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Introduction
The mathematical programming in rough environment was 

introduced in [1-4]. The multiobjective rough convex programming 
problem (MRCPP) can be classified according to existence of roughness 
is in multiobjective function or constraints. The mathematical problems 
can be classified into three classes [3]. First class: MRCPP with rough 
feasible set and deterministic multiobjective function. Second class: 
problems with deterministic feasible set and rough multiobjective 
function. Third Class: problems with rough feasible set and rough 
multiobjective function. There are two solution sets of the MRCPP; 
surely Pareto optimal solution set and possibly Pareto optimal solution 
set. The aim of this paper is to present the concepts of duality of MRCPP 
when roughness is in the multiobjective function and the feasible 
region is deterministic. Also it discussed the duality when roughness is 
in feasible region and multiobjective is deterministic. 

This paper consists of four sections. Section 2 introduces the 
mathematical formulation of MRCPP and presents basic concepts of 
rough set theory. Section 3 presents duality theorems of multiobjective 
convex programming problem in rough environment when the 
multiobjective function is rough functions and the feasible region 
is deterministic. Also it discussed the duality when roughness is in 
feasible region and multiobjective is deterministic. Section 4 includes 
the conclusions.

Basic Concepts 
RST is a new mathematical theory introduced by Pawlak in the 

early 1980s to deal with vagueness or uncertainty, [5-9]. It is a very 
rich area for research [10-12]. RST expresses vagueness by employing 
a boundary region of a set and not by means of membership function, 
[1,3,4,7]. The basic concept of RST is the approximation of indefinable 
sets via definable sets or ordinary sets, [1,5,7,10]. The rough function is 
a new concept based on the RST [3,4,7]. 

Definition (Convex Rough Set) [4]: 

A rough set is convex if its lower and upper approximation sets are 
convex.

A rough function f is a function without explicit formula but bounded 
by several explicit functions because it is not known precisely. It is given as 
result of modelling the problem due to imperfect data. For simplification 
of our study the rough function will be defined by two functions.

Definition (Rough Function):

A function f(x) is a rough function if it is not known precisely 
but it is only known that the function values of f(x) are bounded by 
two deterministic functions f*(x), f*(x) such that f*(x)≤f(x)≤f*(x) at any 
xϵX where f*(x), f*(x) are lower and upper approximation function 
respectively. The surely values of f(x) are the values of f*(x), f*(x) at xϵX 
such that f*(x)=f*(x).

Definition (Convex Rough Function):

A rough function f(x) is called convex rough function on the convex 
set X if its lower and upper approximation functions are convex.

The multiobjective convex programming problem (MCPP) is 
defined as follows [13]:

( ) ( )1 2min( , , , ( ))… kf x f x f x                 (1)

subject to

( ){ | 0  , 1,2, , }= ∈ ≤ = …n
rX x R g x r m

where the functions fi:R
n→R for i=1,…, k and gr:R

n→R for r=1,…, m 
are assumed to be differentiable and convex.

If problem (1) is transformed into problem (2) by using the 
weighted method [13]. 
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The whole Pareto optimal solution set is gotten if convexity 
assumption is presented but it fail to get the whole Pareto optimal 
solution set in of non-convex problems.

Theorem [13]:

Assume convexity if * *∈x X (X* is Pareto optimal solution set of 
(1)) then there exists ∈w W  such that x* solve problem (2).

Theorem [13]:

x* a Pareto optimal solution of MCPP if there exists ∈w W  
such that x* solves problem (2) and if either one of the following two 
conditions holds:

1.	 Wi>0 for all i=1, 2,…, k.

2.	 x* is a unique solution of problem (1).

From above relations, the stability set of the first kind of problem 
(1) according to w can be defined as 

 ( ) { |  is a Pareto optimal solution to problem (1)}= ∈S x w W x .

The duality of multiobjective optimization problem has been 
studied by many authors see refs [14-16]. But the cone optimization 
is used to get the duality in many studies. Only some researchers study 
the duality in general form [16]. In this paper, a simple method is 
presented to get the duality.

The first dual form is used when 
1
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− −
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i

w w  which it defined 
as follows:
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Theorem:

 If there is a Pareto optimal solution x
−

 such that 

1

0, 1, ( )
− − − −

=

> = ∈∑
k

i i
i

w w w S x  where  
− 

 
 

S x the stability set of the first 

kind, then there is 0µ
−

≥r  Pareto optimal solution to problem (3).

Proof:

It can be proved as the same steps as theorem 4.6 [13].

If problem (1) is transformed into problem (2) by using the weighted 
method. Then there are two dual form of problem (3), firstly by using 
Lagrange method. The theorems and concepts of convex programming 
problem are valid if MRCPP is transformed to convex programming 
problem [17] under the suitable conditions. The Lagrange function can 
be defined as follows:

( )maxθ µ

subject to 0µ ≥  				                     (4)

where ( )
1 1

inf{ ( ) 0, 0 | }θ µ µ µ
−

= =
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i i r r r
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Secondly: The other dual form of problem (3) can be defined 
by differentiable properties when its Pareto optimal solution x

−
 is a 

unique optimal solution as follow:
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Theorem:

If 
−

x  is a unique optimal solution of problem (2) then there is 
0µ

−

≥r
 optimal solution to problem (5). 

Proof:

It can be proved as the same steps as theorem 4.6 [13].

Duality of MRCPP
The duality of MRCPP for the two classes can be obtained by using 

any type of duality forms in the previous section depending on the 
properties of MRCPP. 

Dual problem of first class of MRCPP:

As known the first class of MRCPP can be defined as:

( ) 1 2min ( ( ), ( ), , ( ))  = … t
kF x f x f x f x

subject to ∈x X  				                     (6)

where F: Rn→Rk is a vector of convex deterministic functions, X is 
the feasible region which is a convex rough set such that *

* ⊆ ⊆X X X ,

( ){ } ( )* *
*| 0, 1,2, , , { | 0, 1,2, , }= ∈ ≤ = … = ∈ ≤ = …n

i iX x R G x i A X x X g x i a .

The problem (6) can be solved in the following manner:

Firstly: Solve the following problem by using any suitable method:

Min F(x)

subject to *∈x X

If C  is the Pareto optimal solution set and * ( )= F F C  is the Pareto 
optimal set.

Find the set 1 * = ∩ C XC .

Definition (The surely Pareto optimal solution set): 

If 1 ,  ≠ ∅C then 1
C  is called surely Pareto optimal solution set of 

problem (6) which contains all surely Pareto optimal solutions.

If 1 *; ;= ⊆  C C C X  then problem (6) has only surely Pareto optimal 
solutions.

Secondly: If 1 = ∅C , ⊆ BNC X , solve the following problem:

Min F(x)

subject to *∈x X

If 2
C  is the Pareto optimal solution set of the above problem and
( )*

2{ |= ∈  F x xF C } is the Pareto 

optimal set of multiobjective functions.

Definition (The possibly Pareto optimal solution set): 

If 1 = ∅C , the set 2∪ C C  is called the possibly Pareto optimal 
solution set of problem (6) which contains all possibly Pareto optimal 
solutions.
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The Pareto optimal set of the multiobjective functions F(x) is 

between Pareto optimal set *
F  of F(x) on the upper approximation 

set and Pareto optimal set *
F of F(x) on the lower approximation set, 

( ) *
* min

∈
⊆ ⊆ 

x X
F xF F .

The dual problem of the first class of MRCPP is formulated as 
problem (3). So the Pareto optimal set of the dual problem of the first 
class is between

( ) *
* max µθ θ θ⊆ ⊆  

where

( ) ( ) ( )

( ) ( )
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f x g x f x g x

subject to w f x g x

w w r m w S x S x

Where x
−

 and x  are Pareto optimal solutions of primal problem on 
lower approximation set and on upper approximation set, respectively. 

* 
− 

 
 

S x  and *( )
−

S x  are stability sets of first kind problem on lower 

approximation set and on upper approximation set, respectively.

The dual problem can be solved in the following manner:

Firstly: Solve the following problem:

( ) ( ) ( )

( ) ( )

1
1 1

1 1

*
*

1

max , , ( )

 0
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µ µ

µ
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−

= =

−
− − − − −
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k
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f x G x f x G x

subject to w f x G x

w w r m w S x S x

If D  is Pareto optimal solution set and *  θ is Pareto optimal set.

Find *
*1 |µ θ θµ

− −  = ∈ ∈  
  

 D D  which is a surely Pareto optimal solution 

set if 1 = ∅D . 

Secondly: If 1 = ∅D , solve the following problem

( ) ( ) ( )

( ) ( )

1
1 1

1 1

*
*

1

max , , ( )

 0

0 , 1 , 0 , 1, 2, , , ( ) ( )

µ µ

µ
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−

= =

−
− − − − −
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∑ ∑
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r r k r r
r r
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i i r r
i r

k

i i r
i

f x g x f x g x

subject to w f x g x

w w r m w S x S x

If 2
D  is Pareto optimal solution set and *θ  is Pareto optimal set. 

The set 2∪ D D  is a possibly Pareto optimal solution set.

Dual problem of second class of MRCPP:

The second class of MRCPP is formulated as follows:

Min F(x)

subject to ∈x X  (7)

where X is the feasible region such that ( ) ( ){ | 0 1,2, , } , = ∈ ≤ = …n
iX x R g x i m F x  

is vector of functions which is vector rough convex functions such 
that ( ) ( ) ( ) ( ) ( )* *

* *,  and ≤ ≤F x F x F x F x F x  are the lower and upper 
approximation deterministic vectors functions of F(x) respectively,

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )* * * *
* *1 *2 * 1 2, , , , , , ,= … = …

tt
k kF x f x f x f x F x f x f x f x

The problem (7) can be solved in the following manner:

Firstly: Solve the following problem by using any suitable method:

Min F*(x)

subject to ∈x X

If 
¨

C  is the Pareto optimal solution set and ( )
¨ ¨

* *{ | }= ∈F F x x C  is 
the Pareto optimal set. 

Find
¨ ¨ ¨

*
*1 |

− −  = ∈ ∈  
  

C x C F x F .

Definition (The surely optimal solution set): 

If 
¨

1 ,≠ ∅C  then 
¨

1C  is called the surely optimal solution set of the 
problem (7) which contains all surely optimal solutions.

If 
¨ ¨

1 =C C , the problem has only a surely Pareto optimal solution 
set.

 Secondly: If
¨

1 = ∅C  , solve the following problem

min F*(x)

subject to ∈x X

If 
¨

2C  is Pareto optimal solution set and ( )
*¨ ¨

*
2{ |= ∈F F x x C } is 

the Pareto optimal set. 

Definition (The possibly Pareto optimal solution set):

A set 
¨ ¨ ¨

2 1, ,= ∅∪C C C is called the possibly Pareto optimal 
solution set of the problem (7) which contains possibly Pareto optimal 
solutions. 

Then the Pareto optimal set of the objective function F(x) is between 
Pareto optimal set of the lower approximation functions vector 

¨
*F  

and Pareto optimal set of the upper approximation functions vector

( )
* *¨ ¨ ¨

* , min
∈

⊆ ⊆
x X

F F F x F .

The dual problem of the second class of MRCPP is formulated as 
problem (5). So the optimal value of the dual problem of the second 
class is between

( )
*¨ ¨ ¨

* maxθ θ µ θ≤ ≤

where
( ) ( )( )

( ) ( )( )

*
* *

1 1 1

¨
*

* *
1 1 1

max ( ) '                      
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µ
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− −

= = =
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 ≥ = …
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i i r

r

w f x w f x f x g x

subject to w f x w f x f x g x

r m
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( ) ( )( )
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1 1 1
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− −

= = =
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The dual problem can be solved in the following manner [18,19]:

Firstly: Solve the following problem

( ) ( )( )

( ) ( )( )

* *
*

1 1 1

*
*

1 1 1

max ( ) '

 ' 0

0 , 1, 2, ,

µ

µ

µ

− −

= = =

− −

= = =

 + − +  
 

   ∇ + ∇ − + ∇ =   
   
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∑ ∑ ∑
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k k m

i i i i i r r
i i r

k k m

i i i i i r r
i i r

r

w f x w f x f x g x

subject to w f x w f x f x g x

r m

If 
¨

D  is the optimal solution set and 
*¨

θ  is the optimal value. 

Find the set ( )
*¨ ¨ ¨ ¨

*1 |µ θ µ θ
 

= ∈ = 
 

D D  which is a surely optimal 

solution set if
¨

1D ≠ ∅ .

Secondly: If 
¨

1 = ∅D , solve the following problem

( ) ( )( )

( ) ( )( )

*
* *

1 1 1

*
*

1 1 1

Max '

' 0

0 , 1, 2, ,

µ

µ

µ

− −

= = =

− −

= = =

   + − +   
   

   ∇ + ∇ − + ∇ =   
   

≥ = …

∑ ∑ ∑

∑ ∑ ∑

k k m

i i i i i r r
i i r

k k m

i i i i i r r
i i r

r

w f x w f x f x g x

subject to w f x w f x f x g x

r m

If the set 
¨

2D  is the optimal solution set and 
¨

*θ  is the optimal value. 

The set 
¨ ¨

2∪D D  is a possibly optimal solution set.

Conclusion
In this paper we discuss the duality of the multiobjective rough 

convex programming problem when the multiobjective function 
is deterministic and roughness is in feasible region which does not 
discussed before. Also it presented the duality when roughness in 
multiobjective function and the feasible region is deterministic. The 
duality the multiobjective rough nonlinear convex programming 
problem is defined and its optimal solution sets are characterized. The 
duality study is important for these kinds of problems because it helps 

us for obtaining the surely optimal solution of the lower approximation 
function and the upper approximation function.
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