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Abstract
Contraction is one of the most important concepts that motivated by numerous applications in different fields of 

physics and mathematics. In this work, the contractions of complex associative algebras are considered. We focus 
on the variety A3() of all complex associative algebras of dimension three (including nonunital). Various contractions 
criteria are collected and new criteria are proposed to test the possible existence of contraction for each pair of 
associative algebras. One of the main tools is the use of the low-dimensional cohomology groups of these algebras. 
As a result, we prove that the variety A3() has seven irreducible components, two of dimension 5, four of dimension 
7 and one of dimension 9.

Introduction
The notion of contractions was first introduced by Segal [1] and 

Inonu [2] for Lie algebras. According to references, the contractions 
can be divided into two major categories. The first one is more physical 
that deals with the applications of contractions. Another one is pure 
algebraic that is mainly oriented to the abstract algebraic structure 
and mathematical background. For associative algebras, Gabriel 
[3] studied the irreducible components of the algebraic variety of
4-dimensional unital associative algebras. Mazzola’s paper [4] concerns 
unital associative algebras of dimension five. Classification of low-
dimensional nilpotent rigid associative algebras and the description of
the irreducible components have been treated by Makhlouf [5,6].

The main purpose of this work is to study the variety of all 
3-dimensional complex associative algebras. In the paper, we deal with 
the algebraic point of view of the contractions. We study orbit closures 
of the variety of complex associative algebras of dimension three. The
paper is organized as follows. Some notations on associative algebras,
degeneration, rigidity and contractions of associative algebras are given 
in Section 2. In Section 3, we list some important invariance arguments 
for contractions. Calculation and collection of invariance arguments
are adduced to conclude the possible existence of contractions for an
arbitrary pair of associative algebras in Section 4.

Preliminaries
In this section, we recall some terminology that are used in the paper. 

Let A=(V,λ) be an algebra of dimension n with an underlying vector 
space V over a field  and product λ:V×V→V. Let g:(0,1]→GL(V) be 
a continuous function. More precisely for any t∈(0,1], a nonsingular 
linear operator gt on V is assigned. A parameterized family of new 
isomorphic to A=(V,λ) algebra structures on V is determined as follows:

 1( , ) = ( ( ), ( )), ,t t t tx y g g x g y x y Vλ λ− ∈

Definition 2.1

If for any x,y∈V, the limit 0
0

( , ) = ( , )lim t
t

x y x yλ λ
→+

 exists then 

algebraic structure λ0 is called a contraction of λ.

 A contraction B of A to algebra B is called trivial if B is abelian 
and improper if B is isomorphic to A. Consider an n3-dimensional 
vector space Hom(V⊗V,V) formed by bilinear maps V×V→V, where 
V is an n-dimensional vector space over an algebraically closed field 
 (char=0) denoted by Algn(). An algebra A=(V,λ) is given as an 

element λ(A) of Algn() through the linear mapping λ:V⊗V→V. The 
linear reductive group GLn() acts on Algn() by

1 1( )( , ) = ( ( ( ), ( )))g x y g g x g yλ λ − −∗ .

 Under this action, two algebras A and B belong to the same orbit 
if and only if they are isomorphic. Moreover, we say that algebra A 
degenerates to algebra B, if B lies in Zariski closure of the orbit of A. 
This is denoted by 

degA B→ .

Definition 2.2

Let A be an algebra over a field . We call A an associative algebra 
if its bilinear mapping λ satisfies the following condition

( ( , ), ) = ( , ( , )), , ,x y z x y z x y z Vλ λ λ λ ∈ .

Let An() be the set of all associative algebra structures on 
n-dimensional space over a field . The set An() is an algebraic subset 
of the affine variety Algn(). For a fixed basis {e1,e2,…,en} of the vector 
space V, the multiplication table of A on this basis is given as a point 

3
( )k n

ijγ ∈  as follows

=1
( , ) = , , = 1, , .

n
k

i j ij k
k

e e e i j nλ γ∑ 

Let A be an associative -algebra, D be an A-bimodule and Φ:Ap→D 
be a multilinear mapping. The set of all multilinear mappings from Ap 
to D is called p-dimensional cochain of A and denoted by C p(A,D). 
The coboundary homomorphism is a mapping δ(p) from C p(A,D) to 
C p+1(A,D) given by
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( )

1 2 1 1 2 1
=1

1
1 1 1 1 1

( )( , , , ) = ( , , ) ( 1)

( , , , , ) ( 1) ( , , ) .

p
p i

p p
i

p
i i p p p

x x x x x x

x x x x x x x

δ + +

+
+ + +

Φ Φ + −

Φ + − Φ

∑ 

  

The kernel of the coboundary operator is denoted by Z p(A,D) 
whose elements are called p-cocycles with values in D. The elements of 
the image of δ(p-1) denoted by B p(A,D) are called p-coboundaries with 
values in D. The quotient space:

( , ) = ( , ) / ( , )p p pH A D Z A D B A D  

is called the cohomology space (group) of A of degree p. In this paper, 
we will consider a particular case that D=A as A-bimodule.

Definition 2.3

An associative algebra A is called geometrically rigid whenever 
its orbit is Zariski open in An() and called algebraically rigid if the 
second cohomology group H2(A,A) is trivial [7].

Invariance Arguments
In this section, we list some invariance arguments which are 

helpful for studying the variety of a given class of algebras. Let A be an 
associative algebras over a field . We define:

• 1( , )−= λk kA A A  - the k-th degree of A, where k∈;

• ( ) { | ( , ) = 0}= ∈ λR A x A A x - the right annihilator of A;

• ( ) { | ( , ) = 0}= ∈ λL A x A x A - the left annihilator of A;

• ( ) { | ( , ) = ( , ), }= ∈ ∀ ∈λ λZ A x A x y y x y A  - the center of A;

• ( ) { : | ( ( , )) = ( ( ), ( )), , }= → ∀ ∈λ λAut A d A A d x y d x d y x y A  - the 
group of automorphisms of A;

• ( )SA A  - the maximal abelian subalgebra of A;

• ( )Com A  - the maximal commutative subalgebra of A;

• ( )O A  - the orbit of A;

• ( ) = { ( ) | ( ( , )) = ( ( ), ) ( , ( )), , }∈ + ∀ ∈λ λ λDer A d End A d x y d x y x d y x y A  
- the algebra of derivations of A;

• ( )nr A  -the nilpotency rank of an associative algebra A;

• ( , )iH A A  - the ith cohomology group of A;

• 2 ( , )Z A A  - the 2-cocycles of an associative algebra A;

• ( , , ) ( ) = { ( ) | ( ( , )) = ( ( ), ) ( , ( ), , }∈ + ∀ ∈α β γ α λ βλ γλA d End A d x y d x y x d y xD yr Ae  
is the space of (α,β,γ)-derivations of A, for fixed α,β,γ∈.

The following theorem is very useful to study the irreducible 
components of the subvariety An() of Algn() [8,9].

Theorem 3.1

The the following subsets of An() are closed relative to the Zariski 
topology for any r,s∈:0.60tw0.60tw

• (1) { ( ) | dim };∈ ≤r
nA A A s

• d( i3) m{ ( ) | ( ) };∈ ≥nA A L A r

• dim(5) C{ ( ) | ( )om };∈ ≥nA A A r

• dim(7) A{ ( ) | ( ) >t };u∈ nA A A r

• dim(9) D{ ( ) | ( ) >r };e∈ nA A A r

• di(1 m1) { ( ) | ( , ) };∈ ≥nA A AHA r

• ( , , )dim D(13) { ( ) | ( )er }.∈ ≥α β γnA A A r  

• d( i2) m{ ( ) | ( ) };∈ ≥nA A R A r

• d( i4) m{ ( ) | ( ) };∈ ≥nA A Z A r

• di(6 m) { ( ) | ( )A };S∈ ≥nA A A r

• d( i8) m{ ( ) | ( ) < };∈ nA A O A r

• (10) { ( ) | ( ) };∈ ≤n nA A r A r

• 2dim(12) { ( ) | ( , ) };∈ ≥nA A Z A A r

The proof of 1-4 is the same to that of Lie algebras [10,11]. For the 
parts 5 and 6, the proof is obtained by the following significant fact: let 
N be a Zariski closed subset of An() and A1,A2 in An(). If A1 lies in 
N and A1→A2 then A2 also lies in A. More precisely, the subset N is not 
GLn()-setwise stabilizer. However, it is B-setwise stabilizer, where B is 
the Borel subgroup GLn()- made up of upper triangular matrices. The 
statements 7,8 and 9 are equivalent because of the following relation 
between the dimensions of GLn()-- orbits, automorphism’s groups 
and derivation algebras.

2 2dim dimAut( ) = ( ) dimDe (r= )− −O A n A n A

The proof of 10 is directly coming behind the following fact: let A 
be an associative algebra. We define the lower central series:

A1⊃A2⊃⊃Ak+1⊃

If A is a nilpotent associative algebra then it has nilpotency rank 
denoted by rn(A), i.e., it is a minimal positive integer l such that Al=0. It is 
not hard to see that if A1 degenerates to A2 then dim 1 1

1 2dim .k kA A+ +≥  
The proof of 11 and 12 are the same of Lie algebras [12].

The next corollary is used to reject existence of degenerations for 
each pair of associative algebras A and B.

Corollary 3.1

If an algebra A degenerates to an algebra B. Then the following 
conditions are valid:

• dim1) dim( ≥r rA B 
 for some r,

• (3) ( )dim di (m ),≤L A L B 

• (5) ( )dim Com dim Com( ),≤A B 

•  dim Aut(7) ( ) < t )dim (AuA B  ,

• (11) ( , )dim H dim H ( , ),≤i iA A B B 

• (11) ( , )dim H dim H ( , ),≤i iA A B B 

• ( , , ) ( , , )(13) ( )dim Der d ( )im Der≤A Bα β γ α β γ  .

• (2) ( )dim dim ( )≤R A R B  ,

• (4) ( )dim dim ( )≤Z A Z B  ,

• (6) ( )dim SA dim SA( ),≤A B 

• (8) ( )dim dim> ( )O A O B  ,

• (10) ( ) ( ),≥n nr A r B

• 2 2(12) ( , )di ( ,m )m di≤Z A A Z B B 
.

In the sequel, all algebras suppose to be over the field of complex 
numbers .
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The Variety of Complex Associative Algebras of 
Dimension Three

 In this section, we recall the complete list of non-isomorphic classes 
of three-dimensional complex associative algebras, which was obtained 
in Rikhsiboev et al. [13] to study the subvariety A3() of Alg3().

Theorem 4.1
Any 3-dimensional complex associative algebra A is isomorphic to 

one of the following pairwise non-isomorphic algebras.
1
3 1 3 2 3 1 2
2
3 1 3 2 3 1 2
3
3 1 1 2 1 2 3 2 1 3
4
3 1 3 2 2 3 2 3 3 3

: = , = ;
( ) : = , = , \ {1};
: = , = , = ;
: = , = , = ;

As e e e e e e
As e e e e e e
As e e e e e e e e e
As e e e e e e e e e

α α α ∈

5
3 2 3 2 3 1 1 3 3 3
6
3 3 1 2 3 2 2 3 3 3
7
3 1 2 1 2 2 2 3 1 1 3 3 3
8
3 1 3 1 2 3 2 3 1 1 3 3 3
9
3 2 3 2 3 1 1 3 2 2 3 3 3
10
3 1 3 1 2 3 2 3 1 1

: = , = , = ;
: = , = , = ;
: = , = , = , = ;
: = , = , = , = ;
: = , = , = , = ;
: = , = , = ,

As e e e e e e e e e
As e e e e e e e e e
As e e e e e e e e e e e e
As e e e e e e e e e e e e
As e e e e e e e e e e e e
As e e e e e e e e e e3 2 2 3 3 3

11
3 1 3 2 2 3 2 3 1 2 3 2 2 3 3 3
12
3 1 1 2 1 3 1 2 3 2 3 1 1 3 2 2 3 3 3
13
3 1 1 1 2 2 2 3 3 3
14
3 1 2 1 2 1 1 2 2 2 3 3 3
15
3 1 2 1 2

= , = ;
: = , = , = , = , = ;
: = , = , = , = , = , = ;
: = , = , = ;
: = , = , = , = ;
: = ,

e e e e e
As e e e e e e e e e e e e e e e
As e e e e e e e e e e e e e e e e e e
As e e e e e e e e e
As e e e e e e e e e e e e
As e e e e e2 2 3 3 3

16
3 2 1 1 2 2 2 3 3 3
17
3 1 1 2 3 3 3
18
3

= , = ;
: = , = , = ;
: = , = ;
: .

e e e e
As e e e e e e e e e
As e e e e e e
As Abelian

In Table 1, we assemble some contraction invariants of three-
dimensional associative algebras that were obtained in refs. [14,15].

In Table 2 below we present the values of more contraction 
invariants.

Table 3 contains the values of contraction invariants applying 
the algorithm, which was stated in ref. [16] to describe the (α,β,γ)-
derivations of three- dimensional complex associative algebras.

By using all the criteria presented above, we give in the following table 
all possibilities of degenerations for 3-dimensional associative algebras. The 
checkmark denotes that there is a degeneration degA B→ . The other 
symbols stand for the reason why such a degeneration is impossible. 
Indeed, there is more than just one reason for a non-degeneration. 
However, we have written down only one in the table (Table 4).

According to Table 4, the algebras 2 5 7 12 13 15 16
3 3 3 3 3 3 3, , , , , and ,As As As As As As As  

and are geometrically rigid. More precisely, they are not degeneration 
of other 3-dimensional associative algebras structures.

IC dim (R(A)) dim (L(A)) dim (Aut(A)) dim (Com(A)) dim (Der(A)) 
1
3As  1 1  4  3 4 

2
3As  1 1  4  2  4 

3
3As  1 1  3  3 3 

4
3As  2 2  3  2  3 

5
3As  1 1  4  2  4 

6
3As  2 2  3 2  3 

7
3As  0 0  2  2  2 

8
3As  1 0  3  2  3 

9
3As 0 1  3  2 3 

10
3As  0 0  4  3  4 

11
3As  2 2  2 3  2 

12
3As 0 0  2 3  2 

13
3As  0 0  0  3  0 

14
3As  0 0  1 3  1 

15
3As  1 0  2  2  2 

16
3As  0 1  2  2  2 

17
3As  1 1  2  3 2 

18
3As  3 3  9  3 9 

Table 1: The collected contraction invariants of three-dimensional associative algebras.
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IC  dim (
2(A )) dim (Z(A)) dim (SA(A)) dim (O(A)) 3( )r A  dim (H

1( , )A A ) dim (H
2 ( , )A A ) dim (Z 2 ( , )A A )

1
3As  1 3  2  5 3 4  4 9

2
3As  1 1  2  5  3 2  3 8

3
3As  2 3  2  6 4  3 3 9 

4
3As  2 2  2  6  -  1 2 8

5
3As  3 0  2  5  - 1 0 5

6
3As  2 2  2 6  -  1  2 8

7
3As  3 2  1  7  -  0 0 7

8
3As  3 1  2  6  -  1 1 7

9
3As 3 1  2  6 - 1 1 7 

10
3As  3 3  2  5  -  4 6 11 

11
3As  2 3  2 7  -  2  2 9

12
3As 3 3  1 7  -  2 0 7 

13
3As  3 3  0  9  - 0  0 9

14
3As  3 3  1 8  -  1 1 9

15
3As  3 1  1  7  -  0 0 7 

16
3As  3 1  1  7  - 0  0 7

17
3As  2 3  1  7 - 2  2 9 

18
3As  0 3  3  0 2 9  27 27

Table 2: The calculated contraction invariants of three-dimensional associative algebras.

IC dim ( (1,1,0) ( )Der A ) dim ( (1,0,1) ( )Der A ) dim ( (1,0,0) ( )Der A ) dim ( (0,1,1) ( )Der A ) dim ( (0,0,1) ( )Der A ) dim ( (0,1,0) ( )Der A  ) 

1
3As  3 3  6  4 3 3 

2
3As  3 3  6  4  3 3 

3
3As  3 3  3  3 3  3 

4
3As  5 3  3  3  6  3 

5
3As  3 3  0  0  3 3 

6
3As  3 5  3 3  3  6 

7
3As  3 3  0  0  0  0 

8
3As  5 2  0  0  3  0 

9
3As 2 5  0  0 0 3 

10
3As  3 3  0  0  0 0 

11
3As  3 3 3 3  3 3 

12
3As 3 3  0 0  0 0 

13
3As  3 3  0  0  0 0 

14
3As  3 3  0 0  0 0 

15
3As  5 2  0  0  3 0 

16
3As  2 5  0  0  0 3 

17
3As  3 3  3  3 3 3 

18
3As  9 9  9  9 9  9

Table 3: Contraction invariants of three-dimensional associative algebras.
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deg
   

1
3As   

2
3As   

3
3As   

4
3As   

5
3As 6

3As  

1
3As  - ( )Com A   3( )r A  ( )Aut A  ( )Z A  1( , )H A A  

2
3As ( )Aut A - 

 3( )r A  
2 ( , )H A A  ( )Z A 1( , )H A A  

3
3As  √   2 ( , )H A A  

 -
 

2 ( , )H A A  
2 ( , )Z A A  ( )Com A  

4
3As  ( )R A ( )L A  ( )R A  - 2 ( , )H A A  (1,1,0) ( )Der A  

5
3As ( )O A  ( )O A  ( )Aut A ( )Aut A  - ( )Der A  

6
3As  ( )R A ( )Z A   ( )R A (1,0,1) ( )Der A  d

2( )A  - 

7
3As  √ Z ( )A   √  √ ( )Z A   √  

8
3As  (1,1,0) ( )Der A (1,1,0) ( )Der A   ( )Aut A  ( )Aut A ( )Z A ( )Der A  

9
3As (1,0,1) ( )Der A (1,0,1) ( )Der A  ( )Aut A ( )Der A 2 ( , )H A A ( )Aut A  

10
3As  2 ( , )H A A ( )Aut A   ( )Aut A ( )Der A ( )Com A ( )Com A  

11
3As  ( )R A ( )L A  ( )R A ( )Com A  ( )Z A  ( )Com A  

12
3As  √ ( )Com A   √ 1( , )H A A ( )Com A ( )Z A  

13
3As  √ ( )Com A   √  ( )Z A  ( )Com A  ( )Com A  

14
3As   √ ( )Z A   √ ( )Com A  ( )Z A ( )Com A  

15
3As  (1,1,0) ( )Der A (1,1,0) ( )Der A   (1,1,0) ( )Der A  √ ( )Z A (1,1,0) ( )Der A  
16
3As  (1,0,1) ( )Der A (1,0,1) ( )Der A  (1,0,1) ( )Der A (1,0,1) ( )Der A  ( )Z A  √  

17
3As  √ ( )Com A   √ 1( , )H A A 2 ( , )H A A 1( , )H A A  
18
3As ( )R A ( )L A   ( )Aut A  ( )Com A ( )SA A  2( )d A  

deg


  7
3As   8

3As   9
3As   

10
3As   11

3As 12
3As  

1
3As 2 ( , )H A A ( )O A 2 ( )d A   ( )R A  ( )Der A  ( )L A  

2
3As  ( )R A  ( )L A  2 ( , )H A A  d 2 ( )A  ( )Aut A ( )R A  

3
3As  ( )Z A   ( )Com A   ( )R A   ( )L A  ( )O A  ( )SA A  

4
3As  d 2 ( )A  ( )Z A  2 ( , )H A A  ( )L A  ( )O A ( )Aut A  

5
3As ( )R A  ( )L A  ( )R A  ( )R A   ( )Aut A ( )SA A  

6
3As 2 ( , )H A A ( )L A  ( )R A ( )L A  ( )O A  ( )SA A  

7
3As  - ( )Z A   ( )Z A  √ ( )Aut A  ( )O A  

8
3As  ( )SA A -  ( )R A  ( )R A ( )O A  2 ( , )H A A  

As  ( )L A  ( )L A   - ( )L A  ( )Der A ( )Der A  

10
3As ( )SA A 1( , )H A A  ( )O A - 2 ( , )H A A ( )Aut A
11
3As 1( , )H A A 2 ( , )H A A 1( , )H A A d 2 ( )A   - 2 ( , )H A A  
12
3As 1( , )H A A 1( , )H A A ( )Com A √ ( )Aut A - 

13
3As  ( )Com A ( )Z A  (1,1,0) ( )Der A  √  √  2 ( , )Z A A  

14
3As  ( , )H A A ( )Com A  ( )Com A √ √ 2 ( , )H A A  

15
3As ( )R A √ (1,1,0) ( )Der A ( )R A  ( )Aut A ( )R A  

16
3As ( )L A  ( )L A  √ ( )L A  ( )Der A  ( )L A  

17
3As ( )R A   2 ( , )H A A ( )R A  ( )L A ( )Aut A 2 ( , )Z A A  

18
3As ( )O A ( )Z A  ( )Der A  2 ( , )Z A A 1( , )H A A  2 ( , )H A A  

deg


  13
3As   14As   15

3As   16
3As   17

3As 18
3As  



Citation: Mohammed NF, Rakhimov IS, Said Husain SK (2017) On Contractions of Three-Dimensional Complex Associative Algebras. J Generalized 
Lie Theory Appl 11: 282. doi: 10.4172/1736-4337.1000282

Page 6 of 6

Volume 11 • Issue 3 • 1000282J Generalized Lie Theory Appl, an open access journal
ISSN: 1736-4337

1
3As 1( , )H A A ( )SA A  2 ( , )H A A ( )O A ( )SA A √
2
3As ( )L A (1,0,0) ( )Der A (0,1,1) ( )Der A ( )SA A  H 2 ( , )A A  √

As ( )Aut A ( )Der A  ( )Der A  ( )Com A  2 ( , )H A A  √
4
3As 2 ( )Der A ( )SA A  ( )Z A 1( , )H A A  ( )O A √
5
3As 1( , )H A A ( )SA A  ( )O A 1( , )H A A ( )Der A √
6
3As ( )Der A ( )Der A 2 ( , )H A A ( )Z A ( )O A  √
7
3As ( )SA A ( )O A  ( )Z A ( )Z A ( )Aut A √
8
3As ( )O A ( )SA A  1( , )H A A 2 ( , )H A A ( )Aut A √
9
3As ( )Aut A ( )L A 1( , )H A A ( )SA A   ( )O A √
10
3As ( )O A 2 ( , )H A A 2 ( , )H A A  ( )Z A ( )O A √
11
3As ( )Der A ( )Aut A ( )Z A ( )L A ( )R A  √
12
3As ( )SA A ( )Aut A ( )Z A ( )Com A ( )Aut A √
13
3As  -

√ (1,0,1) ( )Der A ( )Z A  √ √
14
3As ( )SA A - 2 ( , )H A A 1( , )H A A √ √
15
3As ( )SA A ( )O A  - ( )R A ( )Aut A √
16
3As ( )SA A ( )Aut A ( )L A  - ( )Aut A √
17
3As ( )Aut A ( )Aut A ( )Z A ( )R A -

√
18
3As  ( )O A ( )L A ( )Der A 2 ( , )Z A A 1( , )H A A ( )R A  

Table 4: All possibilities of degenerations of three-dimensional associative algebras.

Theorem 4.2

The rigid irreducible components of the variety A3() are 
generated by the algebras 2 5 7 12 13 15 16

3 3 3 3 3 3 3, , , , , andAs As As As As As As  and with 
the dimensions:

2
1 3 1

5
2 3 1

7
3 3 2

12
4 3 3

13
5 3 4

15
6 3 5

16
7 3 6

= ( ), = 5,

= ( ), = 5,

= ( ), = 7,

= ( ), = 7,

= ( ), = 9,

= ( ), = 7,

= ( ), = 7,

C Orb As dim C

C Orb As dim C

C Orb As dim C

C Orb As dim C

C Orb As dim C

C Orb As dim C

C Orb As dim C















As a consequence, 3(di ) =m 9A  .
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