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Abstract
Following the insurmountable and seeming incurable status for the most acclaimed infectious disease – HIV, and 

which have been worsened by its allies of infectious diseases, this paper projected using ordinary differential equations, 
a 4-Dimensional mathematical model that accounted for the percentage optimal benefits and the methodological 
application of chemotherapy - RTI, in the interaction of dual HIV- parasitoid pathogen infectivity with the human immune 
system. Simple analytical optimal control method was deployed, primed by the maximization of healthy immune system 
on the basis of control effect of chemotherapy on viruses’ infectivity. Using Pontryagin’s Maximum Principle, the study 
established the model dynamical optimal control as a composition of system state variables, coupled with four adjoint 
systems with corresponding initial and transversality conditions together with the optimal control function. The model was 
solved numerically and results indicated thus: benefits on cost function as highest when onset of infection were followed 
by high intensity chemotherapy schedule; while optimum control were achieved with prolong treatment administration. 
The study revealed that optimal control is a function of dynamic optimal weight factor and is independent of prolong 
treatment duration. The study therefore, advocates the incorporation of dual immunotherapies for the treatment of 
multiple virus infectivity.
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Introduction
Until a clear and decisive medical procedure is formulated for 

the most dominated infectious disease – human immune deficiency 
virus (HIV), which often transmute into acquired immune deficiency 
syndrome (AIDS) and its affiliated diseases, the search into its 
suppressive and preventive remedies, remain a task for this generation 
of scientific researchers. In reality, it is evident to appreciate recent 
multiplicities of new cases of HIV epidemic and its associated infectivity 
[1,2]. Common among the dual infectivity includes: HIV-parasitoid 
pathogen, HIV-tuberculosis, HIV- hepatitis C, etc. [3,4].

Currently, in the absent of cure, suppression and prevention has 
been the major anchor of control. Effective management of dual HIV-
pathogenic infected patients requires progressive administration of 
prescribed chemotherapy, a process that involves clinical modeling 
[5]. Appreciating the role of chemotherapies, the models [6,7], 
studied the control of effect of HI-virus infectivity on immune system 
using AZT, which acts as reverse transcription inhibitor resulting 
to the interruption of key stages of infection process. Using reverse 
transcriptase inhibitor (RTI) as single treatment, [8] studied the 
optimal control strategy for a fully determined HIV model aimed at 
clinical testing and monitoring of HIV/AIDS diseases; as Optimal 
Control of HIV Infection by using Fuzzy Dynamical Systems had 
been investigated by [9]. The model demonstrated the CD4+ T cells 
measurement and viral load count. The investigation on the analysis 
based on the quasi-steady state of the asymptomatic period before it 
is disturbed by chemotherapy can be found in [10]. The application 
of highly anti-retroviral therapy (HAART) regimen in the treatment 
and suppression of viral replication and immune system recovery was 
conducted by [5,11]. 

In this paper, we propose using ordinary differential equation 
(ODE), the formulation of 4-Dimensional mathematical model that 

accounts for the optimal benefits and methodological treatment of 
dual HIV-parasitoid pathogen infectivity on the host – CD4+ T cells, 
with reverse transcriptase inhibitor (RTI) as a treatment factor. The 
investigation is presented as an optimal problem with the assumption 
that, the regulation of the chemotherapy directly controls the infectivity 
of these dual viruses against the immune system. Unlike AZT, the 
clinical choice for RTI is based on the dual exclusive suppressing and 
eliminating capability of the inhibitor on dual infectious viruses [5,12]. 
The present study propose the use of Pontryagin’s Maximum Principle 
in the analysis of the optimal control state and results numerically 
illustrated via Runge-Kutter of order of precision 4 in a Mathcad 
environment.

The propositions and applications of optimal control strategies 
in the study of interaction of chemotherapies and viral load within 
the immune system had been presented in 2-Dimensional model 
by [13,14]; in 3-Dimensional model by [6,12] and in 5-Dimensional 
model by [11], where here, it was established to be incompatible using 
discretization technique, following large error derivatives. Against the 
above structures, this present model is ultimately vested in the study of 
a 4-Dimensional differential equation with problem statement argued 
along optimal control strategy. 

The explicit dimension of this model is the investigation of the 
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Figure 1: Schematic diagram for dual HIV-pathogen infections.

periodic treatment schedules, taking into account, the definitive time 
limit before the resistivity habit of chemotherapy. The time limits of 
most chemotherapy have been identified in [1,11,13-16]. Thus, we 
intend to front an optimal control statutory model which demonstrates 
the connective interplay of chemotherapy (RTI) on HIV–pathogen and 
the blood plasma with the aim of maximizing the objective functional 
as a basis for accessing CD4+ T cells progression and the simultaneous 
outcome of probable reduction in systemic cost [7]. 

Devotedly, this paper is organized as follows: section 1, which 
been covered by the introductory aspect of the work, we introduce in 
section 2, the material and methods, which consists of the formulation 
of the model as a problem statement, the proposed design optimization 
control strategy and the Pontryagin’s Maximum Principle as analysis 
method. In section 3, we present a number of numerical computations 
to illustrate the efficiency and reliability of the method as well as the 
discussions. Finally, the paper’s conclusion and remarks are carefully 
drawn in section 4.

Material and Methods
We constitute this section with the problem statement and model 

formulation; and the designed optimal control strategy analyze as a 
function of the Pontryagin’s Maximum Principle.

Problem statement and model formulation

Here, we assume the dual viruses infect the same CD4+ T cells 
therefore, using figure 1 below, we develop via ordinary differential 
equation, a 4-Dimensional mathematical model defined as problem 
statement of optimal control problem, targeted to account for the 
optimal methodology of treatment of dual HIV-parasitoid pathogen 
infections.

From Figure 1 above, if the concentration of the various subgroups 
under consideration represent the population number per unit 
volume,mm3, then UT - uninfected CD4+ T cell count, IT- infected CD4+ 
T cells (by both viruses), V- free viral load and P- parasitoid pathogen, 
represent the biological interaction of the variables. 

The physiological definition of the model is the dynamic derivation 
of the following differential equations:

1 1 2
max

1
1

T T T
T T T T

dU b U IgU U h VU h PU
dt V P U

α
 +

= + − − − −  + +  
     (2.1)

( )1 2 2
T

T T v p T
dI h VU h PU z z I
dt

α= + − +  		               (2.2)

2 3v T T
dV z I VU
dt

α α= −  				                 (2.3)

2 4p T T
dP z I PU
dt

α α= −  				               (2.4) 

With initial conditions: 

( )0 ( )0 0 0(0) , (0) , (0) , (0)T T T TU U I I V V P P= = = =  

and satisfying the biological variables and parameters values as define 
in (Table 1).

Explicitly, the epidemiological interpretation of the model 
equations (2.1)-(2.4) can be deduce as follows: In equation (2.1), the 
function b/1+V+P, is the source term of uninfected CD4+ T cells, 
differentiated with respect to the invasion by the external viruses; g, is 
the CD4+ T cell growth rate (per day), having a logistic term (1-UT+IT/ 
Umax). This shows that UT is always within the range of Umax. Upon 
exposure to V and P, the CD4+ T cells (UT), becomes infected and loss 
with magnitude of h1VUT and h2PUT respectively. Moreso UT, is life 
cycle bound by natural death rate ofa1. From equation (2.2), the term 
h1VUT and h2PUT model the rate at which free viral load and parasitoid-
pathogen infects the CD4+ T cells and having  a1 IT, death rate with 
zvand zp, rate of replications of the viruses before infected CD4+ T cells 
host dies. Taking equation (2.3), the term zva1 IT, represent the rate at 
which viral load is produced by infected CD4+ T cells into the viral 
load compartment. The indicator a3, is the loss of viral load infected 
CD4+ T cells. Finally, in equation (2.4), zpa2 IT is the rate of production 
of parasitoid-pathogen by infected CD4+ T cells, and a4, is the loss of 
pathogen infected CD4+ T cells. Other closely related HIV – infection 
models can be readily view from [1,6,14].

Furthermore, the application of chemotherapy and its effects on 
the model can be adduced by multiplying the terms h1VUT and h2PUT  
from equations (2.1)-(2.4), by the function r(t), which initiate our 
optimal control design. 

Optimization control strategy for chemotherapy

Since prime interest is on the maximization of healthy CD4+ T 

Dependent Variables Initial values
UT  Uninfected CD4+ T Cell population 0.6 mm-3

IT      Infected CD4+ T Cell population 0.0
V   Infectious HIV  (Viral load) population 0.2 mm-3

P   Infectious parasitoid-pathogen population 0.1 mm-3

Parameters and Constants Values
b Natural Source of uninfected CD4+ T Cell 0.02 mm-3d-1

α1 Natural death rate of uninfected CD4+ T Cell 0.2 d-1

α2 death rate of infected CD4+ T Cell 0.5 d-1

α3 death rate free viral load, V 0.4 d-1

α4 death rate free parasitoid pathogens, P 0.5 d-1

h1 rate CD4+ T cells becoming infected by free virus, V 0.044 mm-3 d-1

h2 rate CD4+ T cells becoming infected pathogens, P 0.016 mm-3 d-1

g rate of growth of  CD4+ T cell population 0.04 d-1

zγ Number of replication of HI-Virus by IT cells 0.5
zγ Number of replication of P-pathogen by IT cells 0.3
Umax maximum level of CD4+ T cells population 0.8 mm-3

Table 1: Variables and parameters for optimal control treatment 0.044 U.
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cells from the control effect of chemotherapy application, then we 
investigate the percentage effect of the chemotherapy on the biological 
interactions of the CD4+ T cells and the dual infectivity of the viruses 
(V and P). We denote this control function by r(t) with, which we 
multiply, the parametersh1and h2 of equations (2.1) and (2.2); the 
proceedings, which are guided by the following assumption:

Assumption 1: The model control class designated by r(t), is a 
measurable function defined on the interval 0[ , ]ft t t∈  and having the 
domain 0 ( ) 1r t≤ ≤ .

This assumption defines the treatment interval following the 
allowable window of treatment by chemotherapy and the anticipated 
cogent result before mutations and development of drug resistance by 
HI-virus and pathogen [17]. Moreover, drug side-effects as a function 
of treatment duration are arguably accounted for. Therefore, we 
consider 0[ , ] 30ft t t∈ ≤ months [11], and define the state system as: 

1 1 2
max

1 ( )[ ]
1

T T T
T T T T

dU b U IgU U r t h VU h PU
dt V P U

α
 +

= + − − − +  + +  
    (2.5)

( )1 2 2( )[ ]T
T T v p T

dI r t h VU h PU z z I
dt

α= + − +  		               (2.6)

2 3v T T
dV z I VU
dt

α α= −  				                 (2.7)

2 4p T T
dP z I PU
dt

α α= −  				                (2.8) 

and having initial values for , , ,T TU I V P  at t0.

The objective functional that maximizes the control system is 
defined as:

( )
0

21(r) ( ) 1 ( )
2

ft
T

t
Q U t r t dtψ = − −  ∫ 		                (2.9) 

Where, ψ is the optimal weight factor, which maximizes the 
benefit based on the CD4+ T cells and minimizes the systemic cost 
of chemotherapy based on the percentage effect given by (1-r(t)). It’s 
obvious that if r(t)=0, as the maxima drug usage, then the maximal 
cost is given by (1-r(t))2. The introduction of the parameter ψ ≥ 0, 
designated as optimal weight factor, follows from the fact that, the 
benefit to the cost functional is nonlinear. Hence, the need to introduce 
a simple non-linear control on the cost indicator becomes obvious. We 
therefore characterize the optimal control r*, of the objective functional 
to satisfy the expression: 

0 1
max ( ) ( )

r
Q r Q r

≤ ≤
= ∗  

Thus, { }0( ) ( ) | ; | , , [ , ]fQ r Q r r A A r r measurable t t t∗ = ∈ = ∀ ∈ , is the 
measurable control set. The penalty term for the constraints of the 
objective functional is the Hamiltonian arguments define by the 
Lagrangian. That is, 

( )1 2 3 4( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )T TL U t I t V t P t r t t t t tλ λ λ λ

( )

( )

( ) ( )

( )

2

1 1 1 2
max

2 1 2 2

3 2 3 4 2 4

1 2

1( ) 1 ( )
2

1 ( )
1

( )

( ) ( ) ( ) 1 ( )

T

T T
T T T T

T T v p T

v T T p T T

U t r t

b U IgU U r t h VU h PU
V P U

r t h VU h PU z z I

z I VU z I PU

k t r t k t r t

ψ

λ α

λ α

λ α α λ α α

= − −

  +
+ + − − − +   + +   

 + + − + 
 + − + −    

+ + −

  (2.10)

Where, 

1( ) 0k t ≥ , 2( ) 0k t ≥ , are the penalty multipliers satisfying 

1( ) r(t) 0k t =  and ( )2( ) 1 ( ) 0k t r t− = . Thus, the maximum principle 

[1,6,18], gives the existence of adjoint variables satisfying:

1 1 1 21
max

2 1 2 3 3 4 4

(2 )1 1 ( )( )

( )( )

T T

T

U Ig r t h V h Pd L
U

dt U
r t h V h P V P

λ αλ

λ λ α λ α

   +  + − + − − + ∂   = − = −    ∂  
+ + − −  

   (2.11)

2 1
2 2 3 2 4 2

max
( )T

v p v p
T

d gUL z z z z
dt I U
λ λ

λ α λ α λ α
 ∂

= − = − − − + + + 
∂   

   (2.12) 

3
1 1 2 1 3 32 ( )( ) ( )

(1 )
T T T

d L b r t h U r t h U U
dt V v

λ
λ λ λ α
  ∂   = − = − − − + −

 ∂  +  
  (2.13) 

4
1 2 2 2 4 42 ( )( ) ( )

(1 )
T T T

d L b r t h U r t h U U
dt P P

λ
λ λ λ α
  ∂   = − = − − − + −

 ∂  +  

  (2.14)

Where, 

( ) 0i ftλ =  for 1,..,4i = , are the transversality conditions.

Now, since

2
1 1 2 2 1 2

1 2

1 (1 (t)) ( ) ( )( )
2

( ) ( ) ( )(1 ( )) ,... ... ,

T T T TL r h VU h PU r t h VU h PU

k t r t k t r t terms without r

ψ λ λ = − − − + + + 
 

+ + − +

differentiating this expression for L with respect to r, gives:

( )1 2 2 1 1 2( ) (1 r) k (t) k (t) 0T T
L h VU h PU
r

λ λ ψ∂
= + − + − + − =

∂
.

Solving for optimal control, we have

2 1 1 2 1 2( )( ) ( ) k (t)( ) T Th VU h PU k tr t λ λ ψ
ψ

∗ − + + − +
=

Then, we can examine the expression for r* by taking into 
consideration the following 3 cases:

On the set { } 1 2| 0 ( ) 1 : ( ) ( ) 0t r t k t k t∗< < = = , and we obtain the 

optimal control as: 

2 1 1 2( )( )( ) Th VU h PUr t λ λ ψ
ψ

∗ − + +
= .

On the set { } 1 2| ( ) 1 : ( ) 0, ( ) 0t r t k t k t∗ = = ≥ , hence

2 1 1 2 2( )( ) k (t)( ) 1 1Th VU h PUr t λ λ
ψ

∗ − + −
= = + , which implies

2 2 1 1 20 ( ) ( )(h VU )T Tk t h PUλ λ≤ = − +

and 	

2 1 1 2( )( )1 Th VU h PUλ λ ψ
ψ

− + +
≤  .

On the set { } 2 2| ( ) 0 : ( ) 0, ( ) 0t r t k t k t∗ = = ≥ . Hence, the optimal 
control is:

2 1 1 2 1( )( ) ( )( ) 0Th VU h PU k tr t λ λ ψ
ψ

∗ − + + +
= = .

Therefore, 1( ) 0k t ≥  implies that 2 1 1( )(hVU ) ( ) 0T ThPU k tλ λ ψ
ψ

− + + +
≤ , 

which implies
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2 1 1 2( )( )( ) 0Th VU h PUr t λ λ ψ
ψ

+
∗  − + +

= = 
 

.

Thus, the optimal control is characterized by the combination of 
these 3 cases satisfying the equation: 

2 1 1 2( )( )min ,1Th VU h PUr λ λ ψ
ψ

+
∗

  − + + =     

		             (2.15) 

Where,

2 1 1 2( )( )Th VU h PUλ λ ψ
ψ

+ − + +
 
 

2 1 1 2
2 1 1 2

2 1 1 2

( )( ) 1 ( )(h VU ) 0

0 ( )(h VU ) 0.

T
T T

T T

h VU h PU if h PU

if h PU

λ λ
λ λ ψ

ψ
λ λ ψ

− +
+ − + + >= 

 − + + ≤
 

It follows that if 2 1( ) 0λ λ− <  for somet, then ( ) 1r t∗ ≠  and we say 
0 ( ) 1r t∗≤ <  for thoset, which imply treatment initiation. So, it becomes 
obvious that control depends on the adjoints λ1and λ2, in view of that 
fact that the adjoints corresponds to the state variables UT and IT, as 
in the first two state equations, which contains the control terms. 
Therefore, we see that the optimization control system is define by 
the state system (2.5)-(2.8), coupled with the adjoint system (2.11)-
(2.14) with corresponding initial and transversally conditions and by 
substituting in the expression (2.15) for r* in equations (2.5), (2.6), 
(2.11), (2.13) and (2.14). Thus, utilizing equation (2.15) for r* we 
obtain the dynamic optimal control as: 

max
1

1
T T T

T
dU b U IgU

dt V P U
 +

= + −  + +  
 

2 1 1 2
1 1 2

( )(h VU )min ,1 [ ]T T
T T T

h PUU h VU h PUλ λ ψα
ψ

+  − + + − − ⋅ +    

.

( )2 1 1 2
1 2 2

( )(h VU )min ,1 [ ]T T T
T T v p T

dI h PU h VU h PU z z I
dt

λ λ ψ
α

ψ

+  − + + = ⋅ + − +    

2 3v T T
dV z I VU
dt

α α= −

2 4p T T
dP z I PU
dt

α α= −

2 1 1 2
1 1 1 2

max
1

2 1 1 2
2 1 2 3 3 4 4

(2 ) ( )(h VU )1 1 min ,1 ( )

( )(h VU )min ,1 ( )

T T T T

T T

U I h PUg h V h P
Ud

dt h PU h V h P V P

λ λ ψ
λ α

ψ
λ

λ λ ψ
λ λ α λ α

ψ

+

+

      + − + +   + − + − − +             = −     − + + + ⋅ + − −       

2 1
2 2 3 2 4 2

max
( )T

v p v p
d gU z z z z
dt U
λ λ

λ α λ α λ α
 

= − − − + + + 
  

.

2 1 1 2
1 12

3

2 1 1 2
2 1 3 3

( )(h VU )min ,1 ( )
(1 )

( )(h VU )min ,1

T T
T

T T
T T

h PUb h U
vd

dt
h PU h U U

λ λ ψ
λ

ψ
λ

λ λ ψ
λ λ α

ψ

+

+

    − + +   − −     +       = − 
    − + +   + −          

2 1 1 2
1 22

4

2 1 1 2
2 2 4 4

( )(h VU )min ,1 ( )
(1 )

( )(h VU )min ,1

T T
T

T T
T T

h PUb h U
Pd

dt
h PU h U U

λ λ ψ
λ

ψ
λ

λ λ ψ
λ λ α

ψ

+

+

    − + +   − −     +       = − 
    − + +   + −          

  (2.16)

So that, ( ) 0i ftλ =  for i=1,..,4 and ( )0 ( )0 0 0(0) , (0) , (0) , (0)T T T TU U I I V V P P= = = = . It 
is of

interest that the existence and uniqueness of optimal control 
system is of standard result, which can be found in [1,13].

Numerical Simulations and Discussion
Here, we put forward a number of numerical computations to 

illustrate the efficiency and reliability of the method as well as the 
results analyses. Using the parameter values as in Table 1, and with 
the aid of Runge-Kutter of order of precision 4, in a Mathcad platform, 
we simulate for the initial values for the T cells, infected cell, viral 
load and the pathogen, without chemotherapy treatment. This task 
is accomplished using the basic model equations (2.1)-(2.4). The 
numerical results are then deployed to establish the different treatment 
initial conditions.

Numerical simulations

Figures 2a-2d below represents initial simulation of the basic 
model equations (2.1)-(2.4), without treatment. We observed from 
figure 2b, that infection was sharp and highest at the 3rd month (i.e., 
IT(3)=5.92 × 10-3), which correspond to decrease in healthy CD4+ 
T cells at a value0.38, as in figure 2a. Therefore, UT(3)=0.38, is the 
minimum count of CD4+ T cells, with which treatment is initiated. 
The sharp decline of infected T cells after 3 months is an indication 
of the intensity of the combined infectivity of the viruses on the T 
cells. Due to fast replications of the viruses into the blood plasma, 
we notice de-transmutation of the viruses, such that V(3)=0.12 and 
P(3)=0.051. Figures 2c and 2d.correspond to decline of both viral load 
and parasitoid-pathogen following their transmission and infection of 
healthy CD4+ T cells but showing persistent resistivity throughout the 
duration of investigation, with viral load more acute.

Using the outcome of values of the variables from the initial 
simulation as in figures 2a-2d.

Above, the optimality system is solved following the application of 
chemotherapy in an observed period of 30 months of treatment. We 
simulate as in figures 3a-3d below, equations (2.5)-(2.8) representing 
the initiation of chemotherapy with r(t)=0.5, as the treatment control 
function. The benefit (objective) functional Q(r), as in equation (2.9), 
corresponding to the application of the chemotherapy is simulated as 
in figure 4.

From Figure 3a below, with chemotherapy control function at 
r(t)=0.5, such that treatment benefit is describe by growth rate in CD4+ 
T cells (g=0.8), increase in viruses clearance rate (a2=0.52, a3=0.45, 
a4=0.54); and decline of a1=0.02, as natural death rate of CD4+ T cells, 
we observe a maximization of the healthy CD4+ T cells, which increase 
tremendously after 27 months of drug application i.e., UT(27)=0.802. 
Simulation also indicates drastic decline of infected CD4+ T cells i.e., 
IT(27) near zero, as inscribe by figure 3b. The de-mutations of viral 
load and pathogen following the application of chemotherapy, saw 
diminishment of HI-virus to near zero after 21 months and 19 months 
for parasitoid-pathogen (Figures 3c and 3d).

From Figure 4 below, using Equation (2.9), we simulate the 
objective functional Q(r), corresponding to the applied chemotherapy 
treatment. Here, we aim at analyzing the magnitude of the systemic 
cost of treatment within drug validity. It is seen that initiation of 
treatment commenced with high intensity chemotherapy (i.e., ψ=10 
and r(t)=0.5), which gradually approach stability after 27 months of 
prolong administration.
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The implication is that, treatment started with strong dose schedule 
and then diminishes (stable i.e., Q*=1.122) in strength as infections 
(viruses) de-replicates after 27 months of treatment.

Furthermore, using equation (2.16), derived from the combination 
of equations (2.4)-(2.8), coupled with the adjoint system (2.11)-(2.14) 
and the substituted equation (2.15) for r*, we investigate the dynamic 
optimal control to justify the imposition of the penalty condition on 
the constraints.

Applying the same variables and parameter values as in figures 3a-
3d and with inclusion of the transversality conditions (λ1=0.7, λ2=0.2, 
λ3=0.1, λ4=0.1), into Table 1, we simulate as in figures 5a-5d above, 
without figures of the conditions for brevity.

From Figure 5a above, with lessened amount optimal weight 
factor of ψ=0.2, balanced by control function of r(t)=0.8, and imposed 
transversality conditions, we observed sustainability of maximized 
healthy CD4+ T cells population of UT(27)=0.803, which then suggest 
near eradication of infected CD4+ T cells. The diminishment of infected 
CD4+ T cells i.e., IT(27)=0, as shown by figure 5b, ascertains the claim in 
figure 5a. As a result of the imposed penalty and the regularization of 
chemotherapy by the control function, we saw a rapid clearance rate of 
both viral load and parasitoid-pathogen at the 19 and 18 months (i.e., 
V(19)=0 and P(18)=0), respectively (Figures 5c and 5d). 

From Figure 6 above, we further verify the objective functional of 
the corresponding chemotherapy administered within the duration 

    

    

         
                 

Figure 2: Simulation of dual HIV-pathogen infection without treatment.

      
   

              
                         

Figure 3: Simulation of dual HIV-pathogen infection with treatment initiation, (t)=0.5.
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Figure 4: Simulation of control function with treatment initiation, (t)=0.5.

         

              

              
              

Figure 5: Simulation of dynamic optimal control with transversality condition, (t)=0.8.

Figure 6: Simulation of dynamic optimal control function, (t)=0.8.

simulated (Figures 5a-5d). With the same initial condition for UT, and 
varying values of ψ and r(t), we validate the trend of the optimality 
system. Result indicates minimization of benefit cost as drug intensity 
decline sharply with Q*=0.167, representing the remains of infected 
population who were still subjected to lessened chemotherapy after 27 
months of treatment. A summary of the optimal control simulation is 
as presented in (Table 2).

Where, months - period covered for treatment from set-point of 
infection, ψ - optimal weight ratio of systemic cost of treatment, r(t) - 
optimal control function, UT(0), IT(0),V0,P0- initial condition for treatment 
initiation, UT(27) - final condition for each treatment duration and Q 
- objective functional values, Q=Q(r*). 

From Table 2, that there is not much significant difference in final 
outcome of the optimal benefit of the chemotherapy at the duration of 
27 months of treatment, whereas, systemic cost Q(r*) varies greatly. 
The implication is that the benefit to the cost control is independent of 

the intensity of chemotherapy over a prolong time duration (Figures 
3 and 5).

Discussion 
We have proposed and formulated a set of mathematical model 

aimed at controlling the percentage effect of chemotherapy on the CD4+ 
T cells following dual viruses’ infectivity. The approach is an extension 
of single HIV infection from a number of HIV literatures as carefully 
cited in the introductory part of the work. The model is admissible and 
varies chemotherapy control function, which allowed the study and 
suppression of viruses infectivity h1and h2 respectively. We presented 
the model using optimal control strategy from which the dynamical 
optimal control was analytically established. The objective functional 
that maximized the control system was linearized by the introduction 
of a simple non-linear control on the cost indicator and penalty term 
imposed on the constraints, with which the adjoint variables together 
with transversality conditions were established. The optimality control 
system is a two-point boundary value problem due to state initial 
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data and adjoint system final time data. Using numerical methods, 
outcome of analytical determination were numerically validated with 
compactible experimental data. 

Results from simulations affirmed the fact that maximization of 
immune system and optimal cost on chemotherapy is a function of 
optimal dynamical control, achievable by regularization of treatment 
schedule in a fashion dignified by initial high intensity of chemotherapy, 
measurable by the optimal weight factor and control by the control 
function over a finite period of time interval.

We further deduced from results that the benefit and effect of 
chemotherapy were sharper and more effective if initiated at the start 
of infection set-point. Therefore, it becomes obvious that the effect of 
chemotherapy diminishes over time duration and as de-replication 
and mutation of viruses gradually manifest into the system. The 
consequences are the near stable outcomes of benefits on optimal 
chemotherapy over prolong treatment duration. Moreso, it is observed 
that at onset of infection, initialization of treatment with high intensity 
chemotherapy (i.e. ψ=10, r(t)=0.5), caused rapid decline of HIV-virus 
and parasitoid-pathogen and lead to greater recovery of healthy CD4+ 

T cells (i.e., UT(27)=0.38→0.802). 

However, the greatest optimal control on chemotherapy is 
experienced on prolong drug dosage application when UT, approaches 
stability following de-replication of viruses. Low value of ψ, implies 
reduction in systemic cost and optimal r* is visible from the objective 
functional when Q* is maximal. 

Conclusion
In this paper, a 4-Dimensional mathematical model, using ordinary 

differential equations were formulated. The model accounted for 
optimal control benefits and methodological treatment of dual HIV-
parasitoid pathogen infectivity on the host – CD4+ T cells count, with 
RTI, as treatment factor. The method used was analytical optimal control 
strategy and simulated using numerical methods. From the outcome 
of model analyses, it is observed that control of viruses’ infectivity is 
a direct function of chemotherapy regularization, achievable by the 
introduction of optimal weight factor on the objective functional and 
the imposition of penalty term on the constraints for the attainment 
of sustainability of maximized healthy CD4+ T cells. Furthermore, 
benefit on cost function is highest with high intensity drug dosage at 
initiation of onset treatment. On the other hand, results shows that 
minimization of optimal control on chemotherapy is greatest after a 
prolong drug schedule over a finite time duration. Non-the-less, for a 
prolong treatment duration, there exist insignificant variations in the 
benefits from the control function and thus, maximization of healthy 
immune system is independent of treatment duration. The model 
therefore recommends further windows of improvement with the 
incorporation of multiple immunotherapies which can possibly avert 
early drug resistance by multiple viruses’ infectivity.
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