

On Finite and Infinite Principal Door and Connected-Topologies

Azzam AA1*, Farrag AS² and EL-Sanousy E²

¹Department of Mathematics, Faculty of Science, Assuit University, New Valley Branch, Egypt ²Department of Mathematics, Faculty of Science, Sohag University, Egypt

Abstract

A space X which carries topology τ is a door space if each subset of X is either open or closed. In this paper a characterization of the principle door and a formula for the number of the door topologies on a set X_n of *n* points are given. Some properties of the principal connected topologies on non-empty set X are discussed and the minimal τ_0 -topologies on X are also characterized. Finally a few results about the number of the chain topologies on X_n are proved.

Keywords: Prfincfipal topologfical spaces; Door; Connected; Mfinfimal $\tau_{,i}$; Chain topologies

AMS mathematics subject classification: 54D10, 54D15, 54C08 and 54C10.

Introduction

Frohlich [1] defined the principal ultratopology on a set *X* to be the topology on X which is strictly weaker than the discrete topology D on X and which is of the form $D_{yz} = E_z \cup U(y)$, where U(y) is the principal ultra filter generated by $\{y\}$ and E_z is the excluding point topology on X with the excluding point z. In fact $D_{yz} = E_z \cup P_y$, where P_y is the particular point topology on X with the particular point y. Then, D_{yz} is the principal ultratopology on X in which each open set containing zcontains *y*. Steiner [2] defined the minimal open set at a point $x \in X$ in a space *X* which carries topology τ to be the open set $U_x \in \tau$ such that $x \in$ U_x and is contained in each open set containing x. Steiner also defined the principal topology τ on X to be the topology with the minimal basis consists only of minimal open sets at the points of X, proved that τ is the principal if and only if arbitrary intersections of open sets are open and characterized the door topologies on X. In Farrag and Sewisy [3,4] and Farag and Abbas [5] described algorithms for construction and enumeration all strictly weaker topologies than a given topology on a set X_n of *n* points, all topologies and all hyperconnected, all door, connected and regular topologies on X_{u} .

Door Principal Topologies

Let *X* be a space which carries topology τ , *Q* and *S* be two any properties of topologies on *X*. Then, τ , is:

- (1) An *E*-topology on *X* if \cup { $G \in :GX$ } $\neq X$ [4].
- (2) A *P*-topology on *X* if $\cap \{G \in : G\phi\} \neq \phi$ [4].

(3) An *h*-topology on *X* if $G \cap H\phi$ for any $G, H \in \tau \setminus \{\phi\}$. This is the irreducible [6] as well as is the hyperconnected [2]. If τ is finite then, *h* and *P* are equivalent but in general this is not true. For let, $\tau = \{N, \phi, N \setminus \{1, 2, 3, ..., n\} : n \in N\}$ where *N* is the set of the positive integers then, (N, τ) is *h* but not *P*.

(4) An *E*'-topology on *X* if there is a point $p \in X$ such that $E_p \tau$ where, E_p is the excluding point topology in *X*.

(5) An *P*-topology on *X* if there is a point $p \in X$ such that $P_p \tau$, where P_p is the particular point topology on *X* with the particular point $p \in X$.

(6) An S(k)-topology on X if there are k singleton members of τ .

(7) A $Q \lor S$ -topology if it is Q or S.

(8) A $Q \land S$ -topology if it is both Q and S.

(9) A $Q \setminus S$ -topology if it is Q and not S.

Throughout this paper |U| denote the cardinality of the set U. A finite set of n points is denoted by X_n and N_n , $N_n(Q)$ denote the number of all topologies and the number of the Q -topologies on X_n . Then:

(1) $N_n(E) = N_n(P) = \sum_{k=0}^{n-1} {}^n C_k N_k$ where N_k is the number of all topologies on X_k [4].

(2) $N_n(E^* \wedge E) = N_n(P^* \wedge P) = n$ and $N_n(E^* \wedge P^*) = n(n-1)+1$.

Proposition 2.1

Let X_n be a set of *n* points then,

 $N_n(E \wedge P) = \sum_{k=0}^{n-1} {}^n c_k N_k(P) = \sum_{k=0}^{n-1} {}^n c_k N_k(E) \text{ where } N_0(E) = N_0(P) = 1.$

Proof. Let AX_n be such that $|A| = k, 1 \le kn$. If τ is an *E*-topology on $X_n \setminus A$ then $\tau(A) = \{G \cup A : G \in \tau\} \cup \{\phi\}$ is a nondiscrete *EP* -topology on X_n . If $A = X_n$ then $\{\phi\}$ is not a topology on X_n while $\tau(A) = \{X_n \cup \phi\} \cup \{\phi\} = \{X_n, \phi\}$. Clearly there are nC_k nonempty subsets of X_n with the cardinality *k* and so,

$$N_n(E \wedge P) = \sum_{k=1}^{n} {}^n c_k N_{n-k}(E) = \sum_{k=0}^{n-1} {}^n c_k N_k(E) .$$

Secondly; if τ is a *p*-topology on $X_n \setminus A$ then $\tau(A) = \{X_n, G : G \in \tau\}$ is an $E \wedge P$ -topology on X_n . If $A = X_n$ then $\{\phi\}$ is not a topology on X_n while $\tau(A) = \{X_n, \phi\}$. Similarly,

$$N_n(E \wedge P) = \sum_{k=1}^{n} {}^n c_k N_{n-k}(P) = \sum_{k=0}^{n-1} {}^n c_k N_k(P)$$

Example 2.2: By using Example 3 [4] then,

$$N_5(E \wedge P) - N_5(E \setminus P) = 2111 - 1190 = 921 = \sum_{k=0}^{4} {}^5C_k N_k(E) \cdot$$

Remark 2.3: An *E*^{*}-nondiscrete topology τ on a nonempty set *X* may be principal or nonprincipal. For, if *X* is an infinite set then, $\tau = \{G \subset X : p \notin G \text{ or } X \setminus G \text{ is finite}\}$ is a nonprincipal *E*-topology on *X*.

*Corresponding author: Azzam AA, Department of Mathematics, Faculty of Science, Assuit University, New Valley Branch, Egypt, Tel: 0530867235; E-mail: azzam0911@yahoo.com

Received May 21, 2018; Accepted May 30, 2018; Published June 11, 2018

Citation: Azzam AA, Farrag AS, EL-Sanousy E (2018) On Finite and Infinite Principal Door and Connected-Topologies. J Generalized Lie Theory Appl 12: 291. doi: 10.4172/1736-4337.1000291

Copyright: © 2018 Azzam AA, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Remark 2.4: A principal E^{L} -topological space is not connected.

Remark 2.5: The *P*'-topologies on a set *X* are only principal since there is a point $p \in X$ such that $\{x\}^{\wedge} = \{p, x\} \in \tau$ and either $\{x\}^{\wedge} = \{p, x\} \in \tau$ or $\{x\}^{\wedge} = \{x\} \in \tau$.

Remark 2.6: A principal topology τ on a set X is E^* if and only if τ_c is P^* where, $\tau_c = \{X \setminus G : G \in \tau\}$.

Remark 2.7: If β is the minimal basis for a *P*^{*}-topology on a nonempty set *X*. Then, |U| is 1 or 2 for each $U \in \beta$ and there is at least a point $p \in X$ such that $\bigcap \{U \in \beta : |U| = 2\} = \{p\} \in \tau$. So, a *P*^{*}*P* -topological space (X,τ) is not connected because $G = \bigcup \{U \in \beta : |U| = 2\}$ and $X \setminus G = \bigcup \{U \in \beta : P \notin U\}$ are two nonempty members of τ .

Theorem 2.8: A principal topological space (X,τ) is door if and only if it is E'P'.

Proof. Clearly if τ is an E^*P^* -topology on a set X then it is door. Conversely; let (X,τ) be a door principal nonultra topological space and U_y be the minimal open set at the point x for each $x \in X$. Then, $y \in U_y \setminus \{x\}$ and $X \setminus \{y\} \in$ implies that $U_x \subset X \setminus \{y\}$ which implies that $y \in X \setminus \{y\}$ which is impossible. Hence, $X \setminus \{y\} \notin \tau$ which implies that $\{y\} \in \tau$ because (X,τ) is a door space. Let $p \in X$ be such that $|U_p| \ge 3$ then, x $\in X \setminus \{p\}$ and $|U_x| \ge 2$ implies that there is a point $t \in U_x \setminus \{x\}$. Hence $\{p,t\} \notin \tau$ because $U_p \nsubseteq \{p,t\}$ because $|U_p| \ge 3$. If $X \setminus \{p,t\} \in \tau$ then $U_{x} \subset X \setminus \{p,t\}$ which implies that $t \in X \setminus \{p,t\}$ which is impossible. Hence $X \setminus \{p,t\} \notin \tau$ which contradicts the assumption that (X,τ) is door. Therefore, $U_x = \{x\}$ for each $x \in X \setminus \{p\}$ which implies that (X, τ) is E^* . If $x \in X$ such that $|U_x|=2$, then, there is a point $p \in U_x \setminus \{x\}$ such that $\{p\} \in \tau$. If $x, y \in X$ are such that $U_x \neq U_y$ and $|U_x| = |U_y| = 2$. Then, there are two points $q \in U_x \setminus \{x\}$ and $U_x \nsubseteq \{x, r\}$. If $q \neq r$ then $\{x, r\} \notin \tau$ because $U_x \not\subseteq \{x, r\}$ and $X \setminus \{x, r\} \in \tau$ implies that $U_y \subset X \setminus \{x, r\}$ implies that $r \in X \setminus \{x, r\}$ which is impossible. Hence, $X \setminus \{x, r\} \notin \tau$ which contradicts the assumption that (X, τ) is door. This contradiction implies that q=r=p. So, $|U_x|$ is either 1 or 2 for each $x \in X$ and such that $|U_x| = |U_y| = 2$ and $U_x \neq U_y$ implies that $U_x \cap U_y = \{p\}$ this is if and only if $\cap \{U_x \in \beta : |U_x| = 2\} = \{p\}$. So, (X,τ) is P^* .

Corollary 2.9: A principal door topological space (X,τ) is connected if and only if it is $E_p \lor P_p$ where $p \in X$.

Remark 2.10: In previous study [7] proved that a door topological space (X, τ) is T_{o} .

Clearly both the principal E^{*} and P^{*} -topological spaces are $T_{0^{*}}$. It is T_{4} if τ is nonprincipal E^{*} in which there is a point $p \in X$ such that $\{p\}^{\wedge} \notin \tau$ and $\{p\}^{\wedge} = \{p\}$.

Theorem 2.11: Let X_n be a set of n points then, $N_n(E^*) = N_n(P^*) = n(2^{n-1}-1)+1$,

Proof. Let, β be the minimal basis for a nondiscrete E^* -topology on X_n . Then, τ is S(n-1) and so there is a point $p \in X_n$ such that $\{p\} \notin \beta$ and the member $U \in \beta$ which is the minimal open set at the point p is such that $|U| \ge 2$. If $|U| = k \ge 2$, then U can be the minimal open set at each of its points i.e. p can be any point of U. Accordingly, we may have k distinct minimal bases β 's for E^* -topologies on X_n . Since the number of such subsets U's of X_n is ${}^n c_k$ then the number of the corresponding distinct minimal bases for E^* -topologies on X_n is ${}^n c_k$. Therefore, $2 \le k \le n$ implies that: $N_n(E^*) = \sum_{k=2}^n k {}^n c_k + 1 = n(2^{n-1}-1) + 1$.

Secondly; let β be the minimal basis for a nondiscrete P-topology on X_n . Then there is a point $p \in X_n$ such that $\{p\} \in \beta$ and |U| is 1 or 2 for

each $U \in \beta$ such that $\cap \{U \in \beta : |U| = 2\} = \{p\}$. If $T = \{U \in \beta : |U| = 2\}$ and $|T| = k - 1 \ge 1$ then $T \cup \{\{p\}\} = \{\{p\}, \{p, x_1\}, \{p, x_2\}, ..., \{p, x_{k-1}\}\} \subset \beta$. Clearly any of the points $x_1, x_2, ..., x_{k-1}$ can take the position of the point p and we may have k distinct minimal bases for P'-topology on X_n . Since the number of the subsets $\{p, x_1, x_2, ..., x_{k-1}\}$ of X_n is ${}^n c_k$, then the number of the corresponding minimal bases for P'-topology on X_n is $k {}^n c_k$. Therefore, $2 \le k \le n$ implies that:

$$N_n(P^*) = \sum_{k=2}^n k^{-n} c_k + 1 = n(2^{n-1} - 1) + 1$$

Clearly, $N_n(E^*) = N_n(P^*)$ and as a direct consequence of Theorems (2.7) and (2.10) we have Theorem (2.12).

Theorem 2.12: The number of all door topologies on X_n is:

$$N_n(DO) = n(2^n - n - 1) + 1 \cdot$$

Proof. $N_n(DO) = N_n(E^* \lor P^*) = N_n(E^*) + N_n(P^*) - N_n(E^* \land P^*)$.

Connected Principal-Topology

Let (X,τ) be a principle topological space, β be the minimal basis for τ and let $T \subset \beta$ be such that $\cap \{B : B \in T\} \neq \phi$ and such that $H \in \beta \setminus T$ implies that $H \cap [\cap \{B : B \in T\}] = \phi$. If $\cap \{B : B \in T\} = V$ then $V \in \tau$ is a minimal open set at each of its points since $x \in V$ implies that $U_x \in T$ and if $G \in \tau$ such that $x \in G$, then $V \subset U_x \subset G$. The family $\{V_x : \lambda \in \Delta\} \subset \tau$ of such minimal open sets in non-empty and is a pair wise disjoints family of members of τ . Clearly,

(1) if $\cap \{G : G \in T\} = \phi$ for each $T \subset \beta$ then each member of β is minimal at each of its points and by (X, τ) is regular [5].

(2) if $\bigcap \{B : B \in T\} \neq \phi$ for each $T \subset \beta$ then there exists $\lambda \in \Delta$ such that $\bigcap \{B \in \beta : B \neq \phi\} = V$ which is the unique minimal open set at each of its points and (X,τ) is *P*. If $A_{\lambda} = \bigcup \{U_x : V_{\lambda} \subset U_x\}$. Then, $\bigcap \{U : U \in T\} \neq \phi$ for, if τ is an *E*-topology on *X* then $A_{\lambda} = X$ for each λ $\in \Delta$. Otherwise let, $x \in X$, $T\beta$ be such that $U_x \in T$ and $\bigcap \{U : U \in T\} \neq \phi$ such that $G \in \beta \setminus T$ implies that $G \cap [\bigcap \{U : U \in T\}] = \phi$.

If $\cap \{U : U \in T\} = U^*$ then $U \subset Ux$ and there is a point $\lambda \in \Delta$ such that $U = V_{\lambda}$ which implies that $x \in A$.

Theorem 3.1: Let τ be a principal topology on a set X, $\{V_{\lambda} : \lambda \in \Delta\} \subset \tau$ be the family of all open sets each of which is minimal at each of its points and $A_{\lambda} = \bigcup \{U_{x} : V_{\lambda} \subset U_{x}\}$ for each $\lambda \in \Delta$. If:

(a) $V \neq X$, then (X, τ) is connected implies that $A \neq V_{\lambda}$ for any $\lambda \in \Delta$.

(b) (X,τ) is connected then for each $\lambda \in \Delta$ there exists $\mu \in \Delta$ such that $A_{\lambda} \cap A_{\mu} \neq \phi$.

(c) $A_{\lambda} \cap A_{\mu} \neq \phi$ for each two distinct points $\lambda, \mu \in \Delta$ then (X, τ) is connected but not conversely.

Proof. (a): Let $\lambda \in \Delta$ be any point such that $V \neq X$ and $x \in X$ be any point. Then $t \in V_{\lambda} \cap U_x$ implies that $U_x \cap V_{\lambda} \neq \phi$ which implies by the definition of A_{λ} that $x \in A_{\lambda}$ and if $A_{\lambda} = V_{\lambda}$, then $x \in V_{\lambda}$ in fact $U_x = V_{\lambda}$. Therefore $U_x \cap V_{\lambda} \neq \phi$ implies that $x \in V$ and the contrapositive of this result is $x \in X \setminus V_{\lambda}$ implies that $U_x \cap V_{\lambda} = \phi$ implies that $X \setminus V_{\lambda} \in \tau$ implies that (X, τ) is not connected. Therefore (X, τ) is connected implies that $A_{\lambda} V_{\lambda}$.

(b) Let, $\lambda \in \Delta$ be any point such that $A_{\lambda} \cap A_{\mu} = \phi$ for each point $\mu \in \Delta$. Then *A* and *X**A*_{λ} are open sets which implies that (*X*,) is not connected. The contrapositive of this result, (*X*,) is connected implies that for each $\lambda \in \Delta$ there is $\mu \in \Delta$ such that $A_{\lambda} \cap A_{\mu} \neq \phi$.

(c) Let (X,τ) be disconnected. Then there is a subset G of X such that $G, X \setminus G \in \tau \setminus \{X, \phi\}$. Then there is a point $x \in G$ which implies that $U_x \subset G$ and $\cup \{A_{\lambda} : \lambda \in \Delta\} = X$ implies that there is a point $\lambda \in \Delta$ such that $x \in A$ which implies by the definition of A that there is a point $t \in X$ such that $V \subset U_t$ and $x \in U_t$ which implies that $U_x \subset U_t$. If $t \in X \setminus G$ then $U_t \subset X \setminus G$ which implies that $V_{\lambda} \subset U_t \subset G$, a contradiction. Hence $t \in G$ which implies that $V_{\lambda} \subset U_t \subset G$. If $y \in A_{\lambda} \cap (X \setminus G)$ then $y \in A_{\lambda}$ implies that there is a point $p \in X$ such that $y \in U_p, V_{\lambda} \subset U_p$ and $p \in X \setminus G$ implies that $V_{\lambda} \subset U_p \subset X \setminus G$ implies that $V_{\lambda} \subset G \cap (X \setminus G)$ while $p \in G$ implies that $y \in U_p \subset G$ which implies that $\lambda \subset G \cap (X \setminus G)$. Therefore $A_{\lambda} \cap (X \setminus G) = \phi$ which implies that $A \subset G$. Similarly there is a point $\mu \in \Delta$ such that $A_{\mu} \subset X \setminus G$. Hence (X,τ) is not connected implies that there are two points $\lambda, \mu \in \Delta$ such that $A_{\lambda} \cap A_{\mu} \neq \phi$ for each two distinct points $\lambda, \mu \in \Delta$ then (X,τ) is connected.

Conversely let, $X=\{1,2,3,4,5,6,7\}$ and $\beta=\{\{1\}, \{1,2,3\}, \{3\}, \{3,4,5\}, \{5\}, \{5,6,7,\}, \{7\}\}$ be the minimal basis for a topology τ on *X*. Then, (X,τ) is connected while $A(\{1\}) = \{1,2,3\}$ and $A(\{7\}) = \{5,6,7\}$ are disjoint.

Remark 3.2: If we denote the connected topologies on a set X by CTD-topologies. Then, the number of the connected topologies on a set X_n of n points is:

 $N_n(CTD) = N_n[(P \lor E) \lor CTD \land (P \lor E)] = 2N_n(E) \land N_n(P \land E) + N_n(CTD \land (P \lor E)) \cdot$

Theorem 3.3: A principal T_0 -topological space (X,τ) is minimal T_0 if and only if the minimal basis β for τ is totally ordered by the inclusion operator.

Proof. Let, (X,τ) be a T_0 -topological space such that the minimal basis β is totally ordered by the inclusion operator and τ^* be a strictly weaker topology on X that τ . Then, by Theorem (2.8) [3] there are two distinct points $y, z \in X$ such that $\tau^* = \tau_{yz} = \tau \cap D_{yz}$ such that $y \notin U_z$. Then, $z \notin U_y$ because β is totally ordered by the inclusion operator which implies that $U_y = U_y \cup U_z$ so, U_y is the minimal open set at both the points y and z in τ_{yz} which implies that $(X,_{yz})$ is not T_0 . Therefore, (X,τ) is minimal T_0 .

Conversely; let (X,τ) be the minimal T_0 -topological space, $y, z \in X$ be two distinct points such that $y \notin U_z$ and $y \notin U_y$. If $\tau_{yz} = \tau \cap D_{yz}$ and $G \in \tau_{yz}$ such that $z \in G$ then,

- (1) yU_z implies that $\tau \neq \tau_{yz}$,
- (2) $y, z \in U_y \cup U_z$ implies that $U_y \cup U_z \in \tau_{yz}$,
- (3) $G \in \tau_{yz}$ implies that $G \in \tau$ and

(4) $z \in G$ implies that $y \in G$ because $G \in D_{yz}$ which implies that $U_y \cup U_z \subset G$. Hence, $U_y \cup U_z \in \tau_{yz}$ is the minimal open set at z. If $x \in X \setminus \{y, z\}$ then $U_x = U_y \cup U_z$ implies that either $U_x = U_y$ or $U_x = U_z$ which contradicts the assumption that $y \notin U_z$ and $z \notin U_y$. Hence, $U_x \neq U_y \cup U_z$ for each $x \in X \setminus \{y, z\}$ and zU_y implies that $U_y \neq U_y \cup U_z$. Then, (X, τ_{yz}) is T_0 which contradicts that (X, τ) is minimal T_0 . This contradiction because of the incorrect assumption that $y \notin U_z$ and $z \notin U_y$. Therefore, either $y \in U_z$ or $z \in U_y$ for any two distinct points $y, z \in X$. This completes the proof.

Corollary 3.4: Let, (X, τ) be T_0 then (X, τ_{yz}) is T_0 if and only if $y \notin U_z$ and $z \notin U_y$ for any two distinct points $y, z \in X$ where $\tau \neq \tau_{yz} = \tau \cap D_{yz}$. Proof. As a direct consequence of the proof of Theorem(3.2) $y \notin U_z$ and $z \notin U_y$ implies that (X_{yz}) is T_0 for any two distinct points $y, z \in X$.

Conversely; if (X, τ_{yz}) is T_0 then, $U_y \neq U_y \cup U_z$ which implies that zU_y and $y \in U_z$ implies that $\tau =_{yz}$ which implies that $y \notin U_z$.

Corollary 3.5: Let, (X_n, τ) be a minimal T_0 -topological space. then, there is a point $p \in X$ such that $\tau = \{\phi, \{p\}, \{p, x\}, \{p, x, t\}, ..., X_n\}$. So, the number of the minimal T_0 -topologies on X_n is N_n (min. T_0)=n!.

In the chain topology on a set X_n is the topology whose members are completely ordered by the inclusion operator. Clearly the minimal T_0 -topologies on X_n are chain topologies and the chain topologies on X_n are connected [8]. Stephen [8] proved that the number of all chain topologies on a set X_n is : $N_n(CH(k)) = \sum_{k=0}^{n-1} {}^n c_k N_k(CH)$. Where *CH*topology on X_n is a chain topology on X_n and $N_0(CH) = 1$.

The members of a chain topology τ on X_n are such that: $\phi \subset G_1 \subset G_2 \subset \ldots \subset G_r \subset X_n$ in which G_1 is nonempty and either singleton or nonsingleton. Accordingly τ is either S(1) or S(0) and so $N_n(CH) = N_n(S(0)CH) + N_n(S(1)CH)$. If $|G_1| = k$ and $N_n(CH)$ then τ is said to be CH(k)-topology on X_n and the number of the chain topologies in such case is denoted by $N_n(CH)$. So, $N_n(CH(1)) = N_n(S(1)CH)$, $N_n(S(0)CH) = \sum_{k=2}^n N_n(CH(k))$ and $N_n(CH) = \sum_{k=1}^n N_n(CH(k))$.

Theorem 3.6: Let X_n be a set of *n* points then:

(1)
$$N_n(CH(k)) =^n c_k N_{n-k}(CH)$$
,
(2) $N_n(CH) = \sum_{k=0}^{n-1^n} c_k N_k(CH)$,
(3) $N_n(CH(k)) = \sum_{r=k}^{n-1^n} c_r N_r(CH(k))$ and
(4) $N_n(S(0)CH) = \sum_{k=0}^{n-2^n} c_k N_k(CH)$ where
 $N_0(CH) = 1$.

Proof: Let $A \subset X_n$ be such that $|A| = k, 1 \le k \le n$. If τ is a chain topology on $X_n \setminus A$ then, $\tau(A) = \{G \cup A : G \in \tau\} \cup \{\phi\}$ is an CH(k)-topology on X_n . Clearly there are ${}^n c_k$ distinct nonempty subset of X_n with cardinality k and therefore:

(1)
$$N_n(CH(k)) = {}^n c_k N_{n-k}(CH)$$
,
(2) $N_n(CH) = \sum_{k=1}^{n-n} c_k N_{n-k}(CH) = \sum_{k=0}^{n-1} c_k N_k(CH)$

Let $k \in N$ and $A \subset X_n$ be such that $1 \le k \le n-1$ and $|A| = r \ge k$. If τ is a CH(k)-topology on A then $\tau(A) = \{X_n, G : G \in \tau\}$ is a CH(k)-topology on X_n . If r = n then $A \subset X_n$ and if τ is a CH(k)-topology on A then $\tau(A) = \tau$,

(3)
$$N_n(CH(k)) = \sum_{r=k}^{n-1} c_r N_r(CH(k))$$

Clearly if $k > n \ge 0$ then, $N_n(CH(k)) = 0$ and so $N_0(CH(1)) = 0$. Also, if k=n then $A=X_n$ which implies that $\tau=\{X_n,\phi\}$ which implies that $\tau(A) = \{X_n,\phi\}$ which implies that $N_n(CH(n)) = 1$. Therefore, using (1)

(4)
$$N_n(S(0)CH) = \sum_{k=2}^n N_n(CH(k)) = \sum_{k=2}^n c_k N_{n-k}(CH) = \sum_{k=0}^{n-2^n} c_k N_k(CH).$$

Conclusion

It is show that we are interested in finding the characterization of the principle door and a formula for the number of the door topologies on a set X_n of n points are given. Some properties of the principal connected topologies on a nonempty set X are discussed and the

Page 4 of 4

minimal T_0 -topologies on X are also characterized. Also, a few results about the number of the chain topologies on X_n are given.

References

- Frohlich O (1964) Das halbordnungs system der topoloischen raume auf einer menge. Math Ann 165: 76-95.
- Steiner AK (1966) The lattice of topologies structure and complementations. Trans Amer Math Soc 122: 379-398.
- Farrag AS, Sewisy AA (1999) Computer construction and enumeration of all topologies on finite sets. Int J Comput Math 72: 433-440.
- Farrag AS, Sewisy AA (2000) Computer construction and enumeration of all topologies and hyperconnected topologies on finite sets. Int J Comput Math 74: 471-482.
- Farrag AS, Abbas SE (2005) Computer programming for construction and enumeration of all regular and equivalence relations on finite sets. Applied Mathematics and Computation 165: 177-184.
- 6. Noiri T (1979) Note on hyperconnected sets. Math Vesnik 31: 53-60.
- Mashhour AS (1982) Hasanein IA and Farrag AS, Remarks on Some Localized Separation Axioms and their Implications. Kyung Pook Math J 22: 141-148.
- 8. Stephen D (1968) Topology on finite sets. Amer Math Monthly 75: 739-741.