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Introduction
Coronary artery disease (CAD), one of the major causes of death 

worldwide, is characterized by atherosclerosis in the left and right 
coronary arteries in which atherosclerotic plaques reduce the space 
of the lumen of the coronary arteries. It is believed that the notable 
elements at the early states of coronary heart diseases are associated 
with critical flow conditions resulting from arterial stenosis. These 
flow conditions are flow segregation, high wall shear stress and wall 
densification. Over the last few decades, development of surgical 
treatments for cardiovascular diseases has been done constantly. The 
best treatment for an individual patient is usually determined based 
on the underlying problems, where and how severe the patient’s 
blockages are, and the future risks. For instance, medications such 
as calcium channel blockers, beta blockers, nitrates, aspirin, or 
cholesterol-lowering drugs (statins), when atherosclerosis is identified 
at an early stage, may be prescribed to ease its symptoms. For patients 
with severe stenosis, a common treatment for the blocked arteries is 
by the use of a coronary artery bypass grafting (CABG) where a new 
path for blood to flow around (bypass) the blockage in the artery is 
created. For some patients, minimal invasive coronary artery surgery 
such as coronary balloon angioplasty and stenting is an alternative to 
the CABG surgery. Although a substantial number of saphenous-vein 
bypass grafts are implanted globally annually, 25% of the bypass grafts 
collapse within a year and up to 50% fail within a decade after surgery. 
These indicate that existing treatments are still inappropriate for the 
cardiovascular disease. Currently, it has been confessed that one of 
the most significant detection in a successful bypass operation is the 
information of the rheological manner of human blood, the pressure 
distribution, the flow rate and the wall shear stress in the stenosis artery 
which is deformed in a cardiac cycles of a heart pump. A significant 
number of in-vivo and vitro experimental models have been conducted 
in order to comprehend the pathogenesis of coronary artery diseases.

In the work of Pijlss team [1], a theoretical model for the 
coronary circulation was developed, a set of equations to determine 
relative maximum flow of both the myocardium and the epicardial 
coronary artery was derived, and the animal model in which five 

dogs were thoroughly instrumented with an epicardial coronary 
Doppler transducer. The results showed that the method had potential 
applications for making a difference in the functional severity or degree 
of coronary artery stenoses and for evaluating collateral flow that is 
feasible during coronary occlusion. Jie et al. [2] developed a vitro 
experiment using a curved stenosis hydrogel model to approximate 
the coronary disease situation. The flow experiment was performed to 
inspect the relationship between the fluid flow and the malformation 
of stenosis in the coronary arteries. Tiari et al. [3] proposed an 
experimental model to measure the pressure drop in an elastic tube 
with mechanical characteristics comparable to a coronary artery with 
single and double stenosis. The degree of stenosis was elevated in seven 
steps. The results indicated that an increase of stenosis severity led to 
moderate increase in pressure drop. Zafar et al. [4] measured the blood 
flow rate and velocity in coronary artery stenosis using intracoronary 
frequency domain optical coherence tomography (FDOCT), and 
validated against the fractional flow reverse (FFR). They found that the 
FD-OCT is a helpful tool in the assessment of CAD. Due to difficulties 
in establishing the conditions of the critical flow for the in-vivo and 
vitro experimental models, the dynamical mechanism underlying is 
not as well understood accurately. On the other side, mathematical 
models and numerical simulations can conduct to better understanding 
of the circumstance involved in the pathogenesis of the CAD. Thus, 
over the last few decades, a great number of mathematical models and 
numerical techniques have been proposed to analyze the rheological 
manner of blood in the small vessels subjected to the assumption that 
blood behaves as an incompressible Newtonian fluid.
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Abstract
In this paper, we propose a mathematical model of turbulence flow of fluid through a deformable channel to study 

the pulsatile blood flow in the coronary system with arterial stenosis. Blood is assumed to be an incompressible non-
Newtonian fluid and its motion is considered as turbulent and modelled by the mass and momentum conservations with 
turbulent mixing energy and specific dissipation rate. The mechanical deformation of the arterial wall is modelled by a 
hyperelastic differential equation. The pulsatile behaviour during each heartbeat is assigned on the entrance and exit 
boundaries. Numerical simulation based on the Finite Element method for the solution of arterial wall deformation, and 
the Arbitrary Lagrangian Eulerian Finite Volume method for the turbulence fluid-flow solution is used to investigate the 
effect of stenosis severity at the proximal part of the left anterior descending artery on the blood velocity, the pressure 
distribution and the wall shear stresses along the flow direction.
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In the human systemic circulatory system, heart is one of the most 
important parts. The blood circulatory process starts with pushing 
pulsatile blood through the thousands of arteries and veins by the heart 
which normally contracts and relaxes about 70 times per minute. It 
is widely recognized that pulsatile condition in the coronary system 
and the arterial wall deformation have an important impact on the flow 
field of blood. Thus, the study of pulsatile blood flow in the deformable 
arteries has challenged research in this area. However, some studies 
illustrate the fluid flow without taking into consideration of the 
displacement of the arterial wall, while some others focus only on the 
behaviour of the structure [5-10]. Several studies have concentrated on 
the coupled fluid flow- wall deformation problem [11,12]. Chahboune 
and Crolet [11] proposed a 2D mathematical model, and J-F Gerbeau 
[12] developed a 3D mathematical model of the fluid-structure 
interaction flow in an artery with wall movement in the cardiac cycle. 
Numerical simulation based on Finite Element method was carried 
out. Bertolotti et al. [13] studied three-dimensional transient flows of 
fluid through coronary arterial bypass grafting using the inflow rates 
obtained from in vivo measurements in patients who had gone through 
coronary bypass surgery a few days before. The interplay between the 
fluid flows and the graft has been investigated. The results showed the 
phase inflow difference that can partly be responsible for specific flow 
phenomena: jet membrane deflection or feedback effect that seeds the 
undulating of the post-stenotic jet during the cardiac cycle. In 2005, 
Gerbeau, Vidrascu and Frey presented a mathematical model and a 
numerical algorithm to investigate the fluid-structure interaction in 
large-deformable compliant vessels. However, the biological effect and 
interpretation of the results were not given [12]. In general, there is 
a common agreement between experimental model and mathematical 
model on the patterns of pressure and flow waves in the coronary 
arteries under normal conditions and in severity of stenosis. This 
agreement is in a linear fashion with respect to pulsatile pressure-
flow relationship. High pressure gradient leading to the compression 
of altheroscerotic plaque plays an essential role in the development 
of atheroscrerotic plaque rupture and subsequent thrombosis or 
distal embolization. Blood may flow with high speed through the 
narrowed area of artery stenosis. The presence of a stenosis in the 
artery greatly increases the possibility of turbulence in the blood flow 
[14,15]. Since moderate and severe arterial stenoses can produce 
highly disturbed flow regions with transitional and or turbulent flow 
characteristics, many turbulence models tackling the turbulent case in 
the transition domain of the fluid flow have been proposed. However, 
only two standard turbulent models which are the two-equation k-ε 
turbulence model and the k-ω model are widely used to analyse the 
turbulent blood flow. Compared to the k-ε model, the k- model has 
better quality and quantity in corresponding to experiment because it 
can predict the turbulence length scale near the walls in which there 
is the presence of adverse pressure gradient. For example, Ghalichi et 
al. analyzed the turbulent flow distal to an arterial stenosis with 50%, 
75% and 86% reductions in cross-sectional area [16] using the Wilcox 
low-Re turbulence model [17]. The results of velocity profile, vortex 
length, wall shear stress, wall static pressure, and turbulence intensity 
were compared with experimental measurements. Recently, the fluid-
structure interaction (FSI) approach has been adopted to depict the 
flow of blood in a hyper-elastic vessel [12,18,19]. However, none of 
the existing models seems to be completely satisfactory for all kinds of 
flow regimens, and the turbulent effect on non-Newtonian behaviour 
of blood flow have still not been investigated in combination with the 
deformable vessel structure.

In this study, we developed a mathematical model of the turbulent 

blood flow in the coronary system of elastic arteries with stenosis. Blood 
is assumed as an incompressible non-Newtonian fluid and the arterial 
wall is modelled as a hyper-elastic material. Three different severity of 
arterial stenosis 25%, 50%, and 75% are set up at the proximal part of the 
left anterior descending artery (LAD). Numerical simulations based on 
the Finite Element method, and Arbitrary Lagrangian Eulerian (ALE) 
Finite Volume method are carried out to study the blood flow behaviour 
in the deformable coronary arteries with a proximal LAD stenosis with 
various degree severity. The rest of this paper is organized as follows. 
In the following sections, we present a boundary value problem to 
describe the turbulence blood flow, the arterial wall deformation and 
the movement of the fluid mesh. In section 2, the governing equations 
of the turbulent blood flow in the deformable system of coronary 
arteries with stenosis are presented. In section 3, the underlying 
boundary value problem in two coordinate systems, i.e., the fixed mesh 
system (Eulerian frame) and the moving mesh system (Lagrangian 
frame) are formulated. The arterial wall deformation is computed on 
the Eulerian system whereas the turbulence fluid flow is obtained on 
the Lagrangian system. Sections 4 and 5 concern numerical algorithm 
and the validation study for evaluating the suitability of the proposed 
mathematical model. Section 6 concerns numerical investigations to 
study the velocity, the pressure and wall shear stress in the deformable 
system of coronary arteries having LAD with various stenosis. Finally, 
a conclusion is given in section 7.

Mathematical Model
In this paper, the fluid-structure interaction in the system of 

coronary arteries is modelled by using two coordinate systems, a fixed 
mesh system or the Eulerian frame  Ω(X,Y,Z) and a moving mesh 
system or the Lagrangian frame ΩL(x,y,z). The arterial wall displacement 
d(x,t) is computed in the Eulerian frame while the velocity field u(x,t), 
the pressure p(x,t) of blood, and the mesh velocity  Ψ(x,t) due to the 
movement of coordinate system are approximated numerically in a 
fully coupled manner through the use of the fluid-structure interface 
conditions.

Governing equations for turbulence blood flow

In this study, we assume that blood behaves as a non-Newtonian 
incompressible fluid, and its flow pattern is considered as the turbulence 
flow which is governed by the continuity equation, the Navier-Stokes 
equations, and the low Reynolds number K - ω turbulence model [20].
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where u,p,K and ω denote respectively the velocity, the pressure, 
the turbulence kinetic energy and the specific dissipation rate, is the 

blood density, ηt is the turbulence viscosity given by *=t
Kρη α
ω
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For the viscosity of the non-Newtonian fluid, Carreau model is 
adopted to ascertain the value of the viscosity η which depends on the 
value of the local stain-rate, i.e.,
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where η0, η∞, λ, n and a denote respectively the zero-shear viscosity, the 
infinite-shear viscosity, the relaxation time, the power-law index, and 
the shape parameter, and γ  represents the rate of deformation tensor. 
In this study we set η0=0.056 Pa⋅s, η∞=0.00345 Pa⋅s, n=0.3568, a=2 and 
λ=3.313 s. The other quantities in eqns. (3) and (4) are determined as 
follows [21]:
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The second terms on the RHS of eqns. (3) and (4) represent 
dissipations of K and ω depending on f1 and f2 which are calculated by [15]:
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Governing equations for the arterial wall deformation

In the arterial wall, about 70% to 80% intracellular and extracellular 
water is occupied, the arterial wall is then assumed to be an elastic 
body. During a cardiac cycle, shear rate varies in time and can be large 
near the wall. This leads to the deformation of the arterial wall whose 
dynamic can be modelled by the following equation:

2
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∂
d 				                     (5)

where ds denotes vector of wall displacement, ρs is the density of arterial 
wall tissue. The wall of coronary artery is considered to be a nonlinear 
hyper-elastic body, the term σs in (5) is then set as
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where  is the Green-Lagrange strain and W is a strain energy density 
potential. Here, a five-parameter hyper-elastic Mooney-Rivlin model 
is used [22]:
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with five Mooney Rivlin parameters are C10=0.3848, C01=-0.0891, 
C11=0.5118, C20=0.5109 and C02=0.4912.

Movement of the fluid mesh

Effective computation with deformable object can be achieved 
through the use of dynamic meshes. The mesh motion governing the 
fluid mesh position is based on the coordinate velocity, Ψ = (ψx,ψy,ψz) 
of the point xL of the system ΩLwhich varies in time. To ensure a 
pleasantly varying distribution of the nodes, we assume that the nodes 
on the internal arterial wall move with blood (no slip) and that the 
mesh velocity in the fluid channel is governed by a Laplaces equation:

2 = 0,∇ Ψ 					                      (6)

which gives the differential coordinates xL=(x,y,z) in the space time t 
for the fluid channel as
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where df is the displacement of fluid region at any time t.

Boundary and interface conditions

Since the heart beats periodically, the output of the heart has a 
characteristics of waves. To identify the boundary conditions for 
the turbulence fluid flow in the deformable vessel, we apply Fourier 
analysis to dissect the wave pattern in periodic cycles known as systole 
and diastole into sinusoidal component. The pulsatile characteristics 
of pressure and flow rate wave forms varying in different parts of the 
arterial system are given by

4
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where Q  and p  represent respectively the average flow rate and 
average pressure of blood, the angular frequency w is defined by 
w=2π/T with a cardiac period T=0.8 s, and all values of the parameters 
are given by B. Wiwatanapataphee et al. [23].

On the entry of the aorta (the inflow boundary), the pulsatile axial 
velocity is assumed to be

( )( ) = ,Q tU t
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					                   (8)

where A denotes area of the inflow surface where turbulent kinetic 
energy and turbulent dissipation rate ω are specified as
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for the mean flow speed = /U Q A  at the inflow surface with area A, 
the percentage of the turbulence intensity  and turbulence length scale 
L which are given by [24]:
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The outlet boundaries include ΓRCA and ΓLAD, and the boundary 
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condition is set to:

σ⋅n=-p(t)n 					                  (10)

The normal gradient of pressure field p is set to zero at the wall 

boundaries, i.e., = 0p∂
∂n

, the normal gradient of the fluid mesh velocity 

is set to be the same as the normal inlet velocity at the aorta inlet, 

=∂
⋅

∂
u n

n
Ψ  and zero potential, Ψ=0, is applied at all outlet boundaries. 

Another condition needs to be stated is that the fluid and mesh move 
with the same velocity on the interface between fluid channel and 
elastic body, i.e. displacement of the flow channel and solid must be 
compatible [11], traction must be at equilibrium [12], and fluid obeys 
the no-slip condition [13]:
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A simplified model (typically a one-equation ω-based model) for 
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where y+denotes the distance of the first point to wall, and βi=0.072 and 
* = 0.09.iβ

In summary, the turbulence blood flow in the deformable coronary 
arteries is governed by the following initial boundary value problem 
(IBVP).

IBVP: Find ds and u,p,K,ω and Ψ such that the above governing 
equations with associated boundary conditions are satisfied.

Numerical Formulation
The finite element formulation for arterial wall deformation

The weak formulation of system (5) is to find 1 3[ ( )]s H∈ Ωd  in the fixed 
mesh system such that the essential boundary condition is satisfied and 
that for the test function 1 3 1 3
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We discretise the computational domain of arterial wall into a 
finite number of elements with M nodes. The problem (15) is posed 
into M -dimensional subspace.
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which can be expressed in matrix form as
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where D=(d1, d2,…, dM)T with di=(dx dy dz)
T being the displacement 

vector at the i th node. The coefficient matrix Md and the load vector F 
are derived in the Galerkin Finite Element formulation (16).

The ALE finite volume formulation for the turbulence fluid 
flow

 The weak formulation of the turbulence blood flow is to find 
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where  , , , ,tt ψφ φ φ φ φ  are test functions.

The ALE technique is employed for the solution of the weak formula 
(18-22) which are constructed on the Lagrangian frame, but are solved 
on the Eulerian frame or spatially fixed system. Thus, computation is 
conducted by a transformation between two coordinate systems.
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be the transformation mapping the deformed coordinates to the fixed 
coordinates. The spatial relationship between two coordinate systems 
is determined by

= ,

x x x
X Y Zdx dX dX
y y ydy dY dY
X Y Z

dz dZ dZz z z
X Y Z

∂ ∂ ∂ 
 ∂ ∂ ∂      
∂ ∂ ∂       =      ∂ ∂ ∂

           ∂ ∂ ∂ 
 ∂ ∂ ∂ 

J 	        	                   (24)

where an 3 ×3 matrix of partial derivatives is called the Jacobian matrix 
J of the transformation which is invertible if | J | ≠ 0 at each time t i.e.,

1

= ( , , , ),
: = ( , , , ),

= ( , , , ),

X X x y z t
T Y Y x y z t

Z Z x y z t

−  				                  (25)

Multiplying equation (24) by the inverse of the Jacobian matrix 
yields

1= ,d d−X J x 			               		                 (26)

where J-1 is the inverse of the Jacobian matrix whose components are 
determined by

1 1 1
11 12 13= , = , = ,

| | | | | |

y z y z x z x z x y x y
Y Z Z Y Z Y Y Z Y Z Z YJ J J− − −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
− − −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
J J J

1 1 1
21 22 23= , = , = ,

| | | | | |

y z y z x z x z x y x y
Z X X Z X Z Z X Z X X ZJ J J− − −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
− − −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
J J J

(27)

1 1 1
31 32 33= , = , = ,

| | | | | |

y z y z x z x z x y x y
X Y Y X Y X X Y X Y Y XJ J J− − −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
− − −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
J J J

Using the relation (26) in transforming the calculation results from 
the deformed coordinates in ΩL to the fixed coordinates Ω and use the 
divergence theorem, the system of eqns. (18)-(22) become

 ( ) | | ( ) | | = 0;ds dφ φ
∂Ω Ω

⋅ − ∇ ⋅ Ω∫ ∫u n J u J 		               (28)

| | ( ( ) ) | | (( ) ) | |d ds d
t

φ φ φ
Ω ∂Ω Ω

∂
Ω+ − ⊗ ⋅ − ∇ ⋅ − ⊗ Ω

∂∫ ∫ ∫
u J u u n J u u JΨ Ψ

1 1 1= | | ( ) | | | | ,p ds ds dφ φσ φ σ
ρ ρ ρΩ ∂Ω Ω

− ∇ + ⋅ − ∇ ⋅ Ω∫ ∫ ∫J n J J (29)

| | ( ( ) ) | | (( ) ) | |t t t
K d K ds K d
t

φ φ φ
Ω ∂Ω Ω

∂
Ω+ − ⋅ − ∇ ⋅ − Ω

∂∫ ∫ ∫J u n J u JΨ Ψ

1 1= ( ) | | ( ) | |t t
t t

K K

K ds K dη ηφ η φ η
ρ σ ρ σ∂Ω Ω

 
+ ∇ ⋅ − ∇ ⋅ + ∇ Ω 

 
∫ ∫n J J

*
1

1| | | | ,t t kf K d P dφ β ω φ
ρΩ Ω

− Ω+ Ω∫ ∫J J 		                (30)

  | | ( ( ) ) | | (( ) ) | |t t td ds d
t
ωφ φ ω φ ω

Ω ∂Ω Ω

∂
Ω+ − ⋅ − ∇ ⋅ − Ω

∂∫ ∫ ∫J u n J u JΨ Ψ

 

1 1= ( ) | | ( ) | |t t
t tds d

ω ω

η ηφ η ω φ η ω
ρ σ ρ σ∂Ω Ω

 
+ ∇ ⋅ − ∇ ⋅ + ∇ Ω 

 
∫ ∫n J J

 

2 1| | | | ,t t kd P d
K
αωφ βω φ

ρΩ Ω
− Ω+ Ω∫ ∫J J 		                   (31)

( ) | | | | = 0,ds dψ ψφ φ
∂Ω Ω

∇ ⋅ − ∇ ⋅∇ Ω∫ ∫n J JΨ Ψ                              (32)

All partial derivative terms in eqns. (29)-(32) are determined by by 
the following expressions:

3
1

=1
= .ij

jj j

f f J
x X

−∂ ∂
∂ ∂∑ 				                   (33)

We discretise the computational domain of blood-flow channel 
into a finite number N of tetradedral elements Ωi and construct a 
control volume i procedure. We then define all test functions as follows:

 

1 on 
= = = = =

0 otherwise,
i

tt ψφ φ φ φ φ
Ω




	             (34)

and let ui=u(Xi), Ki=K(Xi), ωi=ω (Xi), Ψi=Ψ (Xi) the system of equation 
(28)-(32) becomes

=1
( | | = 0;

N

i
ii

ds
∂Ω

 ⋅ 
 ∑ ∫ u n J 			                  (35)

=1

1| | | | (( ) ) | | | | | |
N

i
i i i i i i

ii
ds p

t ρ∂Ω

 ∂ 
Ω + − ⊗ ⋅ + Ω ∇ ∂ 

∑ ∫
u J u u n J JΨ

=1

1= | | ,
N

i
ii

dsσ
ρ ∂Ω

⋅∑ ∫ n J 				                  (36)

=1

1| | | | (( ) ) ( ) | |
N

i t
i i i i i

ii K

K K K ds
t

ηη
ρ σ∂Ω

  ∂
Ω + − ⋅ + + ∇ ⋅   ∂   

∑ ∫J u n n JΨ

*
1

=1

1= | | | |,
N

i k i i
i

P f Kβ ω
ρ

 
Ω − 

 
∑ J 		                (37)

=1

1| | | | (( ) ) ( ) | |
N

i t
i i i i i

ii
ds

t ω

ω ηω η ω
ρ σ∂Ω

  ∂
Ω + − ⋅ + + ∇ ⋅   ∂   

∑ ∫J u n n JΨ

2
2

=1

1= | | | |,
N

i i
i k i

i i

P f
K
α ω βω

ρ
 

Ω − 
 

∑ J 		                 (38)

=1
| | = 0,

N

i
ii

ds
∂Ω
∇ ⋅∑∫ n JΨ 			                  (39)

which can be expressed in matrix form as

= 0,TC U
ˆ( , ) = ,uM A u CPψ+ +U U F

( , ) = ,k KM A u ψ+K K F 				                  (40)

( , ) = ,M A uω ωψ+W W F

= 0,AψΨ

where 
1 2=< , ,..., >T

Nu u uU  with = ( , , )T
x y ziu u u u  being the velocity 

at the ith node; 
1 2

= ( , ,..., )T
N

ψ ψ ψΨ  with = ( , , )T
x y zi

ψ ψ ψ ψ  being 

the mesh velocity at the ith node; P=< P1, P2,… PN>T, K=< K 1, K2,… 
K N>T and W=< W 1, W 2,… W N>T being the nodal pressure, the nodal 
turbulent kinetic energy and nodal dissipation rate; the coefficient 
matrices C,Ĉ,M,A,Ak, Aω and Aψ are derived in the Galerkin finite 
volume formulation (35)-(39).

Numerical Algorithm
The system (17) and (40) are solved by an implicit time integration 

scheme. For a typical time step (tr→tr+1), we obtain
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1 12 2= (2 )
( ) ( )

d d
r r r d

r r

M M
t t+ −− +

∆ ∆
D D D F 		                  (41)

and

1 = 0,T
rC +U

1 1
ˆ( ( , )) = ,r r r

r r

M MA u CP
t t

ψ + ++ +
∆ ∆

U U

1( ( , )) = ,k r r k
r r

M MA u
t t

ψ ++ +
∆ ∆

K K F 		                (42)

1( ( , )) = ,r r
r r

M MA u
t tω ωψ ++ +

∆ ∆
W W F

1 = 0.rAψ +Ψ

The system (42) is nonlinear because A,Ak, Aω depends on Ur+1 and 
Ψr+1. To deal with this nonlinearity for an iterative solution of (42), we 
use the iterative updating (43):

1
1 = 0,T n

rC +
+U

1 1
1 1 1

ˆ( ) = ,n n n n
r r r r

r r

M MA CP
t t

+ +
+ + ++ +

∆ ∆
U U

1
1 1( ( ) ) = ,n n n

k r r r k
r r

M MA
t t

+
+ ++ +

∆ ∆
K K F                                   (43)

1
1 1( ( ) ) = ,n n n

r r r
r r

M MA
t tω ω

+
+ ++ +

∆ ∆
W W F

1 1
1 1( ) = 0,n n

r rAψ
+ +
+ +Ψ

The subscript n in (43) denotes evaluation at the n th iteration step. 
Therefore, in a typical time step (tr→tr+1), we start with

0 0 0 0 0
1 1 1 1 1= ; = , = , = , = ,r r r r r r r r r rand+ + + + +D D U U K K W W Ψ Ψ     (44)

all nodal unknown functions of Dr+1, and 1 1 1 1
1 1 1 1, , ,n n n n

r r r r
+ + + +
+ + + +U P K W  and 

1
1

n
r
+
+Ψ  are then determined by respectively solving the systems (41) and 

(43) repeatedly until the norms ||Dr+1-Dr||, and ||Ur+1-Ur||, ||Pr+1-Pr||, 
||Kr+1-Kr||,||Wr+1-Wr||, and ||Ψr+1-Ψr|| are sufficiently small, then the 
systems approaches the so called steady state.

Validation Study
Setup

Studying the fluid flow in the deformable channel requires a 
reliable model that can fully describe the flow pattern in the arteries 
with nonlinear hyper- elastic response (Figures 1 and 2).

The first task undertaken for evaluating the suitability of the 
mathematical model using ANSYS 17. The flow simulations in the 
curved tube and the back-step tube with stenosis were setup using 
the dynamic equations of nonlinear hyper-elastic model coupled with 
the Navier-Stokes equations for a turbulent viscous incompressible 
non-Newtonian fluid. The computational domains of both tubes 

Figure 1: Computational domains of the back-step tube and the curved tube 
with 75% stenosis.

Figure 2: Cross-section view of domain mesh.

(a) Inlet velocity

(b) Outlet pressure
Figure 3: Inlet and outlet boundary behaviours of aorta: (a) Inlet velocity; (b) 
Outlet pressure.
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are displayed in Figure 1 and a cross-section view with 20 boundary 
layers of the flow channel is shown in Figure 2. Domain mesh of the 
75% stenosed curved tube consists of 1,124,325 tetrahedral elements 
with 507,184 nodes in the flow channel, and 200,521 hexahedral 
elements with 241,056 nodes in the wall region, and for the domain 
mesh of the the 75% stenosed back-step tube, there are 1,113,965 
tetrahedral elements with 502,510 nodes in the flow channel, and 
192,321 hexahedral elements with 229,790 elements in the wall region. 
Five complete pulses of pressure and flow velocity were used in each 
simulation (Figure 3). The simulations were taken at each of the fifth 
cycle as highlighted in Figure 1. Influence of inflow boundary condition 
with different turbulence intensity including 4.2%, 7.2% and 10.2% 
on the flow pattern at four cross sections L1=1 mm, L2=3 mm, L3=5 
mm and L4=10 mm (Figure 1) was investigated. The effect of elastic 
property of the arterial tissue on the deformation of the curved tube 
and the back-step tube was also investigated at point P0 (Figure 1).

Result and Discussion
The flow chart of the fluid structure interaction (FSI) simulation 

algorithm as shown in Figure 3 are used in this study (Figure 4). For 
the validation study of the incompressible non-Newtonian turbulence 
model, we set the fluid density ρ=1000 kgm-3, the mean velocity of the 
inflow profile U=0.81 ms-1 and the turbulence length L=0.00021 m.

We compare the axial velocity against the turbulence intensity. 
Figure 2 shows the profiles of axial velocity at the peak of systole at 
four cross sections L1=1 mm, L2=3 mm, L3=5 mm and L4=10 mm. 
The results demonstrate that the mean flow field responds strongly 
to the turbulence intensity. In the region very close to wall where the 
turbulence intensity is diminished and reaches zero at the wall, the 

velocity profile is laminar, whereas above this region, the velocity profile 
is logarithmic. The maximum turbulence level seems at the positions of 
core of the axial velocity. The intensity value gives a sufficiently affects 
the transport of momentum. The downstream flow becomes laminar 
when the inlet turbulent intensity <7.2%.

To investigate the effect of elasticity of the material, we used the 
dynamic blood viscosity of 0.00408 Pa⋅s-1, the turbulence intensity of 
7.2%, the turbulence length of 0.00021 m and assumed that the wall 
is an isotropic material with density, ρs, of 1200 kgm-3. The effects of 
elastic property on the wall deformation of the curved tube and the 
back-step tube are investigated. We compare the wall displacement at 
the point P0 as shown in Figure 1 by using the equation (5) with the 

stress tensor 
1=
2s

Wσ ∂
∂  [22] for the hyperelastic model, and for the 

linear elastic model,

= 2 ( )
(1 )(1 2 )s

E tr Iνσ µε ε
ν ν

+
+ −

with Young’s modulus, E, of 4.23 MPa, Poisson’s ratio, v, of 0.38 [25], 
and the strain tensor ε and the Lam e′ constant µ related to the physical 
material properties,i.e., µ=E/[2(1+v)] [26]. The results show a small but 
detectable dissimilarity of the wall displacement as shown in Figure 3. 
The wall displacement obtained from the hyperelastic model is larger 
than the one provided from the linear elastic model, particulary in the 
curved tube. Our results show good agreement with the findings from 
the literature [7,15,18,21]. We thus conclude that the mathematical 
model presented in section 2 is suitable to study the blood flow in the 
system of coronary arteries with stenosis (Figure 5).

Figure 4: Flow chart of FSI algorithm.
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(a) ϱ = 4 .2%

(b) ϱ = 7 .2%

(c) ϱ = 10 .2%
Figure 5: The systolic velocity profile at four cross sections including L1 (dashed line), L2 (dotted line), L3 (Dash-Dot Line) and L4 (solid line) obtained from the 
75% stenosed models of the back-step tube (left column) and the curved tube (right column) with three different values of turbulent intensity: (a) 4.2%; (b) 7.2%; 
(c) 10.2%.

Three-Dimensional Flow Study
 A tubular network of blood vessels allows the blood to travels from 

the heart to various regions of the body and returns the venous blood to 
the heart again [27,28]. Blood that leaves the heart passes into arteries 
whose walls also contain a protein fiber called elastin that has elastic 
qualities. In the arteries, pressure fluctuates during the cardiac cycle. 
During the systolic period, large arteries are distended with blood as 
their elastic walls stretch. During the diastolic period the walls rebound, 
and thus the blood is pushing along.

In this study, the three-dimensional blood flow through the system 
of human arteries with hyperelastic arterial layer, consisting of the base 
of the aorta connecting with the normal right coronary artery (RCA) 
and the left coronary artery (LCA) with appearance of LAD stenosis 
located at 5 mm from the aorta-LCA connection, was simulated 
under typical physiological conditions (Figure 6). Using 1000 images 
of computed tomography scans of the human coronary system, 
computational domains of flow channel with their associated arterial 

walls were constructed as shown in Figure 7. Figure 7a shows the 
meshes of the structural wall (left column) with 1,888,270 tetrahedral 
elements and 851,800 nodes, and the flow channel (right column) with 
2,336,212 tetrahedral elements and 1,053,867 nodes. To investigate the 
effect of arterial stenosis severity on the flow pattern, we choose four 
severity degrees of 25%, 50% and 75% to analyze the flow speed and wall 
displacement on two cross-sections at the proximal part of the LCA and 
the stenosis region as shown in Figure 7b. To ensure reproducibility of 
the pulsatile characteristic flow, we simulate the results for 5 cardiac 
cycles (t=0.0 to 4.5 second) based on a fluid structure interaction (FSI)
scheme as shown in Figure 3. Due to the fluctuation behaviour of blood 
flow during the cardiac cycle, the parameters listed in Table 1 [6,12] 
are used to determine the inlet pulsatile flow rate and outlet pulsatile 
pressure of large arteries [29].

Blood flows from the inlet aorta surface with the pulsatile velocity 
having mean speed of 0.85 m/s to the base of aorta connecting with 
the RCA and the LAD. Blood that leaves the aorta flows into the top 
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Artery vessel n Q
nα

Q
nβ

p
nα

p
nβ

Aorta
Ǭ=5.7222e-6
p =97.2222

A=6.7287e-4

1
2
3
4

1.7048e-6
-6.7035e-6
-2.6389e-6
0.7198e-6

-7.5836e-6
-2.1714e-6
2.6462e-6
0.2687e-6

8.1269e-6
-6.1510e-6
-1.3330e-6
-2.9473e-6

-12.4156e-6
-1.1072e-6
-0.3849e-6
1.1603e-6

LCA
Ǭ=0.1589e-6
p =84:9722

1
2
3
4

0.1007e-6
-0.0034e-6
0.0294e-6
0.0195e-6

0.0764e-6
-0.0092e-6
0.0337e-6
-0.0129e-6

-3.3107e-6
-9.8639e-6
3.0278e-6
2.2476e-6

-2.2932e-6
8.0487e-6
3.8009e-6
-3.2564e-6

RCA
Ǭ=0.0896e-6
p =95:3333

1
2
3
4

0.0393e-6
-0.0360e-6
-0.0131e-6
-0.0035e-6

0.0241e-6
0.0342e-6
0.0026e-6
-0.0041e-6

5.9369e-6
-11.1997e-6
-2.2778e-6
2.7333e-6

3.6334e-6
2.1255e-6
-3.7528e-6
-0.6375e-6

Table 1: Values of the parameters Q
nα , Q

nβ , p
nα  and p

nβ  [29].

(a) Back-step tube
(b) Curved tube

Figure 6: Variation of wall deformation at the point P0 (Figure 1) obtained from hyper-elastic model (dotted line) and linear elastic model (solid line).

(a) domain meshes of the solid structure and the flow channel

(b) Two investigated cross sections

Figure 7: Computational domain and investigated cross sections at the proximal part and the stenosis site of the LAD.

part of the aorta, the RCA and the LAD. Figure 8 presents the velocity 
field of blood flow in the system of coronary arteries with the 75% 
stenosed LCA at the peak of systole [30-33]. The result indicates that 
blood travels through the LCA with mean velocity of about 0.23 m/s, 

and its velocity increases along the vessel where the highest velocity of 
about 3 m/s  appears at the constricted cross-section of the stenosis area 
as shown in Figure 8. Figure 9 illustrates the velocity profile obtained 
from the model with linear elastic wall and hyper-elastic wall at two 
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cross sections of the proximal part of the LAD and the throat of stenosis 
area. The results indicate that the elasticity affect the flow pattern at 
the stenosis area, and the hyper-elastic model gives lower speed [34]. 
The systolic and diastolic behaviours of the pressure and the wall shear 
stress in the 75% stenosed artery as illustrated in Figure 10 indicate 
that there exists a sudden fall in the pressure with high wall shear 
stress at the stenosis site. To investigate a narrow catheterized artery 
with an axially non-symmetrical stenosis on the flow field through the 
deformation system of coronary arteries with stenosis, we choose three 
degree of stenosis including 25%, 50% and 75% [35]. Comparing the 
results obtained from the model with different degree of stenosis, it is 
noted that the stenosis has significant effect on the flow field, pressure 
distribution and wall shear stresses. Figure 11 indicate that higher 
degree of stenosis gives a higher sudden drop in pressure and a higher 
increase in wall shear stress at the stenosis site (Table 1). The calculation 
results show that higher area severity generates a higher pressure drop 
and a greater increase in wall shear stress around the stenosis site as 
expected [36]. 

Discussion and Conclusion
In this work, we proposed a mathematical model and numerical 

Figure 8: Velocity field of blood in the coronary system having 75% stenosed LCA at the peak of systole.

Figure 9: Velocity profile obtained from the model with linear elastic wall(dotted line) and hyper-elastic wall (solid line) at two cross sections : a) the proximal part 
of the LAD; b) the throat of stenosis area

techniques to study turbulent blood flow through the deformation 
system of coronary arteries with the stenosed LAD having various 
degree of disease severity including 25%, 50% and 75% reduction in 
cross-section area of the artery. We constructed computational domains 
of the blood channel and the wall structure of the system of human 
coronary arteries consisting of the base of aorta, the RCA and the 
LAD. Numerical simulation based on the Fluid-Structure-Interaction 
approximation scheme has been carried out to investigate the effect of 
the stenosis degree on the blood flow, the pressure distribution, and 
the wall shear stress. Blood pressure drops significantly while wall 
shear stress and wall displacement increase dramatically in the stenosis 
region as the degree of stenosis increases. The results indicate that 
the proposed mathematical model can capture complex phenomena 
occurring during a cardiac cycle in the coronary system with stenosis.
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Figure 10: Pressure distribution (the left column) and wall shear stresses (the right column) of the coronary system with the normal RCA and the 75% stenosed 
LAD at: (a) the peak of systole; and (b) the peak of diastole.
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Figure 11: Pressure profile (the left column) and wall shear stresses (the right column) at the peak of systole (dash-dotted line), and the peak of diastole (dashed 
line) along a LAD axial line with different degree of stenosis: (a)25%; (b) 50%; (c) 75%.
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