ

(
x2 ⊗ x3

))
+ ϕ

(
µ
(
x1 ⊗ x2

)
⊗ x3

)
+ ϕ

(
x1 ⊗ µ

(
x2 ⊗ x3

))
One may characterize the operator δ2 using the following skew-associator map:

◦ : Cr(A,A)× Cs(A,A) −→ Cr+s(A,A), (f, g) 7−→ f ◦ g

defined by

(f ◦ g)
(
x1 ⊗ · · · ⊗ xr+s

)
=

r−1∑
i=0

f
(
x1 ⊗ · · · ⊗ g

(
xi+1 ⊗ · · · ⊗ xi+s

)
, · · · ⊗ xr+s

)
We have δ2ϕ = µ ◦ ϕ+ ϕ ◦ µ. Note also that δ2 ◦ δ1 = 0.
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Proposition 6.2. A usual 3-coboundary operator extending the maps δ1 and δ2 to a complex
of for skew-associative binary algebras does not exist.

Proof. We set the following general form of a usual 3-coboundary operator:

δ3f
(
x1 ⊗ x2 ⊗ x3 ⊗ x4

)
= a1µ

(
x1 ⊗ f

(
x2 ⊗ x3 ⊗ x4

))
+ a2f

(
µ
(
x1 ⊗ x2

)
⊗ x3 ⊗ x4

)
+ a3f

(
x1 ⊗ µ

(
x2 ⊗ x3

)
⊗ x4

)
+ a4f

(
x1 ⊗ x2 ⊗ µ

(
x3 ⊗ x4

))
+ a5µ

(
f
(
x1 ⊗ x2 ⊗ x3

)
⊗ x4

)
We consider a 3-cochain f , that is, a map f : V ⊗3 → V , and a 2-cochain g, that is, a map

f : V ⊗2 → V . We compute δ3(δ2g)(x1 ⊗ x2 ⊗ x3 ⊗ x4) and substitute µ(y1 ⊗ µ(y2 ⊗ y3)) by
−µ(µ(y1 ⊗ y2)⊗ y3). Then, we obtain(

a3 − a4

)
f
(
x1 ⊗ µ

(
µ
(
x2 ⊗ x3

)
⊗ x4

))
+
(
a2 + a4

)
f
(
µ
(
x1 ⊗ x2

)
⊗ µ

(
x3 ⊗ x4

))
+
(
a2 − a3

)
f
(
µ
(
µ
(
x1 ⊗ x2

)
⊗ x3

)
⊗ x4

)
+
(
a1 + a4

)
µ
(
x1 ⊗ f

(
x2 ⊗ µ

(
x3 ⊗ x4

)))
+
(
a1 + a3

)
µ
(
x1 ⊗ f

(
µ
(
x2 ⊗ x3

)
⊗ x4

))
+
(
a3 + a5

)
µ
(
f
(
x1 ⊗ µ

(
x2 ⊗ x3

))
⊗ x4

)
+
(
a2 + a5

)
µ
(
f
(
µ
(
x1 ⊗ x2

)
⊗ x3

)
⊗ x4

)
+
(
a2 − a1

)
µ
(
µ
(
x1 ⊗ x2

)
⊗ f

(
x3 ⊗ x4

))
+
(
a5 − a1

)
µ
(
µ
(
x1 ⊗ f

(
x2 ⊗ x3

))
⊗ x4

)
+
(
a5 − a4

)
µ
(
µ
(
f
(
x1 ⊗ x2

)
⊗ x3

)
⊗ x4

)
=0

The equation is satisfied for all x1, x2, x3, x4 ∈ V if and only if ai{i=1,...,5} = 0.

Corollary 6.3. A usual deformation cohomology for skew-associative binary algebras does
not exist. Then the operad of skew-associative binary algebras is not Koszul.
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l’habilitation à diriger des recherches, IRMA Strasbourg Preprint, 2003.
[22] N. Goze and E. Remm. On n-ary algebras given by Gerstenhaber’s products. Preprint, arXiv:

0803.0553v2 [math.RA], 2008.
[23] M. Goze and M. Rausch de Traubenberg. Hopf algebras for ternary algebras and groups.

Preprint, arXiv: 0809.4212v1 [math-ph], 2008.
[24] J. Grabowski and G. Marmo. Remarks on Nambu-Poisson and Nambu-Jacobi brackets. J. Phys.

A: Mah. Gen., 32 (1999), 4239–4247.
[25] Ph. Hanlon and M. Wachs. On Lie k-algebras. Adv. Math., 113 (1995), 206–236.
[26] B. Harris. Cohomology of Lie triple systems and Lie algebras with involution. Trans. Amer.

Math. Soc., 98 (1961), 148–162.
[27] M. R. Hestenes. On ternary algebras. Scripta Math., 29 (1973), 253–272.
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