Omega-3 Fatty Acids and Cancer Prevention

Homer S. Black
Department of Dermatology, Baylor College of Medicine, Houston, Texas 77030, USA

Corresponding author: Homer S. Black, Department of Dermatology, Baylor College of Medicine, Houston, Texas 77030, USA, Tel: 832-741-1052; E-mail: hblack@bcm.edu

Received date: January 27, 2017; Accepted date: February 09, 2017; Published date: February 16, 2017

Copyright: © 2017, Black HS. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Introduction

A recent review has summarized the evidence that omega-3 fatty acids (FA) have potential in reducing the risk for a common form of cancer [1]. This editorial is a synopsis of that review covering the historical interest in the potential health benefits of omega-3 FA; the mechanistic rationale for such beneficial effect; and the experimental and clinical evidence that omega-3 supplementation could play an important role in cancer prevention.

Omega-3 fatty acids (FA) are one of two classes (Omega-3 and Omega-6) of essential fatty acids (EFA). They are both considered essential as they cannot be interconverted by the human body and the precursors, linoleic acid and linolenic acid for omega-6 and omega-3 FA respectively, must be provided in the diet [2]. Interest in the health benefits of omega-3 FA arose from earlier observations that Greenlandic West Coast Eskimos, whose lipid diet consisted mainly of marine oils, rich in omega-3 FA, exhibited low incidence of ischemic heart disease and general inflammatory symptoms [3-5]. Results from randomized clinical trials regarding the relation of omega-3 FA on cardiovascular disease (CVD) have remained controversial although observational studies have generally shown that higher levels of omega-3 FA intake was associated with lower risk for CVD outcomes [6-9]. Whereas the primary interest has been on cardiovascular disease, studies of other inflammatory diseases have included diabetes, inflammatory bowel disease, arthritis, and asthma [10,11]. A recent study reports that supplementation of omega-3 FA in the third trimester of pregnancy reduced the absolute risk of wheeze and asthma in offspring by about one-third [12].

Inflammatory mechanisms appear to be common to the above noted diseases as well as to carcinogenesis. Indeed, inflammatory processes are involved in initiation, promotion, and progression stages of cancer [13]. Herein, lays a rationale for potential involvement of omega-3 FA in reduction of cancer risk. These two series of FA, omega-6 and omega-3, compete for active enzyme sites in the cyclooxygenase (COX) and lipoxygenase (LOX) pathways and thus influence the oxidative metabolites passing through these pathways [2]. The omega-6 FA metabolites are of greater hormonal potency than those of the omega-3 FA. Some of these metabolites are known to influence tumor biology. As an example, prostaglandin E2 (PGE2), derived from the omega-6 FA metabolism through the COX pathway, acts as a tumor promoter and has been associated with aggressive growth patterns in both basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) in humans [14]. Contrarily, omega-3 FA, competing with omega-6 FA, inhibit the production of PGE2 and results in formation of the less potent PGE3. Omega-3 FA may also shunt potential prostaglandin precursors through the LOX pathway resulting in intermediates that inhibit tumor growth and that are involved in immune surveillance [15]. Based upon the influence of dietary lipids on the COX and LOX pathways, and their differential bioactive intermediates, a strong rationale is provided for the potential of omega-3 FA in cancer prevention. Consequently, this potential has been examined in several types of cancers. Although studies on the effects of omega-3 FA on CVD have generally been positive, the studies on human cancers have been equivocal. Some cohort and case control studies, but not all, have shown that women that have a higher intake of omega-3 FA intake, compared to omega-6 FA, have a lower incidence of breast cancer. However, among 43 risk ratios calculated across 19 cohorts for 11 different types of cancer and five different ways to assess omega-3 FA consumption, only four were significant and it was concluded that omega-3 FA did not reduce overall cancer risk [16-19]. Similar ambiguities occur with respect to prostate cancer [20,21].

The American Cancer Society estimates that over 3.5 million new cases of skin cancer will occur this year in the U.S. [22]. In regard to this most common cancer, a considerable body of experimental and clinical evidence, albeit circumstantial at this point, exists that omega-3 FA supplementation could reduce the incidence of this most frequently occurring cancer. This evidence has been reviewed [1] and is herein summarized:

Experimental animal studies

• Increasing dietary levels of omega-6 FA exacerbates ultraviolet radiation (UVR)–induced carcinogenic expression whereas omega-3 FA dramatically inhibits UVR carcinogenic expression with regard to both tumor latency and multiplicity [23, 24].

• Pro-inflammatory and immunosuppressive PGE2 levels are increased linearly as dietary omega-6 FA levels are increased whereas PGE2 levels are dramatically reduced by dietary omega-3 FA consumption [25].

• Dietary omega-6 FA suppresses the immunologic responses involved in tumor transplant rejection and the immunologic pathways involved in delayed type hypersensitivity (DTH) and contact hypersensitivity (CHS), whereas omega-3 FA inhibits the UVR induced suppression of DTH and CHS [25-27].

Human clinical and cell culture studies

• Omega-3 FA supplementation significantly increases the erythema (an inflammatory response) threshold to UVR [28, 29].

• Omega-3 FA modulate a number of cytokines and eicosanoids, including PGE2, that mediate immune and inflammatory responses [30-34].

• Omega-3 FA inhibit specific genotoxic markers of UVR-induced DNA damage, including UVR-induced cutaneous p53 [35].

• Omega-3 FA abrogate UVR-induced immunosuppression of cell mediated immunity assessed as nickel CHS [34].
Indeed, these data are overwhelming suggestive that omega-3 FA supplementation could result in a significant reduction in human skin cancer incidence. It has been suggested that the most direct evidence for the positive potential of omega-3 FA in this preventive role is through intervention trials in populations with high, and known risk for non-melanoma skin cancer with a study design similar to that in which reduction of total dietary fat intake was shown to reduce cancer risk [36-38]. It is probable that omega-3 FA supplementation could have beneficial effects on a range of other inflammatory diseases.

References