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Abstract

In this paper, two numerical methods for solving fractional integro-differential equations are proposed. The fractional
derivative is considered in the Caputo sense. The proposed methods are least squares method aid of Bernstein
polynomials function as the basis. The proposed method reduces this type of equation into systems to the solution of
system of linear algebraic equations. To demonstrate the accuracy and applicability of the presented methods some test
examples are provided. Numerical results show that this approach is easy to implement and accurate when applied to
fractional integro-differential equations. We show that the method is effective and has high convergenc rate.
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Introduction

The fractional calculus has a long history from 30 September 1695,
when the derivative of order &= = has been described by Leibniz [1-
4]. The theory of derivatives and ‘integrals of non-integer order goes
back to Leibniz, Liouville, Gr'unwald, Letnikov and Riemann. There
are many interesting books about fractional calculus and fractional
differential equations [5-6]. The use of fractional differentiation for
the mathematical modeling of real world physical problems has been
wide spread in recent years, e.g., the modeling of earthquake, the fluid
dynamic traffic model with fractional derivatives, measurement of
viscoelastic material properties, etc. Derivatives of non-integer order
are defined in different ways, e.g., Riemann-Liouville, Gr"unwald-
Letnikow, Caputo and Generalized Functions Approach [4]. In this
work we focus attention on Caputo’s definition which turns out to
be more useful in real-life applications since it is coupled with initial
conditions having a clear physical meaning.

Furthermore the use of numerical method for solving fractional
integro-differential equations cannot be over emphasized, for, it is of
great importance to Mathematician, Engineers and Physicists. In recent
years, much attention has been given for the solutions of fractional
differential and integro-differential equations [7]. Proposed an efficient
method for solving systems of fractional integro-differential equations
using adomian decomposition method (ADM). Munkhammar JD
proposed a numerical solution of fractional integro-differential
equations by collocation method [8]. He JH used the Adomian
Decomposition Method to solve fractional Integro-differential
equations. ADM requires the construction of Adomian polynomials
which are somehow difficult to obtain [9]. Homotopy Perturbation
and Homotopy Analysis methods were applied to solve initial value
problems of fractional order by Lanczos C [10]. These authors
decomposed the given problems into basically two parts using linear
and nonlinear operators. The basic assumption was that the solutions of
the problem could be expressed as series of polynomials. The truncated
parts of these polynomials are then solved to get the approximate
solutions of the problems [11]. Employed application of the fractional
differential transform method (FDTM) to fractional-order integro-
differential equations with nonlocal boundary conditions [11] also
gives some application of nonlinear fractional differential equations
and their approximation [12]. Presented numerical approximation of
fractional integro-differential equations by an Iterative Decomposition
Method (IDM). In the work, approximate solution of each problem is

presented as a rapidly convergent series of easily computable terms [13]
applied least square method for treating nonlinear fourth order integro-
differential equations [14,16-18] applied an efficient method for solving
fractional differential equations using Bernstine polynomials [15] applied
least squares method and shifted Chebyshev polynomial for solving
fractional integro-differential equations. In his work he used shifted
Chebyshev polynomial of the first kind as basis function.

In this work, using the idea of Momani and Qaralleh [15], we
proposed an alternative method, called Standard and perturbed least
square methods by Bernstein polynomial as basis function [19-22].

In this work, we are concerned with the numerical solution of the
following linear fractional integro-differential equation by standard
and perturbed least square methods using Bernstein polynomial as
basis function

1
Ddu(x):f(x)+Jk(x,t)u(x)dt,on,tSl, (1)
0
With the following supplementary conditions:

u®(0)=6, n-1<a <n, nEN 2)

Where D* u(x) indicates the « th Caputo fractional derivative of

u(x), f(x),

K(x, t) are given smooth functions, x and t are real variables varying
[0,1] and u(x) is the unknown function to be determined.

Some Relevant Basic Definitions
Definition 1

A real function(x), x>0 [Mohammed (2004)], is said to be in the
space C , p€R if there
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Exists a real number P>y such that flx)=xf (x), where f,(x) €C [0,1].
Definition 2
A function (x), x>0 is said to be in the space C}", m€ NU{O} ,
it u
Definition 3

The left sided Riemann-Liouvill fractional integral operator of the
order p* 0 of a function f€C,,  * -1, is defined as

VRN S A €)) 3)

j f(x) = F(X)}[(x_t)"“ dt,a >0,x >0,

Ff () =f(x) (4)
Definition 4

Let € C"\1,me N\ {0} . Then the Caputo fractional derivate of f
(x) is defined as

. Cl<agmmeN
e g prohmei<asmmen,

D7 (1)={ D"/ (x) ®

—~,a=m
Dx

Hence, we have the following properties:

D e S v> 0, feCu >0

.y r(A+1) .,
Jx =—————x"a >0,y >-1,x>0
I'(a+y+1)
m—1 k
7D f(x) :f(x)—Zf"(O*)%,x >0m-1<a<m

k=0

Dj fix) =f(x), x>0, m—1<a <m
DC = 0,C is the constant
0,3 eNO,ﬁ<[a],

axﬂ _ AN('B-’-l)
b _AN(ﬂ—a+l)xﬁ’“ ,ﬂeNo,ﬂZ[a]

Where [a] denoted the smallest integer greater than or equal to «
and N= {0,1.2,...}

Definition 5

An integral equation is an equation in which the unknown function
y(x) appears under an integral signs [4] and [5].

A standard integral equation y(x) is of the form:

h(x)
y(x)=f(x)+4 j K (x,t)y(¢)dt (6)
g(x)

Where g(x) and y(x) are the limits of integration, A is a constant
parameter, and K(x, t) is a function of two variable x and ¢ called the kernel
or the nucleolus of the integral equation. The function y(x) that will be
determined appears under the integral sign and also appears inside and
outside the integral sign as well. It is to be noted that the limits of integration
g(x) and h(x) may be both variables, constants or mixed.

Definition 6

An integro-differential equation is an equation in which the

unknown function y(x) appears under an integral sign and contain
ordinary derivatives y"(x) as well. A standard integro-differential
equation is of the form:

h(x)
y(") (x) = f(x)+/1 I K(x,t)y(t)dt (7)
g(x)
Integral equations and integro-differential equations are classified
into distinct types according to limits of integration and the kernel K(x;
t) are as prescribed before.

1. If the limits of the integration are fixed, then the integral equation
is called a Fredholm integral equation and is of the form:

y(x)= f(x)+i[j.K(x,t)y(t)dt (8)

2. If at least one limits is a variable, then the equation is called a
Volterra integral equation and is given as:

$(x) = £ () + 2[K (x.0) (1) (©)
Definition 7

Bernstein basis polynomials: A Bernstein polynomial [8] of degree
n is defined by

B, (X):[’?jx’(l—x)""i =0, 1......n, (10)

1

where,

n n!
[ij_i!(n—l)! an

Often, for mathematical convenience, we see B, (x)=0if <0 or i>n.
Definition 8

Bernstein polynomials: A linear combination Bernstein basis
polynomials

u, (x)=>aB, (x) (12)
is the Bernstein polynomial of degree n where @, i =0,1,2,........ are
constants.

Definition 9

Shifted Chebyshev polynomial of the first kind denoted by T (x) is
denoted by the following [11]:

T*n(x):cos{ncos’l(2x—1)};nZO (13)
and the recurrence relation is given by
T (x)=22x-1)T",(x)-T", . (x);n=12,.... (14)

With the initial condition

T’ (x)=1T"(x)=2x-1 (15)
Definition 10

In this work, we defined absolute error as:

Absolute Error = | Y(x) - y,(x) Lo<x<1 (16)
Demonstration of the Proposed Methods

In this section, we demonstrated the two proposed methods
mentioned above.
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Standard Least Squares Method (SLM)

The standard least square method with Bernstein polynomials as
basis function is applied to find the numerical solution of fractional
Integro-differential equation given in equation (1). This method is
based on approximating the unknown function u(x) by assuming an
approximation solution of the form defined in equation (12).

Thus, substituting equation (12) into equation (1), we obtained
D (ZaB )= (f (x jk x,1) (ZaBm
Hence, the residual equation is obtained as

a,- D* (Za, i x
Thus, we minimized equation (18) as

1
S(ao‘a,,..........,an) = J‘[R(aoﬁa,,..........
0

Where w(x) is the positive weight function defined in the interval,
[a,b], thus, equation (19) is given

)dr)y=0 (17)

R(aya,...... 'f xt(Za, L (1)dn] (18)

,an)T w(x)dx (19)

S(ao,al, .......... ,an):

We obtained the values of ai(i
of S as:
oS

—=0,i=0.1,.........,¢ (21)
a.

i

0) by ﬁnding the minimum value

A. Applying equation (21) into equation (20) for various values of
i(i % 0);

We obtained (n+i) algebraic system of equations in (n+i) unknown
constants @'s . The systems of equations are then solved by Gaussian
elimination method. The results of the unknown constants obtained are
then substituted back into the approximate solution given by equation
(12) to get the required approximation for the appropriate order.

Perturbed Least Squares Method (PLM)

The basic idea of the method as conceived by [10], is the substitution
of equation (12) into a slightly perturbed equation (1) to obtain
1
_[k ( X, t) u

Ddu(x) = f(x) + 0

Where, H,(x)= T (x) (23)

And T (x) is the shifted Chebyshev polynomials defined in
equation (13) and 7, is a free tau parameter to be determined along

(x)dt+H,(x),0<x,t<1, (22)

with a (i * 0). Equations (12) and (23) are substituted into equation (22)
to get
D*( Za, L ()= (f(x jk(x t)(Za‘  (1)dn-7,T (x)=0 (24)

Hence the residual equation is defined as

R(Ay sy a,. D*(ZaB -7, T (

i=0

jk(xz (ZaB 1)d)] (25)

Thus we minimized equation (24) by denoting

S(aoyal, .......... ,a, andrt, ) = ‘IH:R(ao’al, .......... ,a, ):|2 w(x)dx (26)
0

Where all the parameters involved are mention above, thus,
equation (24) is given
S(uual .............. ) I{ZD a,B,, T (x x)-[(f(x J x,1) ZuB dt} w(x)dx (27)

We obtained the values of a(i *
value of S as:

0) and 7, by finding the minimum

Q:o,izo.l,...........,n (28)
0Oa,
os
=0 29
%, (29)

Applying equation (29) and (28) into equation (27) for various
values of i(i > 0)

To obtain (n+2) algebraic system of equations in (n+2) unknown
constants ;s . The systems of equations are then solved by Gaussian
elimination method. The results of the unknown constants obtained
and then substituted back into the approximate solution given by
equation (12) to get the required approximation.

Remark 1: The convergence and stability of the method were
discussed in Taiwo (1991) while the existence and uniqueness of
solution have been proved by Adeniyi (1991).

Numerical Examples

In this section, we demonstrated the proposed methods discussed
above on some examples.

Example 1: Consider the following fractional Integro-differential

equation:
% (35) -2
Dhu(x) =3 T X au()drno<x <1, (30)
r 12 3
Subject to 1(0)=0 with exact solution B(x)=x?-x (31)

We have solved the above problem for value of n=3 in order to
compare the results obtained with the exact solution. Also graphical
representations of the result are presented.

For case n=3.

Thus, the approximate solution given in equation (12) becomes

Zal s ( (32)

Hence expanding equation (32) further, we have
us(x) = ao(l —2x+3x%) + a, (3x — 6x2+3x°%) +a, (3x% - 3x%) +a3x* (33)
Substituting (33) into (31), we have

(34) 2

1
Dz(a (1—2x+3x2)+a1 (3x—6x2+3x’1)+a| (3x2—3x})+a3x1): + 4
N7z 12 (34)

jxt( (1-20+32)+a,(3t— 62 +3°) + 0, (3 =3 ) + ult‘)dt,

Applying the Caputo properties on equation (34), we have

L 2L L 2L
3r(1+1 2 3r(2+1 2 r 1 3r(1+1 2 61 (2+1 2
N (+l)x - ( +l)x a 34 )v (+) o (2+1)x s
F(l——ﬂ) r(zﬁn)
2 2

€
r[sfé ) [1—41] r(z—%ﬂ]
{V(Hi)\‘"}y{sr(znl)fl}z{:r(wl 1}1 [r(+l } (35)
[“(37—+1] r(zwn) r(a—fnj (37“]
o
(

ay(1-2t+38)+a (3z—br1+3t’)+J

1

~

w
B

~

—[H 504202866)( —1.128152150x" +0083?333333?v]—|‘ YI[ dt=0,

(37 =30)+ at’
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Simplifying equation (35), we have

~3.385137501x"%a, + 4.513516668x'*a, —1.805406668x"*a, +3.385137501x"%a, +

9.023033336x"q, +5.416220004x"a, +4.513516668x'*a, + 5.416220004x>*a, +

s =0
1.805406668x™a, —1.504202866x7 +1.128152150x"* —0.08333333333x — 0.1xq, — 0.05xa, —
0.15xa, - 0.2xa,

Hence, the residual equation is defined as

R(ay,a,.a,)=
~3.385137501x"%a, + 4.513516668x'*a, — 1.805406668x>a, +3.385137501x"%, +
9.023033336x"%a, + 5.416220004x*°a, + 4.513516668x"a, + 5.416220004x**a, +

3
1.805406668x**a, —1.504202866x7 +1.128152150x"° - 0.08333333333x ~ 0.1xq, — 0.05xa, —
0.15xa, — 0.2xa,

In order to minimize equation (37), let

1 2
S(aoval,..a3) = J.[R(lluyal--,a;)] dx
0

~3.385137501x"a, + 4.513516668x"*a, — 1.805406668x*a, + 3.385137501x"a, +

9.023033336x"*a, +5.416220004x*a, + 4.513516668x"a, + 5.416220004x*a, +

S(ap.a.a,) =1} B dx
1.805406668x*a, —1.504202866x7 +1.128152150x"* —0.08333333333x — 0. Lxa, — 0.05xa, -
0.15xa, - 0.2xa,

(36)

(37)

(38)

(39)

Applying equation (21) and (20) on equation (39) , we have the

following equations

~3.385137501x"q, +4.513516668x'*a, —1.805406668x>*a, +3.385137501x"q, +
s, 9.023033336x"%a, +5.416220004x>a, + 4.513516668x"a, +5.416220004x*a, +
oa, ™ 1,805406668x“a371504202866;(%+1.128152150x"570,08333333333x70.1xa,7
0.05xa, —0.15xa, —0.2xa,
[73.385137501,\'“+4.513516668x'57]dx:0

1.805406668x>° —0.05x

~3.385137501x%q, +4.513516668x"*a, — 1.805406668 + 3.38513750 1x" +
as | 9023033336x"7,+5.416220004x"°a, + 4.513516668x'*a, +5.416220004x"a, +

’ 1.805406668x>%a, —1.504202866.5 +1.128152150x" —0.08333333333x —
0.1xa, - 0.05xa, —0.15xa, —0.2xa,
[3.385137501x“5 +9.023033336x" +]dx 0

5.416220004x*a, —0.1x

~3.385137501x"a, +4.513516668x"*a, —1.805406668 + 3.38513750 1x"* +
o5 | 9:023033336x"a, +5.416220004x"a, +4.513516668x *a, +5.416220004x"a, +
o0 1.805406668,\'”0;—I.504202866X%+1.128152I50x"‘—0.08333333333x—
0.1xa, - 0.05xa, —0.15xa, —0.2xa,
(4513516668)&5+5.416220004X“J B
dx=0

-0.15x

~3.385137501x"q, +4.513516668x"*a, — 1.805406668 + 3.38513750 1x"* +
o 9.023033336x""a, +5.416220004x>*a, +4.513516668x'*a, +5.416220004xa, +

3
941 | 805406668x>a, —1.504202866x7 +1.128152150x —0.08333333333x -

0.1xa, - 0.05xa, —0.15xa, —0.2xa,
(1.805406668x™* —0.2x)dx =0

(40)

(41)

(42)

(43)

Integrating equations (40 - 43) with respect to x over the interval
[0,1], we have four algebraic linear equations in 4 unknown constants.

These algebraic linear equations are as follows:

1.023551680a, —0.1798737760a, —0.2375240337a, - 0.3649803917a, —-0.1390965247 = 0

(44)

~0.1798737760a, +0.2368150383a, +0:1014859295a, —0:1310140572a, +0.1127452210=0 (45)

—~0.2375240337a, +0.1014859295a, +0.1854268035a, —0.06737457209a, +0.09561773339 = 0 (46)

—0.3649803917a, —0.1310140572a, —0:06737457209a, +0.3961016134a, —0.06612184710 =0 (47)

The values obtained solving equations (44 - 47) by Gaussian

elimination method are as follows:
a,=- 3.487888303><10'5y
a = —0.3333012074,

a,=-3.3333014828,
a,=-3.552432041x10"°

These values are then substituted into equation (33), after
simplifying we have the approximate solution as

u, (x)=-0.00003487888303-0.9997989856x+0.999798159x’+0.000
0001808x° (48)

Demonstration of Perturbed Least Square Method
Example 1

Consider the following fractional Integro-differential equation:

D%u(x)zi(%))%_z)% L (49)

+—+ |xtu(t)dt,0<x <1,
7z 2 9 ()

Subject to 1(0)=0, with exact solution U(x)=x-x (50)
Solution

We have solved the problem above for the case n=3 with perturbation
term H (x) given in equation (23). Thus, equation (50) becomes

8 b -2 Y |
D%u(x)(/3)x\/”x +%+0xtu(t)dt+H3(x), (51)
Where H (x)=17,T, (x) (52)

and H, (x)=7,Ty (x)=H, (x) =7, (32’ —48%’ +18x-1)  (53)
The approximate solution given in equation (12) becomes
3
=>'a,B,,(x) (54)
Hence, expanding equation (54) further, we have
u, (x) = a, (1-2x +3x) +a, (3x-6x’+3x°) + a, (3x°-3x°) +a x>  (55)

Substituting equations (53) and (55) into equation (51) we have

B
V= 12" (56)
j.xt(a(,(1—2t+3t2)+a1(3t—6t2+3t3)+a1(3t:—3t3)+aztg)dtJrT}(}Zx}—48x2+l8x—1)

0

Applying the Caputo properties on equation (56) we have

D%(aﬂ(172x+3x:)+a,(3x76x2+3x3)+a,(3x273x3)+ asz):

1 1 2l il
37 (1+1)r‘ B 3r (2+1)¥ B I( 3+I)v B 3r (1+1 B 6 (2+1)x 2 3r(3+1)x 2
4,

T 0+ a, T i T —a,+
/'[1——+|] I (ﬁ——ﬂ] 3——+lj I (1——“] 1'[2——+1] /'(3——“)
2 2 2
2L 3L 1 3L 4t
H 2 3 3 H o
3r(2+11)v - 3r( 3+1)>r . r(3+1 3r(z+1 - ,f(3+:)x o l‘(3+l‘)v . (57)
/[2——+1] [1——” 1——+1 z——+| 1[3——”) 1[3——+1]
2 2
7(4(1 s042028665° 1 I”SISZISOY‘”+008313313333x ju (1=2043 )+ 0, (3t -6 +30) +.a, (3¢ ~3°) + as’)

di+7,(326° —48%7 +18x ~1) =0,
Simplifying equation (57), we have

~3.385137501x"a, +4.513516668x"*a, ~1.805406668x*a, +3.385137501x"a, +

9.023033336x"a, +5.416220004x>a, +4.513516668x"*a, +5.416220004x>a, + o (58)

3 7, (324" - 48x7 +18x-1) =0
1.805406668x*a, ~1.504202866x7 +1.128152150x"* ~0.08333333333x ~ 0.1xa, — 0.05xa,
0.15xa, - 0.2xa,

Hence, the residual equation is defined as
R(ay,a,.a,) =

~3.385137501x"a, + 4.513516668x"*a, — 1.805406668x>a, +3.385137501x"q, +
9.023033336x", + 5.416220004x*°a, + 4.513516668x"*a, + 5.416220004x**a; +

(59)

s
1.805406668x>°a, —1.504202866x7 +1.128152150x"° ~ 0.08333333333x - 0. 1xa, - 0.05xa, —
0.15xa, —0.2xa; — 7, (32x° — 48x” +18x - 1)

In order to minimize equation (59), let
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S(ao‘al,..apr}) = J‘[R(au.a,..,%)fdx (60)

~3.385137501x"*a, + 4.513516668x"*a, — 1.805406668x**a, +3.385137501x"*a, +
9.023033336x"%a, +5.416220004x*a, + 4.513516668x'*a, +5.416220004x"*a +

« (61)

S(ag.a.a) =1, ‘ H
1.805406668x™a, —1.504202866x2 +1.128152150x"* —0.08333333333x — 0.1xa, — 0.05xa, —

0.15xa, —0.2xa, — 7,(32x" —48x> +18x 1)

Applying equation (28) and (29) on equation (61), we have the

following equations :

—3.385137501x"°a, + 4.513516668x"a, —1.805406668x™"a, +3.385137501x"°q, +
9.023033336x""q, +5.416220004x"q, + 4.513516668x' *a, + 5.416220004x"*a, +

o ES
da, 1.805406668x7°a; —1.504202866x2 +1.128152150x"° — 0.08333333333x — 0.1xa, — 0.05xa, — (62)
0.15xa, — 0.2xa, ~7, (322" — 48x* +18x - 1)
(-3.385137501x" + 4.513516668x"* —1.805406668x"* —0.05x)dx =0

-3.385137501x"°a, +4.513516668x' *a, —1.805406668 +3.385137501x"* +
9.023033336x"*a, +5.416220004x""a, +4.513516668x'“a, + 5.416220004x"a, +

0a, | 1.805406668x>a, —1.504202866x7 +1.128152150x" —0.08333333333x 0. Lxa, — 0.05xa, — (63)
0.15xa, —0.2xa, — 7, (32x" — 48x” +18x 1)
3.385137501x"° +9.023033336x"° + a0
fx =
5.416220004x°a, —0.1x

—3.385137501x""a, +4.513516668x"*a, —1.805406668 +3.385137501x" +

o5 9.023033336x"’a, +5.416220004x™ a, +4.513516668x"*a, + 5.416220004x**a, +
1 5

o 3
oa, 1.805406668x™a; —1.504202866x +1.128152150x"* - 0.08333333333x - 0.1xa, — 0.05xa, —
0.15xa, —0.2xa, — 7, (320" — 48> +18x 1)

(64)

(4.513516668x'* +5.416220004x** ~0.15x) dx =0

3.385137501x"%a, +4.513516668x'“, - 1.805406668 + 338513750 1x"* +
9.023033336x%, +5.416220004x*q, +4.513516668x"*a, +5.416220004x*a, +

:

o 3
1.805406668x**a; —1.504202866x2 +1.128152150x"* - 0.08333333333x - 0.1xa, — 0.05xa, — (65)
0.15xa, - 0.2xa, -7, (324" —48x” +18x 1)

(1.805406668x>° —0.2x) dx =0

—3.385137501x"°a, +4.513516668x"a, —1.805406668 +3.385137501x"° +

5 9.023033336x"%, +5.416220004x>°a, +4.513516668x'a, +5.416220004x*a, +

== 3

s 1.805406668x™°a, —1.504202866x2 +1.128152150x"* —0.08333333333x - 0. 1xa, — 0.05xa, — (66)
0.15xa, —0.2xa, — 7, (32x° — 48x” +18x 1)

(320" -48x" +18x—1)dx =0

Integrating the equations (62-66) with respect to x over the interval

[0,1], we have we algebraic linear equations in 5 unknown constants.
These algebraic linear equations are as follows:

—0.2375240337a, +0:1014859295a, +0.1854268035a, — (69)
0.06737457209a, — 0.02522041758 + 0.09561773339 =0
—0.3649803917a,—0.1310140572a, — 0:06737457209a, + (70)
0.3961016134a, +0.14232427587, — 0.06612184710 =0
0.07300583245a, +0.2401096907a, —0.02522041758a, — 1)

0.1423242758a, + 0.48571428577, —0.08842725214 = 0

The values obtained solving equations (67-71) by Gaussian
elimination method, are as follows:

a,=— 1.080032206><10""

a,=—-0.3333767679,

a,=-3.3333930138,

a,=-1.436727769x10™*

7,= 5.795092768x10~

The values are then substituted into equation (55), after
simplification we the approximate solution as

u, (x) = = 0.0001080032206 — 0.9998062943x + 0.999757556x> +
0.000013067x° (72)
Tables of Results

Numerical results of Example 1 (Table 1)

Examples 2

Consider the following fractional Integro-differential equation:

Dou(x)= > ”FS/é(j”zlé"z) +(5—26)x+‘:[xe'u(t)dt,5x§1, (73)

Subject to u(0)=0 with the exact equation U(x)=x—x> (74)

Numerical results of Example 2 (Table 2)

Graphical Representation of the Two Methods (Figures 1-4)

1.023551680a, —0.1798737760a, —0.2375240337a, — ) Conclusion

0.3649803917a, +0.07300583245 7, —0.1390965247 = 0 In this paper, least square method with the aid of Bernstein
polynomials was successfully deduced for solving fractional integro-

—0.1798737760a, + 0.2368150383a, + 0:1014859295a, — 68) differential equations. The numerical results in the tables and graph

0:1310140572a, +-0.24010969077, + 0.1127452210 =0

X Exact Solution = Approximate Solution of standard

Approximate solution of

show that the present method provides highly accurate numerical
Solutions for solving these types of equations.

Absolute error of Absolute error of perturbed

least squares method (SLM ) perturbed standard least squares least squares method
(PLM) method (SLM) (PLM)
0.0 0.00 -0.00000348788 -0.00001080032 3.4878E-5 1.0800E-4
0.1 -0.09 -0.09001679563 -0.09009104407 1.6795E-5 9.1044E-5
0.2 -0.16 -0.16000274820 -0.16007885540 2.7482E-6 7.8855E-5
0.3 -0.21 -0.20999273540 -0.21007135870 7.2646E-6 7.1358E-5
04 -0.24 -0.23998675610 -0.24006847560 1.3243E-5 6.8475E-5
0.5 -0.25 -0.24998480930 -0.25007012800 1.5190E-5 7.0128E-5
0.6 -0.24 -0.23998689400 -0.24007623710 1.3106E-5 7.6237E-5
0.7 -0.25 -0.20999300890 -0.21008672480 6.9911E-6 8.6724E-5
0.8 -0.16 -0.16000315300 -0.16010151250 3.1530E-6 1.0151E-4
0.9 -0.09 -0.09001732530 -0.09012052186 1.7325E-5 1.2052E-4
1.0 0.00 -0.00000355247 -0.00000143674 3.5524E-5 1.4367E-4

Table 1: Numerical results of Example 1.
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X Exact Solution = Approximate Solution of standard Approximate solution of Absolute error of Absolute error of perturbed
least squares method (SLM ) perturbed standard least squares least squares method
(PLM) method (SLM) (PLM)
0.0 0.00 0.00010284974 0.00010996755 1.0284E-4 1.0996E-4
0.1 0.099 0.09906303620 0.09907034368 6.3036E-5 0.7034E-5
0.2 0.192 0.19202565970 0.19203342150 2.5659E-5 3.3421E-5
0.3 0.273 0.27299313320 0.27300160370 6.8668E-6 1.6037E-6
0.4 0.336 0.33596787000 0.33597729340 3.2130E-5 2.2706E-5
0.5 0.375 0.37495228320 0.37496289360 4.7716E-5 3.7106E-5
0.6 0.384 0.38394878610 0.38396080680 5.1213E-5 3.9193E-5
0.7 0.357 0.35695979180 0.35697343630 4.0208E-5 2.6563E-5
0.8 0.288 0.28798771360 0.28800318470 1.2286E-5 3.1847E-6
0.9 0.171 0.17103496450 1.71052455200 3.4964E-5 5.2455E-5
1.0 0.00 0.00010395790 0.00012365050 1.0395E-5 1.2365E-4
Table 2: Numerical results of Example 2.
0.00014 },.f'
0 ¥ T T T T T T . T T o I.-"
1 0.2 0.4 0.6 0.8 1 /
1% X 0.00012 i
1 / ]
-0.05 —_ \'.‘. 0.00010 4 \\\ (//'
J '\ b 1 \\\ /,"
] -.\‘ i 0.00008 T <k
0107 4 s ] b S
_ i3 3 S
J 1} / 0.00006
E 'E\ ).*' |
-0.15 7 3.
1 I 0.00004
]l Y / ]
] 7
-0.20 4 3 7 0.00002
-20 \ ]
\\ i 3 il
] \\'\. P 0 r T T T T T T T T 1
1 G - 0 0.2 0.4 0.6 0.8 1
-0.25 - et ¥
Exact ——SLM —PLM |—SLM " PLM|
Figure 1: Numerical results of Example 1. Figure 3: Error of Example 1.
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Figure 2: Numerical results of Example 2. Figure 4: Error of Example 2.
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