alexa Omega-3, Omega-6 and Omega-9 Fatty Acids: Implications for Cardiovascular and Other Diseases | OMICS International
ISSN: 2153-0637
Journal of Glycomics & Lipidomics

Like us on:

Make the best use of Scientific Research and information from our 700+ peer reviewed, Open Access Journals that operates with the help of 50,000+ Editorial Board Members and esteemed reviewers and 1000+ Scientific associations in Medical, Clinical, Pharmaceutical, Engineering, Technology and Management Fields.
Meet Inspiring Speakers and Experts at our 3000+ Global Conferenceseries Events with over 600+ Conferences, 1200+ Symposiums and 1200+ Workshops on
Medical, Pharma, Engineering, Science, Technology and Business

Omega-3, Omega-6 and Omega-9 Fatty Acids: Implications for Cardiovascular and Other Diseases

Melissa Johnson1* and Chastity Bradford2

1College of Agriculture, Environment and Nutrition Sciences, Tuskegee University, Tuskegee, Alabama, USA

2Department of Biology, Tuskegee University, Tuskegee, Alabama, USA

*Corresponding Author:
Melissa Johnson
College of Agriculture
Environment and Nutrition Sciences
Tuskegee University, Tuskegee
Alabama, USA
Tel: 334-727-8665
E-mail: [email protected]

Received date: September 02, 2014; Accepted date: September 26, 2014; Published date: September 30, 2014

Citation: Johnson M, Bradford C (2014) Omega-3, Omega-6 and Omega-9 Fatty Acids: Implications for Cardiovascular and Other Diseases. J Glycomics Lipidomics 4:123. doi: 10.4172/2153-0637.1000123

Copyright: © 2014 Johnson M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Visit for more related articles at Journal of Glycomics & Lipidomics

Abstract

The relationship between diet and disease has long been established, with epidemiological and clinical evidence affirming the role of certain dietary fatty acid classes in disease pathogenesis. Within the same class, different fatty acids may exhibit beneficial or deleterious effects, with implications on disease progression or prevention. In conjunction with other fatty acids and lipids, the omega-3, -6 and -9 fatty acids make up the lipidome, and with the conversion and storage of excess carbohydrates into fats, transcendence of the glycome into the lipidome occurs. The essential omega-3 fatty acids are typically associated with initiating anti-inflammatory responses, while omega-6 fatty acids are associated with pro-inflammatory responses. Non-essential, omega-9 fatty acids serve as necessary components for
other metabolic pathways, which may affect disease risk. These fatty acids which act as independent, yet synergistic lipid moieties that interact with other biomolecules within the cellular ecosystem epitomize the critical role of these fatty acids in homeostasis and overall health. This review focuses on the functional roles and potential mechanisms of omega-3, omega-6 and omega-9 fatty acids in regard to inflammation and disease pathogenesis. A particular emphasis is placed on cardiovascular disease, the leading cause of morbidity and mortality in the United States.

Keywords

Omega-3 fatty acids; Omega-6 fatty acids; Omega-9 fatty acids; Cardiovascular disease; Hypertension; Inflammation

Introduction

Strategic in pathophysiological homeostasis (following injury), as well as cellular, tissue and organismic protection are acute and chronic inflammatory responses [1,2]. Consequently, the pathogenesis and progression of cardiovascular and other diseases is initiated and perpetuated by this phenomenon. Efforts to normalize or control inflammatory processes include pharmacological, dietary and behavioral therapies, aimed at regulating biologically stimulatory molecules that may stimulate or suppress the synthesis of inflammatory triggers and subsequent byproducts [3-9]. The most recognizable potent bioactive lipid mediators are Arachidonic Acid (AA, C20:4n6), Eicosapentaenoic Acid (EPA, C22:5n3) and Docosahexaenoic Acid (DHA, C20:6n3), synthesized from their dietarly essential precursors linoleic (LA, C18:3n6) and α- linolenic (ALA, C18:3n3) acids (Figure 1). The omega-9 fatty acid, oleic acid, has been suggested to occupy a role in the metabolism of the essential fatty acids [10,11]. These bioactive lipid mediatorsregulate pro-and anti-inflammatory processes via their ability to stimulate enzymes and produce cytokines and other acute phase molecules [12]. Further, these mediators occupy a central role in the synthesis of lipoxins and resolvins that hinder inflammatory pathways, increase the production of anti-inflammatory cytokines and facilitate the resolution of acute inflammation [13-17]. Decreasing dietaryomega-6 fatty acid (i.e. linoleic acid) intake increases the bioavailability of omega-3 fatty acids [18], which may in turn lower tissue concentrations of the omega-6/omega-3 fatty acid ratio, mitigate the intensity and duration of inflammatory responses and subsequently reduce disease risk [19-21].

glycomics-lipidomics-fatty-acid-metabolism

Figure 1: Summary of omega-3, omega-6 and omega-9 fatty acid metabolism and implications for disease.

The relationship between omega-3 and omega-6 fatty acids, inflammation and disease pathogenesis continues to be a topic of extensive study. To a lesser magnitude omega-9 fatty acids have been considered as potential disease mediators. These fatty acids may work individually, additively or synergistically as precursors and critical elements within metabolic pathways, thus actively influencing and/ or altering membrane fluidity, cell structure, and disease pathogenesis (Table 1). Research has revealed the relationship between inflammation and the cellular lipidomic (i.e. lipid) and glycomic (i.e. sugar) profiles, genetic regulation and signaling, suggesting that these profiles may be useful clinical diagnostic and therapeutic tools [22-57]. This review provides a brief synopsis of the structure, function and physiological implications of the omega-3, omega-6 and omega-9 fatty acids in inflammation, hypertension, and Cardiovascular Disease (CVD).

Fatty Acid Structure Dietary Source Function/Mechanism Implication References
Omega-3 Fatty Acids
α-linolenic acid, ALA C18:3n3 Plant oils
  • linseed oil, kiwifruit oil, chia seed oil,  flaxseed oil, canola (rapeseed) oil, soybean, purslane, walnuts
anti-inflammatory
antioxidant
hypocholesterolemic
hypolipidemic
hypotensive
vasoconstrictive
↓ oxidative stress
↓ oxidation
↓ inflammation
↓ platelet aggregation
[26-33]
Eicosapentaenoic acid, EPA C20:5n3 Oily fish, fish oil, certain seaweeds, human breast milk antioxidant
anti-inflammatory
hypotensive
improved insulin sensitivity
↓ oxidative stress
↓ oxidation
↓ inflammation
[34-38]
Docosahexaenoic acid, DHA C22:6n3 Cold water fish,
metabolic synthesis from EPA
anti-inflammatory
hypolipidemic
↓ decline in mental
function in
Alzheimer’s disease
↑ cognition
↑ visual acuity
↓ colon carcinoma cell growth
[39-46]
Omega-6 Fatty Acids
Linoleic acid, LA C18:3n6 Corn, peanut, soybean, cottonseed, other plant oils ↑ vascular adhesion molecule-1 expression
↑ oxidation
↑ inflammation [47-51]
Arachidonicacid, AA C20:4n6 Meat, eggs, dairy products ↑ platelet aggregation
↑ vasoconstriction
↑ eicosanoid synthesis
↑ inflammation
↑ vascular damage
↑ oxidative stress
[52,53]
Omega-9 Fatty Acids
Oleicacid, OA C18:1n9 Olive oil, macadamia oil hypolipidemic
hypotensive
iatherogenicity
↓ LDL cholesterol
↓ LDL cholesterol oxidation
vasoprotective
improved lipid profile
[54-56]
Nervonic acid C24:1n9 King salmon, yellow mustard seed, flaxseed nerve cell myelin biosynthesis ↓ obesity-related risk factors for CVD [57]

Table 1: Structure, dietary source, mechanism and implications of select omega-3, omega-6 and omega-9 fatty acids.

Omega fatty acids and inflammation

Inflammation,resulting from various genetic, demographic, behavioral, environmental and nutritional interactions, is at the center of CVDand other vascular diseases (Figure 2). Potential triggers of increased risk for inflammation and subsequent endothelial and vascular injury are genetic characteristics [58], Western dietary patterns [59], environmental toxins [60], adaptive immune responses [61], the presence of other co-morbidities [62,63], and socioeconomic factors [64]. This is evident in the new paradigm shift of evaluation of heart failure patients with preserved ejection fraction. The emphasis shifts from solely using left ventricular afterload to evaluate heart failure patients, and now includes coronary microvascular inflammation [65] thus, changing the methods of patient evaluation. Omega fatty acids have been described as inflammation-modulating agents, which may stimulate or suppress the synthesis of pro- and/or anti-inflammatory cell signaling molecules. In a recent randomized controlled trial, omega-3 polyunsaturated fatty acid supplementation lowered the concentration of serum proinflammatory cytokines[66].

glycomics-lipidomics-disease-risk

Figure 2: Interactions between and among factors contributing to inflammatory status and disease risk.

One of the omega-6 fatty acids, arachidonic acid, directly impacts inflammation. In vitro it enhanced the ability of endothelial cells to bind monocytes- thus,facilitating the pro-inflammatoryprocess. Linoleic and γ-linolenic, omega-6 fatty acids, and omega-9 oleic acids were able to indirectly provoke the synthesis of Reactive Oxygen Species (ROS) superoxide, a pro-inflammatory mediator, mainly by activating p47 and NADPH oxidase enzyme complex [67]. Oleic acid also induced foam cell formation in rat aorta smooth muscle cells and enhanced atherosclerotic lesion development [68]. This is of particular interest as macrophage foam cell has been suggested to be a potential target for therapeutic interventions [69], with the oxidative byproducts of cholesterol metabolism being found to influence the lipidome and transcriptome of the macrophage [70]. Others found the activation of macrophagesto regulate the expression of genes involved in lipid metabolism, immunity and apoptosis [71,72].

An alternative study found that oleic acid exerted vascular antiatherogenic effects [54] Oleic acid was able to mitigate the effects of TNF-α-induced oxidative stress and injury in adult male Sprague- Dawley rat cardiomyocytes [73] as well as reduce the inflammation associated with saturated fatty acid-induced inflammation in human aortic endothelial cells [74]. Further, the incorporation of milks enriched with oleic acid into the diet has resulted in reductions in total cholesterol, LDL-cholesterol and triglyceride levels, the effects of which were observed among healthy individuals, those with increased risk for cardiovascular disease and individuals with CVD [75]. Although studied to a much lesser degree than oleic acid, another omega-9 fatty acid, nervonic acid, has demonstrated influence on CVD risk. Researchers found Body Mass Index (BMI), leptin, triglycerides, total cholesterol and fasting blood glucose to be significantly negatively correlated with serum nervonic acid..These findings illustrate the ability of nervonic acid to exert protective effects against obesogeniclinked risk factors and conditions such as insulin resistance, diabetes, dyslipidemia and metabolic syndrome.

The impact of fatty acids as inflammatory-modulators is crucial to the state of the vasculature.The vasculature is mainly comprised of endothelial cells, caveolae, smooth muscle cells, adventitia, and fibroblasts. Thus, the cellular responsiveness of the vasculature is vital to the endothelium.The endothelial cells are in direct contact with the red blood cells, and blood lipid profiles are tools of evaluating cardiovascular health. Fatty acid composition of a major component of the endothelium, caveolae, played a regulatory role in TNF-α- induced endothelial cell activation and inflammation. The major omega-6 unsaturated fatty acids in the American diet are atherogenic and enhance the endothelial inflammatory response [76]. One of them, arachidonic acid, directly impacted inflammation. In vitro, it enhanced the ability of endothelial cells to bind, a pro-inflammatory response [77]. In younger animals, estrogen inhibits the expression of proinflammatory mediators in vascular smooth muscle cells [78]. Therefore, in addition to the fatty acids, age and gender play a major role in the inflammatory response.Further, a higher eicosapentaenoic acid to arachidonic acid ratio was associated with decreased LV wall thickness among individuals with diabetes [79]. The ability ofomega-3, 6, and 9 fatty acids to differentially modulate inflammatory stimuli, impact vascular composition,cellular responsiveness, and influence the structural integrity of the left ventricle underscore the implications of these fatty acids in chronic disease risk and prevention.

Omega fatty acids and hypertension

Chronic diseases such as hypertension, obesity, and diabetes are a national and international concern.Obesity prevalence has increased dramatically in recent years. The mortality of obese patients is more often a result of diabetes and hypertension [80]. Obesity is strongly associated with metabolic abnormalities, including insulin resistance, type 2 diabetes, hypertension, and dyslipidemia, mediated in part by the chronic inflammatory state induced by the secretion of adipocytokines, such as angiotensinogen, transforming growth factor–beta, tumor necrosis factor–alpha, and interleukin-six [81-83].

The cardioprotective mechanisms of the omega-3 fatty acids Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) have been attributed to their ability to displace the omega-6 fatty acid, arachidonic acid [8], as molecular substrates during the cyclooxygenase and oxygenase pathways. The combined hypotensive effects of EPA and DHA have been demonstrated in randomized controlled trials [84]. However others found DHA and DHA epoxides to be effective in lowering blood pressure but not EPA [85]. The epoxides of an omega-6 fatty acid, arachidonic acid epoxyeicosatrienoic acids also exhibit antihypertensive and anti-inflammatory effects [86]. Actions of these fatty acids subsequently influence metabolism, β-oxidation, fatty acid synthesis, pro-inflammatory molecule synthesis and the transcription of genes coding for transcription factors (e.g. Peroxisome Proliferator-Activated Receptor [PPAR], Sterol-Response Element Binding Protein [SREBP] and Nuclear Factor jB [NF-jB] as well as enzymes implicated in cholesterol synthesis) [87,88]. Intake of EPA and DHA has been inversely associated with markers of inflammation in both men and women [89] In addition to influencing cytokine concentrations, EPA and DHA have been demonstrated to influence blood glucose and lipid profile [90]. The supplementation of DHA into the diet of hypertriglycemic men was found to decrease serum levels of c-reactive protein and other inflammatory biomarkers [91].

Studies suggest that there is a role for the renin-angiotensin system in the mechanistic blood pressure lowering effects of omega-3 fatty acids.The Ren-2 rat model is mediated by ANG II, and the data suggest that omega-3 PUFA may reduce hypertension via the renin-angiotensin system [92]. In models of Angiotensin-II induced hypertension, DHA epoxides reduce inflammation and systolic blood pressure partially via reduction of prostaglandins, MCP-1, and upregulation of angiotensin-converting enzyme-2. It has been proposed that the oleicacid constituent of olive oil may be responsible for the hypotensive and cardio protectiveeffect associated with olive oil consumption [93-96]. Flaxseed, one of the richest sources of the plant-based omega-3 fatty acid, alpha-linolenic acid has been suggested to have a positive impact on CVD.There is strong scientific evidence from human trials that omega-3 fatty acids from fish or fish oil supplements (EPA and DHA) can significantly reduce risk factors for heart disease (such as reducing blood triglyceride [TG] levels, LDL-cholesterol, serum lipids, blood glucose), diabetes and metabolic syndrome [97-100], yet using nutritional strategies to combat diseases is not the first line of therapeutic intervention [101,102]. Unfortunately, analysis of national observational data indicates that U.S. adults are not consuming the recommended intake of fish and omega-3 fatty acids [103].

Omega fatty acids and other diseases

In addition to suppressing or inhibiting the expression of specific genes implicated in lipid metabolism, dietary fatty acid intake influences cellular, molecular oxidative and inflammatory status [8]. In addition to occupying a role in immune function [104], oleic acid inhibits food intake and glucose production in male rats [105] and has been suggested to enhance insulin production in rat pancreatic beta cells in both in vivo and in vitro environments favoring the inhibition of insulin production by TNF-α [106]. Further, the presence of a rich supply of oleic acid within low density lipoprotein molecules was protective against oxidative modification in rabbits, suggesting the antiatherogenic propensity of oleic acid. Conversely oleic acid was able to facilitate increased macrophage concentrations in mesenteric adipose tissue [107] and attenuate renal fibrosis [108]. Although omega-3 fatty acids have been classified as anti-inflammatory mediators, there is conflicting evidence on the definite ability of these fatty acids to consistently reduce the risks, morbidities and mortalities associated with CVD, cancers and other inflammatory diseases and disorders [109]. There is also evidence for the role of omega-3 fatty acids in the stress response and cognitive function.Rats fed the omega-3 enriched diet had a lower stress-induced weight loss and plasma corticosterone peak, and reduced grooming [110]. These data suggest that the response to chronic restraint stress can also be altered by omega-3 fatty acids.

Conclusions

Central to the initiation, pathogenesis and progression of many disease states is inflammation. Conventional mechanisms of alleviating inflammation include pharmacological therapies, which often target specific key components of inflammatory pathways. Albeit not relatively novel, increased attention has been devoted to more aggressively reevaluating dietary approaches that mitigate inflammatory sequelae. Serving as mediators of lipid metabolism and foundational biomolecules of the lipidome, the character of omega-3, omega-6 and omega-9 fatty acids warrants further discussion. Omega-3 and omega-6 fatty acids have typically been associated with anti- and pro-inflammatory pathways, respectively, whereas the direct role of omega-9 fatty acids in inflammatory pathways remains unclear. In conjunction with other fatty acids and lipid classes, the omega-3, -6 and -9 fatty acids make up the lipidome, and within the conversion of excess carbohydrates into fats, transcendence of the glycome into the lipidome occurs.

More recently, lipidomics profiling has been used as an assessment and monitoring tool for cardiovascular and other disease risk [23,111]. Bioinformatical tools have been particularly useful in examining the lipidome [112]. The genetic, metabolic and phenotypic consequences of omega-3, omega-6 and omega-9 fatty acids range from undetectable to detectable, and may even endure throughout subsequent cellular and organismic generations (Figure 3). Although research affirms a relationship between omega-3, omega-6 and omega-9 fatty acids, both synergistically with the metabolism of the other fatty acids, as well as individually in modulating specific pathways, findings are conflicting.Together the anti-inflammatory exertions, along with the pro-inflammatory mechanisms, highlight the delicate, oftentimes calculated mercurial nature of these fatty acids in maintaining homeostasis. Additional research is needed to add credence to the emergence of omega-3, omega-6 and omega-9 fatty acids as modulators of metabolism, lipidomics and glycomics.

glycomics-lipidomics-Potential-cellular

Figure 3: Potential cellular, molecular and genetic interactions and implications of omega-3, omega-6 and omega-9 fatty acids on biological systems and health/ disease outcomes.

Acknowledgements

This work was supported by the Tuskegee University College Agriculture, Environment and Nutrition Sciences, the George Washington Carver Experiment Station and the Tuskegee University College of Arts and Sciences (Tuskegee, AL).

References

Select your language of interest to view the total content in your interested language
Post your comment

Share This Article

Relevant Topics

Recommended Conferences

  • International Conference on Computational Biology and Bioinformatics Sep 05-06 2018 Tokyo, Japan
    November 19-21-2018 Bucharest, Romania
  • 3rd International Conference on Enzymology and Molecular Biology
    September 17-18, 2018 Singapore City, Singapore
  • 4th International Conference on Enzymology and Lipid Science September 17-18, 2018 Singapore Theme: Novel Advancements in Enzymology and Lipid Science
    September 17-18, 2018 Singapore City, Singapore
  • 4th International Conference on Biochemistry & Biophysics October 03-04, 2018 Los Angeles, California, USA
    October 03-04, 2018 Los Angeles, USA
  • 9th International Conference on Biopolymers and Polymer Sciences November 19-21-2018 Romania,Bucharest
    November 19-21-2018 Bucharest, Romania
  • 12th International Conference on Advancements in Bioinformatics and Drug Discovery
    November 26-27, 2018 Dublin, Ireland
  • Cellular and Molecular Mechanism Conference: Health and Disease November 29-30, 2018 Bali, Indonesia
    November 19-21-2018 Bucharest, Romania

Article Usage

  • Total views: 14421
  • [From(publication date):
    December-2014 - Aug 16, 2018]
  • Breakdown by view type
  • HTML page views : 10428
  • PDF downloads : 3993
 

Post your comment

captcha   Reload  Can't read the image? click here to refresh

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2018-19
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

kactakapaniyor.com

[email protected]

+1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

Taktube

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

porn sex

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

Gaziantep Escort

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

sikiş

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

https://www.gaziantepescort.info

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

mp3 indir

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

putlockers

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

seks

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2018 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
Leave Your Message 24x7