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Nomenclature
Roman Symbol	 Quantity

t			   Time (s)

 ur, uα, uθ	                           Velocities of flow in the radial, circumferential 
and axial directions in the porous wall (ms-1)

vr, vα, vθ	      Velocities of flow in the radial, circumferential 
and axial directions in the main pipe (ms-1)

, ,
r α θ
∂ ∂ ∂
∂ ∂ ∂

	     Derivatives in the radial, circumferential and 

axial directions

r	                          Distance measured from the center of the circular 
cross-section of the pipe

a	                    Inner cross-sectional radius

R	                   Radius of torus

B		  1+δrcosα

P		  Pressure (Nm-2)

∇ Gradient operator	  



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g		  Acceleration due t gravity(ms-1)

Re		  Reynolds number (dimensionless)

k		  Permeability (m2)

V		  Volume of void space (m3)

D		  Dean number (dimensionless)

Da		  Darcy number (dimensionless)

ρ		  Fluid density (Kgm-3)

α		  Angle of fluid particle located in the cross-section 
of the pipe

θ		  Curvature angle of the pipe

δ		  Curvature (=a/R) (dimensionless)

φ		  Porosity

μ		  Coefficient of viscosity (Kgm-1s-1).

Introduction 
In principle flow in a curved pipe can be described through the 

conservation laws: the conservation of mass, momentum and energy. 
The ratio of the inertia forces and the viscous forces acting on the fluid 
can be expressed in terms of the non-dimensional Reynolds number. 
However, due to the curvature of the pipe an additional force is added 
to the problem. This additional force is expressed through the non-
dimensional curvature ratio a

R
δ = where α is the radius of pipe and 

R the centerline radius of the bent pipe. The Reynolds number and the 

curvature ratio yield the much used Dean number, 
1
2De Reδ= , where 

represents the Reynolds number and δ the curvature ratio [1-10].

If a pipe is curved, the velocity profile will no longer be symmetrical 
about the axis of the pipe. Centrifugal force due to the change in 
direction of the flow sets up secondary currents in the plane of the 
cross-section, with the result that the maximum velocity is no longer 
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Abstract
Different irrigation methods are being used in agriculture. However, due to scarcity of water, irrigation methods 

that use water efficiently are needed. The Motivation of this study is the increasing use of porous pipes to meet this 
requirement. The objective of this study is to investigate the effect of curvature and Reynold’s number on radial 
velocity profile of water across a porous wall of a curved pipe with circular cross-section, constant permeability, k and 
porosity, φ. The momentum equations of the two dimensional flow are written in toroidal coordinates. The main flow 
in the pipe is only characterized by δ and Re as the only non-dimensional groups of numbers. We also considered 
the flow to be fully developed, unsteady, laminar and irrotational. Darcy law is used to analyse the flow across the 
porous membrane. The main flow was coupled with the flow through the porous wall of the pipe. The equations were 
solved using finite difference method. It was observed that effect of curvature on the velocity across the pipe wall is 
negligible while an increase in Reynold’s number leads to an increase in the radial velocity. The findings of this study 
are important in the design of porous pipes and also in their use during irrigation.
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at the center of the section but at some point intermediate between 
the center and the wall. No secondary flow is induced for an in viscid 
fluid since secondary flow is induced by centrifugal forces and their 
interaction primarily with viscous force [1]. The Dean number is a 
measure of the magnitude of the secondary flow. The curvature δ is a 
more detailed measure of the effect of geometry and the extent to which 
the centrifugal force varies on the cross-section. Curvature affects the 
balance of inertia, viscous and centrifugal forces [11-15].

The centrifugal force (
2U

R where U is the velocity and R the radius 

of curvature) induced from the bend will act stronger on the fluid close 
to the pipe axis than close to the walls, since the higher velocity fluid is 
near the pipe axis. This gives rise to a secondary motion superposed on 
the primary flow, with the fluid in the center of the pipe being swept 
towards the outer side of the bend and the fluid near the pipe wall 
return towards the inside of the bend. The secondary motion appear as 
a pair of counter rotating cells widely known as Dean vortices Kalpakli 
[11], Dean [5] introduced the Dean number (D) a parameter that 
dynamically defines such flows and is named after him.

Fluid flow in a curved pipe has many applications to industrial fluid 
dynamics and physiological fluid flows. It has wide ranging applications 
to the design of heat exchangers, oil pipelines, chemical reaction plants 
and simulation of blood flow at curvature sites. The only additional 
parameter to the flow in a straight pipe is the curvature [16-23]. 

The first theoretical analysis of flow in a curved pipe was carried 
out by Dean [5] who presented the original analytical solution to the 
problem by assuming that the flow in a curved tube was in a steady, 
fully developed condition and that the secondary flow is just a small 
disturbance of the Poiseuille flow in a straight tube. A first order series 
solution was used to find this analytical solution. He compared his 
results with the experimental data obtained by Eustice [8], and found 
a good agreement. Dean’s solution shows that the streamlines exhibit 
helical motion when the curvature of the pipe is small. In his first paper, 
Dean could not describe how the curvature of the pipe affects the flow 
near the boundary and the flow rate. In his second paper, Dean (1928), 
noticed that when the fluid motion is slow the reduction in flow rate 
due to curvature of the tube depends on the single variable k defined 

by 
22Re a

R
= , where Re is the Reynolds number, a the radius of the 

tube and R the curvature radius of the tube. He derived a higher order 
series solution to describe the flow analytically in a tube with a small 
K- number. The approximation was valid up to K=576. He remarked 
that curvature reduces the pressure gradient on the boundary, so that 
the flux ratio decreases there.

Taylor [21] was able to show experimentally that steady stream-line 
motion persisted up to a Reynolds number, 5830, which is 2.8 times 
Reynolds’ criterion for a straight pipe. He showed that for a curvature 
ratio of 0.0313a

R
δ = = the flow motion stays steady until Re=5010. 

Taylor’s experiments were inspired by White [23] who investigated 
the streamlines of flow in curved tubes and noticed that turbulent 
flow through a curved tube exist but probably at a higher Reynolds 
numbers compared to a straight pipe. White was the first to use the 

‘Dean’s criterion’ term: 
1
2vd d Re

D
ρ δ
µ

= where ρ is the density, μ the 

dynamic viscosity of the fluid, v the mean velocity, d the tube diameter, 

D the diameter of the curvature of the tube v  dRe ρ
µ

= is the Reynold’s 

number and d
D

δ = is the curvature. 

Collins and Dennis [3] obtained numerical solutions for values of 
Dg upto 5000. They were able to show that as D increased the secondary 
motion causes an increasing displacement of the peak longitudinal 
velocity towards the outside of the bend. Berger [1] gave an extensive 
review of flow in rigid infinitely coiled pipes. Their primary concern 
was laminar incompressible flows. They gave the equations for the 
formulation of the problem of steady and laminar flow in a rigid pipe, 
fully developed flow and a brief outline on the analysis of unsteady 
flows.

There have been numerous recent studies in this area. Masud et 
al. [14] investigated incompressible viscous steady fluid flow through a 
curved pipe with circular cross-section under the combined effects of 
high Dean Numbers and a range of curvature, 0.01 ≤ δ ≤ 0.9.

Axial velocity was found to increase with increase of Dean Number 
and decrease with the increase of curvature. For high Dean Number 
and low curvature almost all the fluid particles leave the inner half of 
the cross-section. Two vortex solutions were found for secondary flow.

There has been numerous recent studies in this area. Masud et al. 
[14] investigated incompressible viscous steady fluid flow through a 
curved pipe with circular cross-section under the combined effects of 
high Dean Numbers and a range of curvature, 0.01 ≤ δ ≤ 0.9. Axial 
velocity was found to increase with increase of Dean Number and 
decrease with the increase of curvature. For high Dean Number and 
low curvature almost all the fluid particles leave the inner half of the 
cross-section. Two vortex solutions were found for secondary flow. 
Nobari and Amani [16] did a numerical investigation on developing 
flow and heat transfer in a curved pipe. Intensity of secondary flow was 
found to increase near the inlet and then decrease especially in the case 
on high dean numbers. Maximum friction factor and also maximum 
heat transfer rate also occurs in the entrance region. The maximum 
velocity location was found to shift from the centre to the outer wall 
of the curved pipe within the entrance region. The maximum axial 
velocity gets closer to the outer wall with increasing Reynolds number. 
The entrance length depends only on Reynolds number especially for

1
7

δ = .

Hoque et al. [10] investigated the magneto hydrodynamics fluid 
flow through a curved pipe with circular cross-section under the 
combined effects of high Dean Number D, Magnetic parameter Mg and 
non-dimensional curvature δ. The flow patterns were shown graphically 
for large dean numbers as well as magnetic parameter and a wide range 
of curvatures 0.01 ≤ δ ≤ 0.4. Two vortex solutions were found. Axial 
velocity was found to increase with the increase of Dean Number and 
decrease with the increase of curvature and magnetic parameter. For 
high magnetic parameter, Dean Number and low curvature almost all 
the fluid particles strength are weak.

Daneshfaraz [4] did a numerical investigation of velocity profile 
and pressure distribution of 3-D bends with different diversion angles 
via CFD model. Reynolds number’s ranged from 100-900 and the 
diversion angles of bends were 90, 135, and 180 degrees with regard 
to inlet flow. The results showed that by increasing the section angle, 
the maximum velocity occurs at 0.7 to 0.9 of the pipe diameter from 
inner wall. By increasing the section angle, the pressure profile inclines 
to outer wall and in this inclination pressure loss is observed. For 
low Reynolds numbers, the variation of pressure loss is linear but by 
increasing the Reynolds number maximum pressure loss happens at 
limited section angle. 

Park [17] made a numerical study of core-annular flow in a curved 
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pipe using the volume-of-fluid method. He investigated two cases: 
core-annular flow in a 90° bend and in a 180° return bend. He made 
a detailed analysis for the velocities and pressures occurring in a 90° 
bend and in a 180° return bend. The secondary flows were found to 
play an important role in the behavior of core-annular flow in a curved 
pipe. The demonstrated the skewness in the velocity profiles, toward 
the outer wall, as well as the structure of secondary flow patterns in 
curved tube geometries.

In our study, the wall of the curved pipe is porous. The capacity of 
a porous medium for allowing fluid to penetrate is given by hydraulic 
conductivity of the porous medium. It is denoted as the permeability, k. 
A characteristic property of porous media is the Porosity, ϕ, which is a 
macroscopic property which rely on the permeability in a consolidated 
medium. It is defined as the ratio of the volume of the void space in the 
medium, vvoid and the total volume of the medium, vtotal.

[ ] 0,1void

total

V
V

ϕ ϕ=  .

The flow in porous media can be categorized as either pre-Darcy 
flow, Darcy flow, Forchheimer flow or turbulent flow when the 
continuum approach is applied to the porous matrix. The demarcation 
parameter between the regions is the Reynolds number. According to 
Sobieski and Trykozko [20] most authors put the upper limit of the 
applicability of Darcy’s law between Re=1and Re=10 Darcy’s law was 
formulated by Henry Darcy in 1856 based on his observations on 
the public water supply at Dijon and experiments on the steady-state 
unidirectional flow. It describes a linear relationship between flow rate 
and applied pressure. The law can also be derived from a spatial average 
of Stoke’s equation.

Qu A=

Where u is Darcy or filtration velocity defined as Qu A=  and k is 
the permeability. Q is the volumetric flow rate, and has units of (m3/s). 
A is the cross section of the porous media orthogonal to the flow. Darcy 
velocity, u, is related to the actual velocity, u, by the relation.

u=ϕu

Which means that Darcy velocity is smaller than actual velocity by 
a factor ϕ.

Thus
ku pϕ = − ∇
µ

Darcy’s law applies only to the cases where the flow through pores 
of a porous medium can be modeled as stokes flow. The law forms a 
basis for modeling fluid transport in porous media. In applications 
where fluid velocities are low, Darcy’s law well describes the fluid 
transport in porous media but where the fluid velocities are high, 
the fluid transport predicted by Darcy’s law usually departs from 
measurements considerably.

While the idea of using porous materials in irrigation by burying 
clay pots near the roots or, later using clay pipes, is very old, a pioneer 
paper on the subject of use of porous pipes in irrigation which described 
use of canvas hoses to deliver water to the ground was by Robey [19]. 
Fasano and Farina [9] mentions more recent technical studies in this 
area and also appreciates that this technique is today used to such a 
large extent that periodic international conferences are held. 

Porous flow dates back to 1856 when Darcy described empirically 
the relation between the hydraulic gradient, I, and the discharge 

velocity, v, through porous sands and sandstones as V=Ki where k is 
the permeability coefficient (m/s). These expressions have later been 
referred to as the Darcy law. It applies to the laminar flow case without 
convective inertia forces i.e., creeping flow. 

Labecki et al. [13] developed a model in which the lumen and 
shell sides of a fibre bundle are treated as two interpenetrating 
porous regions. Darcy’s law and fluid continuity were combined to 
give a set of two dimensional partial differential equations governing 
the hydrodynamics within hollow-fibre membrane devices. The 
computational domain corresponded to the real dimensions of a 
hollow-fibre cartridge and hence macroscopic radial gradients, which 
exist during some operations, could be taken into account. Effects 
of fibre expansion under wet conditions were included. Closed shell 
mode, dead end and cross-flow filtration as well as counter-current and 
co-current contacting configurations were analysed. The effects of the 
membrane and shell-side hydraulic permeabilities on the volumetric 
flow rates and spatial flow distribution were investigated and the 
predictions were compared with those of one-dimensional models 
based on the Krogh cylinder approximation. 

Erdoğan and Imrak [7] theoretically considered a fully developed 
laminar flow of an incompressible viscous fluid through a porous pipe 
with suction and injection. They gave an exact solution of the Navier-
Stokes equation. Their study found that the flow properties depend 
on the cross-Reynolds number. For large values of the cross-Reynolds 
number, the flow near the region of the suction shows a boundary 
layer character. The velocity and vorticity vary sharply in this region. 
Outside the boundary layer, the velocity and the vorticity do not show 
an appreciable change.

Brown and Lai [2] conducted experiments to measure the 
permeability and slip coefficient of seven porous tubes made 
from fiberglass and nylon nettings with various wall thicknesses. 
Permeability’s in both the longitudinal and radial directions were found 
to depend on the material but the radial permeability also depends on 
wall thickness. The slip coefficient was found to depend on the material, 
Reynolds number, permeabilities and wall thickness.

Nabotavi et al. [15] simulated fluid flow in three-dimensional 
random fibrous media using the lattice Boltzman method. They 
determined the permeability of the medium using the Darcy law across 
a wide range of void fractions (0.08 ≤ k ≤ 0.99) and found that the values 
for the permeability that they obtained were consistent with available 
experimental data. They used the numerical data to develop a semi-
empirical constitutive model for the permeability of fibrous media as 
a function of their porosity and of the fibre diameter. They performed 
further simulations to determine the impact of the curvature and aspect 
ratio (length to diameter ratio of straight cylindrical fibres of finite 
length) of the fibres on the permeability and found that curvature has a 
negligible effect, and that aspect ratio is only important for fibres with 
aspect ratio smaller than 6:1, in which case the permeability increases 
with increasing aspect ratio. They finally numerically calculated the 
permeability tensor for the fibrous media studied and confirmed that, for 
an isotropic medium, the permeability tensor reduces to a scalar value.

Fasano and Farina [9] in their study that sought to design irrigation 
pipes applied the fundamental laws of dynamics of fluids in a pipe 
(Navier stokes equations) and through porous media (Darcy’s law) in 
incompressible laminar flow through hollow fibers with porous walls 
in a dead end configuration. One of the key points was to obtain at 
the far end of the pipe a water delivery rate similar to the one close 
to the inlet. They exploited the smallness of the ratio ∈ between the 
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radius and the length of the pipe to expand all the relevant quantities 
in power of ∈ in the upscaling procedure. They coupled the flow in the 
pipe and the flow across the wall by use of the boundary conditions 
in the inner wall. The velocity profiles for the longitudinal and for the 
cross-flow were analytically determined. The explicit expression of the 
permeability of the system was then determined.

From the literature flows in curved pipes have mainly been 
characterized by dean number and curvature ratio and also Wimberley 
number in case of pulsate flows. The dean number, 

1
2D Reδ= , combines 

both Re and δ such that the effect of δ on flow cannot be independently 
determined. Furthermore, none of these studies has coupled the flow 
in a curved pipe with the flow through the porous wall of the pipe for 
an unsteady and irrotational flow using numerical methods. This study 
is going to couple the flow in a curved pipe and the flow through the 
pipe’s porous wall in determining the effect of curvature, δ(0,1), and 
the effect of Reynold’s number on velocity through the porous wall of 
a pipe with cylindrical cross-section using numerical methods for an 
unsteady, irrotational and incompressible flow.

Governing Equations
Equation of continuity

The equation of continuity (mass conservation equation) is derived 
from the law of conservation of mass. If a given fluid mass is followed 
as it flows its mass will remain unchanged if no nuclear reactions are 
taking place. The continuity equation for an incompressible fluid in the 
pipe is given by

( ) ( ) 0i
i

u
t x
ρ∂ ∂
+ =

∂ ∂

Where i=1,2,3 along the x, y  and z directions respectively. For 
a curved pipe the equation was written in toroidal coordinates. 
The curved pipe would form a torus with a radius R and toroidal 
coordinates (r, α, θ). The toroidal coordinate system belongs to the 
orthogonal curvilinear coordinates group. The continuity equation has 
been derived in toroidal coordinates from the Navier-Stokes equation 
in Verkaik [22] following orthogonal curvilinear coordinates (Figure 1).

The distance covered by a fluid particle from the entry point into 
the torus When θ=0 is given by Rθ. The continuity equation in toroidal 
coordinates becomes

 r r rv v 1 v 1 v v cos v sin 0
r r r R rcos R rcos

α θ α∂ ∂ ∂ α − α
+ + + + =

∂ ∂α + α ∂θ + α
	              (1)

Where Vr, Vα and Vθ are the velocities in the radial, circumferential 
and axial direction respectively in the main pipe θ is curvature angle 
of the curved pipe and α is the angle of a liquid particle located in the 
cross-section of the pipe. 

The continuity equation across the porous wall will be written in 
cylindrical coordinates

r ru u 1 u u 0
r r r

α θ∂ ∂ ∂
+ + + =

∂ ∂α ∂θ
 			                  (2) 

Equation of momentum

The principle of conservation of momentum applies Newton’s law 
of motion to an element of the fluid. Newton’s second law of motion 
states that the rate of change of momentum of a body is equal to the 
resultant forces acting on the body. The external forces that act on the 
fluid are either body forces that act at a distance on a fluid particle or 
surface forces due to direct contact of a fluid with other fluid particles 
or walls of the boundary. The Navier-Stokes equation momentum 
equation is given in tensor form as 

j j ij
k j

k i

u u
u f

t x x
∂ ∂ ∂σ

ρ + ρ = + ρ
∂ ∂ ∂

 

The terms ju
t

ρ
∂
∂

and j
k

k

u
u

x
ρ

∂
∂

give the local acceleration and 

convective acceleration respectively. The local acceleration represents 
the change in velocity with time at any point in space while the 
convective acceleration represents the change in velocity due to the 
fact that a given fluid element changes position with time and therefore 
assumes different values of velocity as it flows even in steady flows. 

The terms ij

ix
σ∂
∂

 and pfj are the forces due to surface shear stress and 

due to body forces respectively. The body forces that act on the fluid 
under consideration are force due to gravity and centrifugal force due 
to curvature of the pipe, Masud et al. [14]. 

The derivation has been shown in Verkaik [22].The equations are:

Radial Momentum

( )

( )

2 2
r r r r

r

2 2 2
r r r r r

22 2 2 2 2 2

r r

θ
2

v v v v v v cos v v 1 pv
t r r r R rcos R rcosα r

v 1 v v 1 v 2 v 1 vυ
r r r r r r R rcos

1 v sin v v sincos
R rcos r r r

υ
2sin v co

R rcos

α α θ θ

α

α

∂ ∂ ∂ α ∂ ∂
+ + − − + = − +

∂ ∂ ∂α + α + ∂θ ρ ∂

 ∂ ∂ ∂ ∂ ∂ + − + − + + 
∂ ∂ ∂α ∂α ∂θ+ α  

∂ α ∂ α α − + + + α ∂ ∂α 
α ∂

−
∂θ+ α ( )

[ ]r2

s v cos v sin
R rcos

α

 
 
 
 α α − α
 + α 

 	               (3)

Axial momentum
( )

( ) ( )

( )

rα
r

2 2 2

2 22 2 2 2

r
2

v v cos v sinv v v v v v 1 R pv
t r r R rcosα R rcos R rcos

v v v v1 1
r r R rcos R rcos

v v v v1 1 sin 2cos cos sin
r r R rcos r r R rcos

θ θ αθ θ θ θ

θ θ θ θ

θ θ θ

α − α∂ ∂ ∂ ∂ ∂
+ + + + = +

∂ ∂ ∂α + ∂θ + α ρ + α ∂θ

 ∂ ∂ ∂ υ + + − + ∂ ∂α ∂θ+ α + α  

∂ ∂ ∂ ∂α υ + α − + α − ∂ + α ∂ ∂α ∂θ  + α

vα
 ∂  α  ∂θ   

    (4)

Circumferential momentum

( )

( ) ( )

2
r

r

2 2 2
r

22 2 2 2 2 2

r
2 2

v v v v v v v v v sin 1 pv
t r r r R rcos R rcos r

v v v v vv1 1 2 1
r r r r r r R rcos

v v vvcos sin 1 2sin
r R rcos r rR rcos R rcos

α α α α α θ α θ

α α α α α

α α θ

∂ ∂ ∂ ∂ α ∂
+ + + + + = +

∂ ∂ ∂α + α ∂θ + α ρ ∂α

 ∂ ∂ ∂ ∂∂ υ + − + − + + ∂ ∂ ∂α ∂α ∂θ+ α  
∂ ∂ ∂α α α − + + ∂ + α ∂α + α + α

υ

( )
[ ]r2

sin v cos v sin
R rcos α

 
+ ∂θ 

 
α α − α

 + α 

    (5)

O 
 

   

 

Figure 1: Three dimensional curved pipe.
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Darcy law 

The Darcy law governs the flow through the porous wall. It 
describes a linear relationship between flow rate and applied pressure. 
In vectoral form, this relation reads as 

( ) ( )s

k p
i

= ∇
µ

u

Where (u)s is the superficial velocity through the porous wall, ∇p 
the applied intrinsic pressure gradient and k is the permeability which 
can be experimentary determined by applying a constant pressure 
gradient and measuring the flow rate Q=A.(u)s through a given cross 
sectional area. The superficial velocity is related to the intrinsic velocity 
by (u)s=ϕ(u)i. The equation can be rewritten as

( ) ( )i

k p
i

φ = ∇
µ

u 				                 (6)

The Darcy or creeping flow regime is valid for the Reynolds number 
Re <10, Khayamyan and Lundstrom [12], where Re is based on pore 
diameter i.e.,

dvRe ρ
=

µ
Mathematical Model
Approximations and assumptions 

For an irrational flow, the velocity in the circumferential direction 
equals zero (Vα=0), the momentum equation and all derivatives in 

α-direction 0∂ = ∂α 
 will be omitted. The coordinates will reduce 

to only axial and radial. For a fully developed flow all derivatives in 

θdirection are zero 0∂ = ∂θ 
. This does not hold for the driving force p∂

∂θ
.

Equation (5) reduces to zero while eqns. (1-4) reduces to (7-10), 
respectively as shown below continuity equation in the main pipe.

r r rv v v cos 0
r r R rcos

∂ α
+ + =

∂ + α
 			                 (7)

Continuity equation in the pipe wall 

r ru u 0
r r

∂
+ =

∂
 				                  (8)

The momentum equations reduces to

Radial momentum 

( )
[ ]

2 2
r r r r r

r 2 2

r
r2

v cosv v v v v1 p 1v
t r R rcos r r r r r

v1 coscos v cos
R rcos r R rcos

θ  α∂ ∂ ∂ ∂∂
+ − = − + υ + − + ∂ ∂ + α ρ ∂ ∂ ∂ 

 ∂ α α − α  + α ∂υ   + α 
 
 

    (9)

Axial momentum

( )

2
r

r 22

v v v v cos v v1 R pv υ
t r R rcos R rcos r R rcos

v v1 1 cos 
r r R rcos r

θ θ θ θ θ

θ θ

 ∂ ∂ α ∂∂  + + = + − + ∂ ∂ + α ρ + α ∂θ ∂ + α  

∂ ∂ υ + α ∂ + α ∂ 

  (10)

Scaling variables 

In this study the non-dimensionalisation process is based on the 
following sets of scaling variables and the non-dimensional parameters.

* * * * * *r r
r r 2

vu vr Ut pr , t , u , v , v , p
a a U U U U

θ
θ= = = = = =

ρ
  (11)

Where the asterisk represents the dimensionless quantities.

Non-dimensionalisation

Non-dimensionalisation allows us to reduce the number of 
variables that affect a given physical phenomena. The motivation of 
the transformation into dimensionless form is to make generalization 
of the results of either theoretical or experimental investigations 
possible and also to enable modeling by using similarity criteria that 
determine the actual conditions of the problem. If the non-dimensional 
parameters are the same for two geometrically similar situations, then 
the equations of the non-dimensional variables are the same. Hence, 
they have the same solutions and the same flow patterns. We use the 
scaling variables given above and non-dimensional parameters to non-
dimensionalise the equations governing the flow.

Continuity equation
cos 0

1 cos
r r rv v v

r r r
δ α
δ α

∂
+ + =

∂ +
Which can also be written as

( )rrBv 0
r
∂

=
∂

 		                 (12)

Where B=1+δrcosα

Radial momentum equation 
2

r r
r

2 2
r r r r

r2 2 2

v cosv vv
t r

v v v vp 1 1 coscos v cos
r Re r r r B r B

B

r

θ α∂∂ ∂
+ − =

∂ ∂
 ∂ ∂ ∂∂ δ δ α

− + + − + α − α ∂ ∂ ∂ ∂ 
Since

2 2
r r r

r
v v cos vv 0
r rB

δ∂ α
+ + =

∂
The equation can also be written as

( )2 2r
r

2
r r

r2 2

v 1 rBv rcos v
t rB r

v vp 1 1 cosrB v cos
r Re rB r r r B

θ

∂ ∂ + − δ α = ∂ ∂ 
  ∂ ∂ ∂ δ α − + − − α   ∂ ∂ ∂   

                   (13)

Axial momentum equation

r
r

2 2

2 2

v v v v cos pv
t r

v v v v1 1 cos
Re r r r r

B B

B B

δ δ

δ δ

θ θ θ

θ θ θ θ

∂ ∂ α ∂
+ + = +

∂ ∂ ∂θ
 ∂ ∂ ∂

− + + α ∂ ∂ ∂ 

Since
r rr v v v cosvv 0

r r
v

B
θ θ

θ
δ α∂

+ + =
∂

The equation can also be written as

( )r r

2

2

v 1 rBv rv cos
t rB r

v vp 1 1 rB
Re rB r r B

v v

B

θ
θ θ

θ θδ
θ

∂ ∂ + + δ α = ∂ ∂ 
  ∂  δ∂ ∂  − + −   ∂ ∂ ∂   

   	                               (14)
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To simplify the problem further the assumption that the pressure 
is constant over a cross-section because of comparatively small radial 
component of flow is made 

θ∂
∂p is independent of θ hence a constant. 

Assuming that the flow along the pipe is symmetrical, then, in the plane 
of symmetry α=0, π and, cos α= ± 1. Taking the positive cosine we have

( )2 2r
r

2 2
r r r r r

2 2 2

v 1 rBv rv A
t rB r

v v v v v1 1
Re r r r r B r B

θ

∂ ∂ + − δ = − + ∂ ∂ 
 ∂ ∂ ∂ δδ

+ − + − ∂ ∂ ∂ 

 		              (15)

( )r r

2 2

2 2

v 1 rBv v rv v D
t rB r B

v v v v1 1
Re r r r B r B

θ
θ θ

θ θ θ θ

∂ ∂ δ + + δ = − + ∂ ∂ 
 ∂ ∂ ∂ δδ

+ + − ∂ ∂ ∂ 

 	             (16)

From our assumption of fully developed flow Vθ is a constant hence 
only the momentum eqn. (15) will be solved. 

Flow through the porous wall

The seeping water flows radially through the porous pipe. The 
water that radially gets to the inner pipe wall then flows through the 
pores that open up in the outer wall. We are going to use boundary 
conditions to connect the flow in the main pipe and the flow through 
the porous wall i.e., at the inner boundary ur=ϕ vr.

The centerline of the pipe is assumed to lie on the arc of a circle of 
radius N so that torsion effects are neglected. The flow is assumed to be 
symmetrical about the center line, the porous material is considered 
homogenous and isotropic and there is no buildup of particles on the 
surface or within the porous wall (Figure 2).

We non-dimensionalise the Darcy law by taking 
2

kDa
a

= and 
aURe ρ

=
µ

 to get

m
r

p1u DaRe
rφ

∂
= −

∂
 				                 (17)

Equation of pressure

From Darcy’s law, there is a linear relationship between pressure 
and velocity. Substituting eqn. (17) in continuity equation (8) we get 

m mp p1 1 1DaRe DaRe 0
r r r rφ φ
   ∂ ∂∂
− + − =   ∂ ∂ ∂   

Rearranging
2

m m
2

p 1 p 0
r r r

∂ ∂
+ =

∂ ∂
				                  (18)

Eqn. (18) was used in solving eqn. (17).

Results and Discussion
Unsteady laminar flow for viscous incompressible fluid (water) 

has been numerically analyzed under low pressure gradient force for 
a range of curvature and Reynold’s number. The method of finite 
differences has been used.

Radial velocity in the main pipe with varying curvature

In solving eqn. (15) the pressure and axial velocity of the flow were 
held constant with pressure A=-0.18 and axial velocity vθ=1. The values 
of radial velocity vr were plotted against radius 0≤ r≤ 1 for varying 
curvature ratio δ. The graph shown in Figure 3 was obtained.

In Figure 3, positive values for the radial velocity mean a flow 
direction towards the center while negative values mean a flow direction 
away from the center towards the wall. The flow is forced outwards 
in a large region near the center and moves inwards in a small region 
near the wall. This secondary flow which is perpendicular to the mean 
flow is due to the pipe’s curvature which induces a centrifugal force 
proportional to the flow speed squared. Thus, the flow is accelerated 
outwards near the center where its speed is high and inwards where the 
speed is low due to fulfillment of continuity. 

Notice that due to the porosity of the wall the velocity does not go 
to zero at the inner wall. Since the continuity equation has to fulfilled, 
and the mass flow out through the porous wall is small, the flow velocity 
is high in the small area where it moves inwards. From the Figure 3 
the velocity profiles are similar for different curvature ratios. Although 
the velocity profiles are similar, an increase in curvature leads to an 
increase in radial velocity in the main pipe flow (Figure 4).

Nobari and Amani (2009) obtained streamlines and velocity field 
at different Sections, Reynolds’s number and curvature ratios. We 
consider their results at the section θ=94.5 as shown in Figure 5 to be 
fully developed and compare with our results. Like in our study, θ in 
this study is the axial direction. The length of the vectors is proportional 
to the magnitude of the flow. These results compare favorably with our 
findings. 

Our results compare well with the study by Park [17] about single 
phase flow in 90° bend at different cross-sections of a pipe for different 

Outer wall 
Inner wall 

Centre line 

N(Inner radius) 

H(Outer radius) 

Figure 2: Dimensions of the porous pipe.
Figure 3: Radial velocity against radius in the main pipe flow with varying 
curvature.



Citation: Mwangi DM, Karanja S, Kimathi M (2017) Numerical Investigation of the Effect of Curvature and Reynold’s Number to Radial Velocity in a 
Curved Porous Pipe. J Appl Computat Math 6: 363. doi: 10.4172/2168-9679.1000363

Page 7 of 8

Volume 6 • Issue 3 • 1000363J Appl Computat Math, an open access journal
ISSN: 2168-9679 

Reynolds numbers at α=90°. The radial velocity profile is similar to 
our results the only difference being the velocity at the wall. The radial 
velocity at the wall in Park’s study goes to zero because the pipe was not 
porous. In our case the wall is porous hence the radial velocity at the 
inner pipe wall is non-zero due to continuity.

Radial velocity through the porous wall of the pipe with 
varying curvature

In solving eqn. (17) the flow through the porous wall is coupled 
with the flow in the main pipe. The constants used in the equation 
were Darcy number Da=10-7, porosity ϕ=0.4 and porous membrane 
pressure pm=-0.18. 

We used the velocities at the inner pipe wall which marks the 
boundary between the main flow and the porous media flow as the 
initial conditions for the radial velocity through the porous pipe wall 
ur i.e., the velocity at r=1 in Figure 3 become starting velocity for the 
flow through the porous wall in Figure 4. Different curvature ratios 
were used for the same Reynolds’s number and the results recorded in 
a graph as shown in Figure 4.

We have already seen that higher curvature values are associated 
with higher radial velocities in the main pipe flow from Figure 3. 
However, this is not the case in the porous medium. The results in Figure 
4 show that for different boundary conditions at the inner pipe wall, the 

velocity profiles for different values of curvature are seen to converge 
after a very short distance from the inner wall. This means that again, 
the flow through the porous wall was coupled with the flow in the main 
pipe. To achieve this, eqn. (17) were solved boundary conditions at the 
inner pipe wall have a negligible effect on the magnitude of velocity 
through the porous wall. Curvature ratio affects the flow in the main 
pipe, but negligibly so in the porous wall. 

The findings of Nabotavi [15] allow us to hold Da constant for 
varying curvature values as we have done in our study. He showed that 
the effect of curvature on permeability of a fiber in a fibrous medium 
has no effect on the overall permeability of the medium by replacing 
straight fibers with randomly curved fibers as the constituting elements 
of porous medium.

Radial velocity through the porous wall of the pipe with 
varying Reynolds’s number

The Reynold’s numbers in the two flow regimes i.e., the Navier-
Stokes flow in the main flow of the pipe and the Darcy flow through the 
pipe’s wall are chosen differently. First eqn. (15) was solved by choosing 
Re=1800 and constant curvature ratio. At the chosen Re, the flow is 
still well within the laminar range. The other constants used were as 
in (a). Again, the flow through the porous wall was coupled with the 
flow in the main pipe. To achieve this, equation (17) was solved with 
the Re being varied. The constants used were as in (b). We used the 
velocity at the inner pipe wall which marks the boundary between the 
main flow and the porous media flow as the initial condition for the 
radial velocity through the porous pipe wall ur i.e., the velocity at r=1 in 
Figure 6 become starting velocity for the flow through the porous wall 
in Figure 7. The results were recorded in a graph as shown in Figure 7.

The velocity profiles for the different Re in the porous medium are 
similar in shape but different in magnitude. The velocities decrease 
sharply from the inner pipe wall within a very short distance into the 
wall and then decreases gradually to near zero further away from the 
inner pipe wall towards the outer wall. In the porous wall the radius of 
the pores in the pore scale have very small radius. The no slip condition 
is obeyed at the wall of the fiber (if we view the pores as a network of 
fibers, each opening from the inner wall to the outer wall).

The velocity of a fluid increases with distance from the walls of the 
pipe. If the radius of the pipe is very small like the radius of the pore 
in the pore scale the maximum velocity attained will also be small. 

Figure 4: Radial velocity against radius through the pipe’s porous wall with 
varying curvature.

 = 0.14  

= 900  

= 94.5 

Figure 5: Streamlines (upper half) and velocity b field of secondary flow (lower 
half) at θ=94.5. 

Figure 6: Radial velocity against radius in the main pipe at Re=1800.



Citation: Mwangi DM, Karanja S, Kimathi M (2017) Numerical Investigation of the Effect of Curvature and Reynold’s Number to Radial Velocity in a 
Curved Porous Pipe. J Appl Computat Math 6: 363. doi: 10.4172/2168-9679.1000363

Page 8 of 8

Volume 6 • Issue 3 • 1000363J Appl Computat Math, an open access journal
ISSN: 2168-9679 

Figure 7: Radial velocity against radius in the main pipe at 1.5 ≤ Re ≤ 2.1.

This explains the drastic reduction in velocity from the inner pipe wall 
to the outer one. In other words, viscous forces are dominant in the 
flow through the porous wall, due to the small diameter of the pores 
hence the reduction in the velocity. At a higher Re the velocity through 
the porous wall is also higher. If we take the difference in Re in the 
porous medium to be due to difference in the pore radius, then, the 
flow velocity is higher in the flow with a higher Re through the porous 
medium.

From the results we were able to look at the effect of Re and δ in a 
curved pipe independently of each other as opposed to most studies where 
the two parameters are combined together in the Dean number. We have 
gone ahead and coupled the flow in the main pipe and its porous wall by 
use of the wall boundary conditions and looked at the effect of the two 
parameters on the flow through the porous wall of a curved pipe.

Conclusions
The objective of this study was to determine the effect of curvature 

and Reynolds number on the radial velocity in a curved porous pipe and 
also come up with equation of pressure. Coming up with the equation of 
pressure across the porous wall was a necessary step in obtaining radial 
velocity profile across the porous wall. The equation was obtaining by 
using the linear relationship between velocity and pressure as given 
in Darcy and the continuity equation. In determining the effect of 
curvature and the Reynolds number, we coupled the equations of flow 
in the main pipe and the porous wall. Due to continuity, the velocity at 
the inner pipe wall became the velocity boundary condition for the flow 
through the porous wall. 

From the velocity profiles obtained, the following conclusions are 
drawn:

1.	 Increase in curvature ratio leads to increase in radial velocity 
in the main pipe

2.	 Variation of curvature has negligible effect on the radial 
velocity through the porous wall. Taking this finding to porous 
pipe irrigation, it means that even if the porous pipe being used 
needs to be curved depending on the orientation of the crops 
on the ground, the crops lying along a straight and those lying 
along the curve will be watered uniformly. 

3.	 An increase in Reynolds’s number in the porous media leads 
to increase in radial velocity across the wall of the porous pipe 

for the same initial condition at the inner pipe wall. In the 
case of water used during irrigation, it means that if we hold 
the density, viscosity and radius of the main pipe constant, an 
increase in Re in the porous medium lead to higher velocity 
through the porous wall which in turn leads to higher volume 
of water wetting the soil. Less time would then be required to 
wet the soil with a specified volume of water when Re is high as 
compared to when it is low.  
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