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Abstract
One of the key factors in assessing the health of heart muscles is measuring their ability to pump the blood out of 

ventricles in each contraction, which is called ejection fraction (EF). This factor is commonly estimated by a cardiologist 
when analyzing an echocardiogram, which is a time-consuming and expensive procedure that can also cause some 
inaccurate results. In this paper, we propose a numerical, short-time, and simple methodology to estimate the EF by 
calculating the areas and volume under ECG signals, which is a non-invasive, bedside heart monitoring procedure. We 
computed the areas and volume under the segments of normal ECG signals for 50 subjects by employing trapezoidal, 
Simpson’s, and Boole’s rules on three orthogonal planes of 12-lead ECG signal directions and five groups of leads for 
sagittal, frontal and transverse planes. We found a significant correlation (p<.001) between the values for EF parameters 
reported by cardiologists and our results, which we evaluated by calculating the Wilcoxon Signed-Ranks test, Canberra 
distance, Paired samples t-test, and Root Mean Square Error (RMSE). The results showed a significant correlation 
between the reported EF factor and the values derived by our proposed method.
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Introduction
Ejection fraction (EF) is a valuable measurement for assessing the 

heart’s function and its muscle health. EF shows the percentage of blood 
volume that is pumped out of the ventricles with each contraction and 
reveals such diverse myocardial diseases as ischemia, congenital heart 
diseases, conduction disorders, infectious diseases, and granulomatous 
diseases. The cardiac cycle consists of two phases during each heartbeat: 
ventricular contraction, called systole, and its relaxation phase, called 
diastole. The amount of blood in the heart at the end of systole is called 
end-systolic volume (ESV), and the blood volume at the end of diastole 
is end-diastolic volume (EDV). EF percent (%) can be determined by 
using the following equation:

EF (%)=(EDV-ESV)/EDV*100              (1)

Normal range of this volumetric fraction is 50-75%. Lower EF 
leads to heart muscle damage and systolic congestive heart failure, 
and higher values may indicate a heart condition like hypertrophic 
cardiomyopathy.

Echocardiography (echo), radionuclide ventriculography, 
cardiovascular magnetic resonance (CMR), cardiac catheterization, 
and computerized tomography (CT) scanning of the heart are five 
methods commonly employed for EF estimation.

Among these methods, echocardiography is non-invasive and 
mostly used because of its short-time and bedside properties, along with 
its ability to create two- and three-dimensional images, which provide 
useful information about shape, size, and other volumetric information 
of the heart. However, these methods have some weak points caused by 
the geometric assumption during the operation, which is substituted 
with a data slice for the entire ventricle in m-mode echo types in order 
to estimate the 3-D information from a limited set of 2-Ddata. This, 
in turn, requires precision to determine the borderline of ventricles to 
ensure accurate cavity detection. Thus, echo cardiographic images have 
been repeatedly reported as misleading in diagnosing patients with 
aortic regurgitation [1], dilated and remodeled ventricles [2], and wall-
motion abnormalities [3]. 

Radionuclide ventriculography is a useful nuclear cardiac imaging 

technique. It employs SPECT or PET for measuring the EF radionuclide 
angiography and gated myocardial perfusion imaging. It requires 
common planar imaging and anterior and posterior oblique projection 
of left and right ventricle separation, and is prone to background 
removal errors and less accuracy in calculating EF.

Cardiovascular magnetic resonance estimates the EF factor by 
employing manual, semi-automated, or automated methods of MRI 
[4]. It is often calculated using the Simpson disk summation method, 
which treats the ventricles as a stack of disks. This method’s biggest 
limitation is its prolate ellipse assumption of ventricle volume, which 
does not properly assess any ventricles [5].

The computed tomography technique, like cardiovascular magnetic 
resonance, is a Simpson-based method. However, CT exposes the 
patient to ionizing radiation and requires iodinated contrast material. 
This method also results in poor-quality images in patients with cardiac 
arrhythmias or ectopic beats [6].

The heart consists of two types of cells. The cardiomyocyte cell type 
constitutes the ventricles and atria, and the cardiac pacemaker cell type 
creates electrical impulses to control the heart's rhythm of contraction 
and beating. The electrical activities caused by these cells depolarize and 
repolarize the heart's muscular activity. During the depolarization phase, 
electrical cells generate an impulse to separate ions such as sodium, 
potassium, and calcium, which in turn causes electrical charging on both 
sides of the membrane and systolic contraction of the heart’s muscle fiber. 
In the repolarization phase, those ions return to their regular states. This 
relaxation phase of the heart muscles is diastolic [7].
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Such bioelectrical activity within these cells causes a current 
in tissues around the cells called volume current, which can make a 
difference in readings between the electrodes attached to the body. By 
attaching these electrodes to the torso, the electrical potential difference 
generated by the heart’s tissues as a function of time is called ECG. In 
a normal ECG signal, six peaks are labeled P, Q, R, S, T, and U. The P 
peak results from depolarization of the atria. The P-R interval is the 
time between depolarization of the atria and the ventricles. The QRS 
complex demonstrates depolarization or contraction, and the T wave 
displays the repolarization or relaxation of the ventricles. The U wave 
usually results from a rest potential [8]. 

The shape and amplitude of these ECG segments make up a typical 
measurement of the heart’s functional work. Any distortion in the 
heart’s mechanical work leads to changes in amplitude and direction of 
the ECG’s peaks [9].

The mechanical and electrical model of the heart, which 
incorporates the mechanical actions and changes in electrical activity 
of heart cells by summing up dipoles of bioelectrical activity of those 
cells during heart repolarization and depolarization, shows that subtle 
alteration in surface ECG can lead to ventricular fibrillation [10-16].

There were also various works on mechanical and electrical model 
of heart that they reported connectivity between heart’s volume and 
electrical activities [17,18]. Further developments indicated linear 
relationship between electrical systole, mechanical systole and also the 
length of ECG cycles [19].

In this paper, regarding the relationships between the electrical 
activities from the surface encompassing the volume conductor [20-
24] (with the heart at its center) and the ventricles’ contraction and 
relaxation in systolic and diastolic phases, we propose an ECG-based 
EF estimation method. In doing so, we use volumetric information fed 
into the 12-lead ECG. This is a standard ECG recording method [25] 
that spreads out equally on the body surface and measures the heart's 
electrical activity in three orthogonal directions: right and left, superior 
and inferior, and anterior and posterior (Figure 1). Such spatial 
information of the heart’s electrical activity is obtained by assuming 
that the heart is located at the center of an infinite, homogeneous 
volume conductor [26].

The surfaces under these 12-lead ECG signals in systolic and 
diastolic phases were estimated using numerical integration like the 
trapezoidal method, Simpson’s rule, and Boole’s [27] rule formulas.

We also used the eigenvectors information of the data under ECG 
cycles to estimate the area and volume of the data. Those values for 
the QRS segment of the ECG, representing ventricle contraction, and 
the S-T interval, demonstrating ventricle relaxation, were then used, 
respectively, as EDV and ESV values in the EF equation calculation.

Data Set
The proposed methodology was applied on ECG recorded signals 

at Shahid Faghihi Hospital, a subsidiary of Shiraz University of Medical 
Sciences, using a 12-lead system with 25mm/s and 10 mm/mv. The 
subjects included in this database were found to have had no significant 
arrhythmias. They consisted of 21 men ages 32 to 56, and 29 women 
ages25 to 57. For each subject, the EDV, ESV, and EF factor were 
estimated by a cardiologist using the patient’s echocardiogram.

Methodology
In this section, the proposed method for estimating EF using the 

ECG segments is introduced. Figure 2 shows the overall procedure step 

by step, and the following subsections describe each step in detail.

Data Preprocessing
The data were derived from 12-lead surface ECG by Cardiax v3.35 

with10mm/mV and 25mm/sand 235 estimated sampling rate. As the 
proposed procedure was based on estimating the area and volume of 
the ECG graph, the signal needed to be adequately cleaned from the 
baseline wandering noise. Therefore, first the two cascaded low-pass 
filters were applied to the signal to remove the baseline wandering 
noise. To more precisely remove this noise in each cardiac cycle, the 
P-R segment (Figure 3) was found and set as the base axis of the signal 
for baseline wandering removal, which was done by shifting the cardiac 
cycle toward the P-R segment. To find the P-R segment, first heart rate 
of ECG cycles was computed from the signal using a simple frequency 
estimation method based on spectral peak location estimation [28]. The 
R peaks of the signal were found by using peak detection maximum 
search [29], and then we searched a time interval between 0.15 second 
and 0.8second before R peaks to find a steady line indicating the P-R 
segment. Then the ECG baseline signal was corrected according to the 
P-R segment amplitude.

Detecting QRS and T Wave
The QRS complex is a segment of ECG, which includes three 

deflections of normal ECG baseline due to simultaneous depolarization 
of the right and left ventricles. Its normal duration varies between 0.06 
and 0.10 second [30] (Figure 3). Since our method was based on the 
area computation procedure, and the shape of the wave is substantial 
in this method’s results, it was very important that the movement from 
the baseline for both QRS and T wave pointed accurately. Therefore, we 
applied a procedure that worked for each ECG cycle based on deviation 
from the steady line before each wave.

As can be seen in Figure 3, R is the highest peak in a heartbeat cycle, 
while the T wave is a wide one coming after a relatively long (about 80 
ms), steady ECG signal occurring after QRS. To find the QRS segment, 
first a peak detection maximum search [29] was applied to find R peaks. 
Having detected these peaks, we could then find the P-R segment of the 
signal, which has the same amplitude as the steady line before the P-R 
interval with some tolerances. To find that segment, we tried to detect a 
time interval with minimum 0.05 second duration and amplitude near 
the samples following the first deviation of ECG baseline. After finding 
P-R segments, the first deviation was spotted in this line and recorded 
as the starting point of the QRS complex segment. The end of the S wave 
was derived by locating the S-T interval, which was the first sample, by 
returning to baseline at minimum 0.7 second duration. Depolarization 

Figure 1: Projections of the lead vectors of the 12-lead ECG system in 
three orthogonal planes assuming that the volume conductor is spherical 
homogeneous and the cardiac source centrally located.
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Simpson's rule [31] to estimate the integrals of function f is another 
variation of the Newton-Cotes formula, which uses the quadratic 
polynomials. This rule is derived from integrating the third-order 
Lagrange interpolating polynomial [23] into the function at three 
equally spaced points. Using the value’s function of the three points (a, 
b, c), its formula is as follows:
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Boole's rule [2] is also a Newton-Cotes formula, which approximates 
an integral using the values of ƒ at five equally spaced points (a, b, c, d, 
and e) as follows: 
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Estimating Ejection Fraction EF factor, as mentioned in the 
introductory section, could be estimated using Equation 1. In this 
paper, the region under the QRS segment in the ECG signal was used 
to represent EDV, and the region under the T wave as that of ESV. The 
areas of those regions were calculated using trapezoidal, Simpson’s and 
Boole’s integration rules, and also eigenvector information employed in 
estimating the volume and area. The results were then used to compute 
the EF factor. As the area of the region under the QRS segment used as 
EDV and those ones for T wave employed as ESV in Equation 1.

Results
Baseline wandering and other noises were removed from the ECG 

data for all 50 patients using a smoothing algorithm (Figure 4). After 
that, by employing the previously mentioned peak locating method, 
the mean frequencies were approximated for each derived signal, 
which were almost 235 Hz. Next, the signal was filtered with a cascaded 
second-order, zero-phase, low-pass filter with normalized frequency 
range between 1 and 30. Almost 10 to 15 first straight line samples of 
the signal were assigned as the baseline samples, R peaks were located 

Figure 2: The overall signal processing methodology to EF 
estimation.

Figure 3: A typical one-cycle ECG signal.

of the ventricles (the lower chambers of the heart) after a contraction or 
heartbeat is responsible for the T wave (Figure 3). The T-wave segments 
were then detected in the same way as the last deviation from the steady 
line after the QRS segment was found. Then, the samples were searched 
to determine which ones returned to that line in order to spot the end 
of the T-wave segment. Figure 4 shows the overall algorithm to detect 
the QRS and T wave of ECG.

Surface under ECG Planes
The spatial information of heart electrical activity, which was 

provided with the 12-lead ECG method in three orthogonal planes 
of the heart, was used to estimate the surface under QRS and ST 
segments, which indicated in Figure 3 as QRS interval and S-T segment 
respectively (Figure 3). As we know from 12-lead ECG, each lead’s data 
represents a particular orientation in space: Bipolar limb leads (frontal 
plane) include I, II and II leads; augmented unipolar limb leads (frontal 
plane) consist of aVR, aVL, and aVF leads; and Unipolar (+) chest leads 
(horizontal plane) include leads V1 to V6 [25].

Looking at Figure 1, by choosing appropriate leads for each of 
the sagittal, frontal and transverse planes, the volume information 
of the ECG signal can be estimated [12-29]. In order to consider 
such information in estimating the EF factor [10], which is based on 
changing the electrical activity due to the change in volume of the heart 
in the contraction/relaxation step from which the vector cardiogram is 
derived [13], 12-lead ECG was transformed to three orthogonal axes 
(XYZ) using I, aVF, and -V2 leads [14]. Then, QRS and ST segment area 
information can be computed by employing numerical integral rules to 
calculate the EF factor from those leads.

Ischemia, injury and fraction heart diseases are three major risk 
factors for heart failure. Ischemia occurs when the heart’s muscles 

 

Figure 4: The overall signal processing methodology to EF estimation.
(3)
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by applying a peak detection algorithm based on maximum searching. 
Time duration of the P-R segment was almost 0.06 second, and the P-R 
interval lasted from 0.12 to 0.20 second . Thus, we sought a window 
with 40 samples, before the detected R peaks, for a steady line with the 
length of 10-15 samples and with amplitude near baseline samples to 
locate the P-R segment in the data. 

Afterward, the amplitude of baseline samples was updated to these 
new samples, and the first downward deviation toward this line was 
found. This sample was spotted as the beginning of the QRS wave. To 
locate the end of QRS, the length of searching windows was changed to 
25 samples (0.1 second) to find a line with at least five samples and with 
amplitude near the baseline amplitude. The first deflection of the S-T 
segment served as the starting point of the T wave.

After finding those points, the searching window was set to a 
200-samples (0.8 second) length, and the first five samples of data with 
amplitude close to the baseline within the window was signaled as 
the T wave’s end. Figure 6 shows atypical example of found QRS and 
T-wave segments. The procedure was repeated for each cardiac cycle 
and channel of data, and then the multi-segment trapezoidal method, 
Simpson’s and Boole’s rules were used to estimate the area under QRS 
and T-wave segments. 

For each patient, the absolute value of the area segments, which 
was obtained by the numerical integration method under QRS as EDV 
and Twave as the ESV factor, was averaged over all the cardiac and 12-
lead ECG signals. Then, the EF factor was calculated from these values 
according to Equation 1. The methods were applied on four groups of 
leads: V1, V2, V3 and V4 (anterior plane), leads III, II and aVF (inferior 
plane), leads I and AVL plus V5 and V6 (left lateral plane), and leads 
V2, I, and aVF as XYZ directions. 

Table 1 represents the average of computed areas under each 
QRS and Twave using Trapezoidal, Simpson’s, Boole’s methods, and 
the values of EF factors, which were reported by cardiologists from 
echocardiograms for all five group leads. To study the trend of estimated 
values for each of the EF factors for patients, the results were depicted in 
Figure 7a-7f for each group.

The scatter plot of resulted EF for all ECG leads using Boole’s 
methods and real EF values represented at Figure 8. By setting the 
marginal error depicted with green color, for normal EF between 50 
and 75, the estimated EF values, which lied out of this margin, marked. 
As we can see, there were 6 subjects outer the normal margin.

Figure 5: The lead directional of heart, the leads, which represent the change 
of ischemia/injury/infraction, and the it’s related ECG segment representative.

Figure 6: Typical example of 12-lead ECG and theirs detected QRS (: red 
segments) and T-wave (: green segments) using the algorithm.

Results Evaluation 
In order to evaluate the results the similarity factor for obtained 

EFs and the reported values for all five groups and three area estimation 
methods were evaluated by calculating their Wilcoxon Signed-Ranks 
test [32], Canberra distance [21], Paired samples t-test, and Root Mean 
Square Error (RMSE). The Wilcoxon test is a nonparametric test of the 
null hypothesis to evaluate the difference between two populations with 
independent samples when the distribution of data is unknown or not 
certainly normal. In which its null hypothesis “the medians of the two 
samples are identical” is accepted by when w-value is lower than critical 
value of W from Wilcoxon table. As we know from statistical literature, 
the median of data is the one, which do not, affected by outlier and 
skewed data so by considering this test we can find fair view from 
the goodness of our work. We applied two-tailed Wilcoxon test with 
significant level .01 for 50 subjects. T-test for two independent means 
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the magnitude of data. In order to find a threshold for RMSE values 
regarding the normal range for EF value, which is between 50 and 75, 
we find a maximum distance between real EF value and 50 and 75 of 
all subjects. We employed the maximum distance vector for calculating 
a threshold for acceptable RMSE value and 13.31is obtained, so for the 
EF’s of leads upper this value the resulted would be rejected.

Canberra distance is one of the distance measuring tools for paired 
samples. It is obtained by absolute difference between the variables 
of the two groups, which divided by the sum of the absolute variable 
values prior to summing. This method is directly related to absolute of 
difference between samples, so we use it to consider the overall distance 
between estimated and real EF values. The threshold for Canberra 
distance regarding maximum distance vector is 4.96 in which for the 
calculated distance bigger than this value the result is not acceptable.

All these validation methods applied on mentioned groups of leads 
and the results of which were reported in Table 2.

Discussion and Conclusion
In this paper, we proposed a numerical methodology of estimating 

the area under the QRS and T-wave segments of 12-lead ECG in normal 
subjects to calculate the EF formula by setting the areas under QRS to 
represent EDV values and the ones under the Twave to indicate ESV 
values. In order to estimate those areas, we employed three of the usual 
numerical integrating methods: Boole’s, Simpson’s, and trapezoidal. The 
methods were applied on five groups of signal leads: V1, V2, V3 and V4 
for the anterior plane, leads III, II and aVF for the inferior plane, leads 
I and AVL plus V5 and V6 for the left lateral plane.

Each of these groups of leads represents the heart from a different 
point of view. They show the pathological effects of ischemia-injury-
fraction as part of the ECG. In addition, we employed the signals of 
leads V2, I, and aVF as XYZ orthogonal directions to investigate the 
relation between the electrical information and EF fraction values at 
various ECG planes. To analyze the correlation between the resulting 
values and the values reported by cardiologists, their RMSE, PPMC, 
and t-test, and Wilcoxon values were derived. 

Using those three previously mentioned area-estimation methods, 
there is a significantly close proximity between the ratio of the area 
under QRS wave and T-wave segments and EF values (Figure 7A-7F). 
Moreover, between those ECG groups, the electrical activity in XYZ 
direction using leads II, aVF, and V2 showed more similarity with the 
EF value compared to the others (Figure 7E). The results also indicated 
that the mean of all ECG leads provides appropriate EF value (Figure 
7A); however, from Tables 1 and 2 there is no significant difference 
between the outcomes for those different area-estimation methods.

From Table 2 the null hypothesis of Wilcoxon Signed-Ranks has 
not been rejected except for leads group 5, which means that there 
is significant dependency between median values for both estimated 
and true EF values. In addition to the Wilcoxon, which showed the 
difference between data regarding median value, T-test results compare 
the samples considering their mean values. The null hypothesis of mean 
equality of the sample groups has been rejected under represented 
significant level for group leads 2, 3, and 4, which means that the 
distribution of group leads 1 and 5 are very similar.

 RMSE results represent the magnitude of differences. Considering 
the RMSE in Table 2, the Boole’s rule yielded relatively better results 
in comparison to the Simpson and Trapezoidal methods. In addition, 
using and mentioned threshold 13.31 the reported EF for group leads 4 

Figure 7: The mean EF values estimation of all ECG leads for 50 subjects by 
employing trapezoidal, Simpson, and Boole’s method and true value reported 
by cardiologist. A: all leads B:leads V1-V4, C:II,III,aVF, D:I,aVL,V5-V6, 
E:II,aVF,V2, F: The Boole’s results of all groups.

is a statistical measurement to compare the mean of two populations 
of data in the case of two samples that are independent. The null 
hypothesis is mean equality of the population of difference scores 
across the two measurements. In this paper, we use this test to examine 
the mean difference for real EF value and resulted ones.

The RMSE methods calculated the sample standard deviation of data 
point by summing up the difference between them. This measurement 
provides good estimation of accuracy of results just by considering 
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EF
Boole Simpson Trapezoidal True value

GP 1 57.1420 ± 6.22 56.4056 ± 5.59 56.5798 ± 5.14 59.6200 ± 3.80

GP2 67.15 ± 6.44 67.326 ± 6.50 67.422 ± 6.51 59.6200 ± 3.80

GP3 65.54 ± 6.56 65.77 ± 6.43 65.74 ± 6.38 59.6200 ± 3.80

GP4 65.52 ± 6.54 65.76 ± 6.42 44.97 ± 6.41 59.6200 ± 3.80

GP5 57.47 ± 6.34 57.41 ± 6.26 57.50 ± 6.38 59.6200 ± 3.80

Table 1: The mean of EF (%) estimated for 50 subjects with normal ECG signal, using Trapezoidal, Simpson, and Boole integration method for five groups of ECG leads 
(GP 1: all leads, GP2:V1-V4, GP3:II,III,aVF, GP4:I,aVL,V5-V6, GP5:I,aVF,V2).

 
Figure 8: The mean EF values estimation of all ECG leads for 50 subjects by employing Boole’s method and true value reported by cardiologist.

is not acceptable which means there were not lied in acceptable normal 
range of EF. the Canberra values of observed and expected results 
in Table 2 showed for all groups except 4 is significantly lower than 
obtained threshold like for reported for RMSE.

Considering these evaluation methods the proposed procedure to 
estimate EF is not suitable for group leads 4 and 5, however regarding 
Wilcoxon and t-test measurements the results for group lead 5 could 
follow the trend and distribution of real data on the other hand by 
incorporating all leads of ECG signals best resulted could be achieved.

The fourth row of Table 2 depicted the P-values of EF that are 
respectively which is almost P<001 for mentioned integration methods. 
Therefore, the results confirmed the hypothesis of significant relation 
between EF and the ratio of heart power in systolic and diastolic phases.
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