Research Article Open Access

On $\pi g^*\beta$ -Closed Sets in Topological Spaces

Devika A* and Vani R

Department of Arts and Science, Faculty of Arts and Science, PSG College of Arts and Science, Avinashi Road, Civil Aerodrome Post, Coimbatore, Tamil Nadu, India

Abstract

In this paper, we have introduce a new class of sets in topological spaces called $\pi g^*\beta$ - closed set and also we have introduce and study the properties of a $\pi g^*\beta$ -neighbourhood, $\pi g^*\beta$ -interior and $\pi g^*\beta$ -closure in topological spaces.

Keywords: $\pi g^*\beta$ -Open set; $\pi g^*\beta$ -Closed set; g-Neighbourhoods; $\pi g^*\beta$ -Interior; $\pi g^*\beta$ -Closure

2010 AMS Mathematics subject classification: 54A05

Introduction

The study of g-closed sets in a topological space was initiated by Andrijevi [1]. Arya and Nour [2] introduced g*-closed sets. Aslim [3] introduced the concepts of π -closed sets. Dontchev [4] and Dontchev and Noiri [5] introduced π g-closed sets. Gnanambal [6] and Janaki [7] introduce and study the π g β -closed sets. The aim of this paper, is to introduce and study the concepts of π g* β -closed sets [8-10], π g* β -open sets in topological spaces and obtain some of their properties [11-15]. Also, we introduce π g* β -neighbourhood (briefly π g* β -nbhd) in topological spaces by using the notion of π g* β -open sets. Further we have prove that every nbhd of x in X is g* β -nbhd of x but not conversely [16-20].

Preliminaries

Let us recall the following definitions which we shall require in sequal.

Definition

A subset A of a topological space (X, τ) is called

- A pre-open set [16] if A⊆int(cl(A)) and a pre-closed set if cl(int(A))⊆A.
- A semi-open set [9] if A⊆ cl(int(A))and a semi-closed set if int(cl(A)) ⊆A.
- An-open set [11] if A⊆ int(cl(int(A))) and an-closed set if cl(int(cl(A))) ⊆A.
- 4. A semi-pre open $set(\beta\text{-open})$ [1] if $A\subseteq cl(int(cl(A)))$ and a semi-pre closed $set(=\beta\text{-closed})$ if $int(cl(int(A)))\subseteq A$.
- 5. A regular open set [17] if A=int(cl(A)) and a regular closed set if A=cl(int(A)).
- 6. π -closed [20] if A is the union of regular closed sets.

The intersection of all semi-closed (resp.pre-closed, semi-preclosed, regular-closed and-closed) sets containing a subset A of (X,τ) is called the semi-closure (resp.pre-closure, semi-pre-closure, regular-closure and α -closure) of A and is denoted by scl(A) (resp. pcl(A), spcl(A), rcl(A) and cl(A)).

Definition

A subset A of a topological space(X,τ) is called

- 1. A regular generalized closed set (briefly rg-closed) [13] if $cl(A)\subseteq U$ whenever $A\subseteq U$ and U is regular open in (X,τ) .
- 2. A π generalized closed set (briefly π g-closed) [5] if cl(A) \subseteq U whenever A \subseteq U and U is-open in (X, τ).
- 3. A π generalized α closed set (briefly $\pi g \alpha$ -closed) [7] if $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is π -open in (X, τ) .
- 4. A π generalized regular closed set (briefly π gr-closed) [8] if $rcl(A)\subseteq U$ whenever $A\subseteq U$ and U is π -open in (X,τ) .
- 5. A generalized preclosed set (briefly πgp -closed) [14] if $pcl(A)\subseteq U$ whenever $A\subseteq U$ and U is-open in (X,τ) .
- 6. A π generalized semi-closed set(briefly π gs-closed) [3] if $scl(A)\subseteq U$ whenever $A\subseteq U$ and U is π -open in (X,τ) .
- 7. A π generalized β closed set(briefly $\pi g\beta$ -closed) [15] if β cl(A) \subseteq U whenever A \subseteq U and U is π -open in (X, τ).
- 8. A generalized preregular closed set(briefly gpr-closed) [6] if pcl(A)⊆U whenever A⊆U and U is regular open in (X,τ).
- 9. A ageneralized regular closed set(briefly agr-closed) [19] if $\alpha cl(A)\subseteq U$ whenever $A\subseteq U$ and U is regular open in (X,τ) .
- 10. A regular generalized β closed set(briefly rg β -closed)[15] if β cl(A) \subseteq U whenever A \subseteq U and U is regular open in (X,τ) .
- 11. A regular w generalized closed set(briefly rwg-closed)[11] if $cl(int(A))\subseteq U$ whenever $A\subseteq U$ and U is regular open in (X,τ) .

πg*β-Closed Sets

In this section, we introduce a new class of sets called $\pi g^*\beta$ -open sets, $\pi g^*\beta$ -closed sets and study some of its properties.

Definition

A subset A of a topological space (X,τ) is called $\pi g^*\beta$ -closed set if $\beta cl(A)\subseteq U$ whenever $A\subseteq U$ and U is πg -open in (X,τ) .

*Corresponding author: Vani R, Department of Arts and Science, Faculty of Arts and Science, PSG College of Arts and Science, Avinashi Road, Civil Aerodrome Post, Coimbatore, India, Tel: 0422 430 3300; E-mail: vanisrivatsan@gmail.com

Received May 30, 2017; Accepted July 18, 2018; Published July 23, 2018

Citation: Devika A, Vani R (2018) On $\pi g^*\beta$ -Closed Sets in Topological Spaces. J Appl Computat Math 7: 413. doi: 10.4172/2168-9679.1000413

Copyright: © 2018 Devika A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Theorem

Every r-closed set is $\pi g^*\beta$ -closed.

Proof: Let A be r-closed set in X. Let U be a πg -open set such that $A \subseteq U$. Since A is r-closed, we have $rcl(A) = A \subseteq U$. But, $\beta cl(A) \subseteq rcl(A) \subseteq U$. Therefore $\beta cl(A) \subseteq U$. Hence A is a $\pi g^*\beta$ -closed set in X.

Remark: The converse of the above theorem is not true as seen from the following example.

Example: Let X={a; b; c} and $\tau = \{\theta, \{a\}\}, \{a,b\}, \{\{a,c\},X\}$. Let $\pi g^*\beta$ -closed set= $\{\theta, \{b\}, \{c\}, \{\{b,c\},X\}$ and γ -closed set= $\{\theta,X\}$. Let A= $\{b\}$. Then the subset A is $\pi g^*\beta$ -closed but not a γ -closed set.

Remark: The following diagram shows the relationship of πg 's-closed set with other known existing sets (Figure 1).

Example: Let $X=\{a,b,c\}$ with $\tau=\{\theta,\{b\},\{c\},\{b,c\},X\}$. Then $\pi g^*\beta$ -closed set= $\{\theta,\{a\},\{b\},\{c\},\{a,c\},\{a,b\},X\},\pi g$ -closed, $\pi g\alpha$ -closed and $\pi g\gamma$ -closed= $\{\theta,\gamma$ -closed, γg -closed, πg -closed, πg -closed and πg -closed set= $\{\theta,\{a\},\{b\},\{c\},\{a,b\},\{b,c\},\{a,c\},X\}$. Let $A=\{a\}$. Then the subset A is gs-closed, sg-closed, gp-closed, gp-closed, gr-closed, gp-closed, gs-closed and $\pi g\beta$ -closed set but not πg -s-closed set.

Example: Let X={a,b,c} with τ ={ θ ,{a},{b},{a,b}X}.Then πg *s-closed set={ θ ,{a},{b},{c},{a,c},{b,c},X}, π -closed, γg -closed, αg -closed, πg -closed, $\pi g \alpha$ -closed={ θ ,{c},{b,c},{a,c}X} and $\gamma w g$ ={ θ ,{a,b},b,c},{a,c}X}. Let A={a}. Then the subset Ais πg *s-closed but not π -closed, γ -closed, αg -closed, $\alpha g \alpha$ -closed and $\gamma w g$ -closed set.

Theorem

Union of two $\pi g^*\beta$ -closed subset is $\pi g^*\beta$ closed.

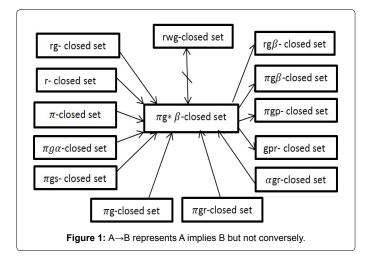
Proof: Let A and B be any two $\pi g^*\beta$ -closed sets in X such that $A \subseteq U$ and $B \subseteq U$ where U is πg -open in X and so $A \cup B \subseteq U$. Since A and B are $\pi g^*\beta$ -closed. $A \subseteq \beta cl(A)$ and $B \subseteq \beta cl(A)$ and hence $A \cup B \subseteq \beta cl(A) \cup \beta cl(B) \subseteq \beta cl(A \cup B)$. Thus, $A \cup B$ is $\pi g^*\beta$ -closed set in (X, τ) .

Example: Let X={a;b;c} and τ ={0,{c},{a,c}{b,c},X}. Let A={a} and B={b} then AUB ={a}U{b}={a;b} is $\pi g^*\beta$ closed set.

Theorem

Intersection of two $\pi g^*\beta$ -closed subset is $\pi g^*\beta$ closed.

Proof: Let A and B be any two $\pi g^*\beta$ -closed sets in X such that $A \subseteq U$ and $B \subseteq U$ where U is πg -open in X and so $A \cap B \subseteq U$. Since A and B are



 $\pi g^*\beta$ -closed. $A \subseteq cl(A)$ and $B \subseteq cl(A)$ and hence $A \cap B \subseteq \beta cl(A) \cap \beta cl(B) \subseteq \beta cl(A \cap B)$. Thus, $A \cap B$ is $\pi g^*\beta$ -closed set in (X, τ) .

Example: Let $X=\{a;b;c\}$ and $\tau=\{\theta,\{a\},\{c\},\{a,c\},X\}$. Let $A=\{a;b\}$ and $B=\{b;c\}$ then $A\cap B=\{a;b\}\cap \{b\}$ is a $\pi g^*\beta$ closed set.

Theorem

A subset A of X is $\pi g^*\beta$ -closed if f $\beta cl(A)$ -A contains no non-empty closed set in X.

Proof: Let A be a $\pi g^*\beta$ -closed set. Suppose F is a non-empty closed set such that $F \subseteq \beta cl(A)$ -A. Then $F \subseteq \beta cl(A) \cap A^c$, since $\beta cl(A)$ -A= $\beta cl(A) \cap A^c$. Therefore $F \subseteq \beta cl(A)$ and $F \subseteq A^c$. Since $F \subseteq A^c$ is open, it is πg -open. Now, by the definition πg^* -closed set, $\beta cl(A) \subseteq F^c$, That is $F \subseteq [\beta cl(A)]^c$. Hence $F \subseteq cl(A) \cap [\beta cl(A)]^c = \emptyset$. That is $F = \emptyset$, which is a contradiction. Thus, $\beta cl(A)$ -A contains no non-empty closed set in X.

Conversely, assume that $\beta cl(A)$ -A contains no non-empty closed set. Let $A\subseteq U$, where U is πg -open. Suppose that $\beta cl(A)$ is not contained in U, then $\beta cl(A)\cap U^c$ is a non-empty closed subset of $\beta cl(A)$ -A, which is a contradiction. Therefore $\beta cl(A)\subseteq U$ and hence A is $\pi g^*\beta$ -closed.

Theorem

For any element $x \in X$. The set X is $\pi g^* \beta$ closed set or πg -open.

Proof: Suppose $X\{x\}$ is not πg -open, then X is the only πg -open set containing $X\{x\}$. This implies $\beta clX\{x\} \subset X$. Hence $X\{x\}$ is $\pi g^*\beta$ closed or πg -open set in X.

Theorem

If A is an $\pi g^*\beta$ closed subset of X such that $A \subset B \subset \beta cl(A)$ then B is an $\pi g^*\beta$ closed set in X.

Proof: Let A be an $\pi g \, \beta$ closed set of X such that $A \subset B \subset \beta cl(A)$. Let U be a πg -open set of X such that $B \subset U$, then $A \subset U$. Since A is $\pi g \, \beta$ -closed, we have $\beta cl(A) \subset U$. Now, $\beta cl(B) \subset \beta cl(\beta cl(A)) \subset U$, therefore B is an $\pi g \, \beta closed$ set in X.

Definition

A subset A of a topological space (X,τ) is called $\pi g^*\beta$ -open set if and only if A^c is $\pi g^*\beta$ -closed in (X,τ) .

Theorem

Let $A \subset X$ is $\pi g^*\beta$ -open if and only if $F \subset int(A)$,where F is πg -open and $F \subseteq A$.

Proof: Let A be a $\pi g^{\circ}\beta$ -open set in X. Let F be πg -closed set and F \subset A. Then X-A \subset X-F, where X-F is πg -open, since X-A is $\pi g^{\circ}\beta$ closed, β cl(X-A) \subset X-F. Therefore β cl(X-F)=X-int(A) \subset X-int(A) \subset X-F, i.e.,) F \subset int(A). Conversely, suppose F is πg -closed and F \subset A implies F \subset int(A). Let X-A \subset U, where U is πg -open. Then X-U \subset A, where X-U is πg -closed, By hypothesis, X-U \subset int(A), i.e.,) X-int(A) \subset U since β cl(X-A)=X-int(A), β cl(A) U, where U is πg -open this implies X-A is $\pi g^{\circ}\beta$ -closed and hence A is $\pi g^{\circ}\beta$ -open.

Theorem

If $int(A) \subset B \subset A$ and A is $\pi g^*\beta$ -open then B is also $\pi g^*\beta$ open.

Proof: We know that if A is $\pi g^*\beta$ -closed and $A \subseteq B \subseteq \beta cl(A)$ then B is also $\pi g^*\beta$ -closed. Here X-A is $\pi g^*\beta$ -closed, then X-B is also $\pi g^*\beta$ -closed. Hence B is $\pi g^*\beta$ -open.

Theorem

If $A \subset X$ is $\pi g^*\beta$ -closed then $\beta cl(A)$ -A is πg -open.

Proof: Let A be a $\pi g^*\beta$ -closed set in X. Let F be a πg -closed set such that $F \subset \beta cl(A)$ -A. Then $\beta cl(A)$ -A does not contain any non-empty πg -closed set. Therefore $F = \theta$, so $F \subset \operatorname{int}(\beta cl(A) - A)$. This shows $\beta cl(A)$ -A is πg -open. Hence A is $\pi g^*\beta$ -closed in (X, τ) .

Theorem

If int(B) \subseteq B \subseteq A and if A is $\pi g^*\beta$ -open in X, then B is $\pi g^*\beta$ -open in X.

Proof: Suppose that $int(B)\subseteq B\subseteq A$ and A is $\pi g^*\beta$ -open in X then $A^c\subseteq B^c\subseteq cl(A^c)$. Since A^c is $\pi g^*\beta$ -closed in X. we have B is $\pi g^*\beta$ -open in X.

Theorem

If A is γ wg-open and $\pi g^*\beta$ -closed then A is πg -closed.

Proof: Let A be a ywg-open and πg -closed set in X. Let A \subset A where A is wg-open. Since A is $\pi g^*\beta$ closed; $\beta cl(A)\subset A$ whenever A \subset A and A is wg-open. the implies $\beta cl(A)=ywg$. Hence A is πg -closed.

Theorem

If A is wg-open and $\pi g^*\beta$ -closed then A is πg -closed.

Proof: Let A be a wg-open and $\pi g^*\beta$ -closed set in X. Let A \subset A where A is wg-open. Since A is $\pi g^*\beta$ -closed; $\beta cl(A) \subset A$ whenever A \subset A and A is wg-open. the implies $\beta cl(A) = \gamma wg$. Hence A is πg -closed.

g-Neighbourhoods

Definition

Let X,τ) be a topological space and let $x \in X$, A subset N of X is said be $\pi g^*\beta$ -neighbourhood of x if there exists an $\pi g^*\beta$ -open set G such that $x \in G \subseteq N$. The collection of all $\pi g^*\beta$ -neighbourhood of $x \in X$ is called $\pi g^*\beta$ neighbourhood system at x shall be denoted by $\pi g^*\beta$ -N(X).

Theorem

Every neighbourhood N of $x \in X$ is $\pi g^* \beta$ -neighbourhood of X.

Proof: Let N be a neighbourhood of point $x \in X$, To prove that N is a $\pi g^*\beta$ -neighbourhood of x by definition of neighbourhood, there exists an open set G, such that $x \in G \subseteq N$. Hence N is $\pi g^*\beta$ -neighbourhood of X.

Remark: In general, a $\pi g^{*}\beta$ -neighbourhood N of $x \in X$ need not be a nbhd of x in X as seen from the following example.

Example: Let $X=\{a;b;c\}$ with topology $\tau=\{\theta \ ;X; \ \{a\};\{a;c\}\}$. Then $\pi g^*\beta\text{-o}(X)=\{\theta;X;\{b\}; \ \{c\}; \ \{b; \ c\}\}$. The set $\{a;b\}$ is $\pi g^*\beta\text{-nbhd}$ of point b, since the $\pi g^*\beta$ -open set $\{b\}$ is such that $b\in\{b\}\subset\{a;b\}$. However the set $\{a;b\}$ is not a nbhd of the point b, since no open set G exists such that $b\in G\subset\{a;b\}$.

Theorem

If a subset N of a space X is $\pi g^*\beta$ -open, then N is $\pi g^*\beta$ -nbhd of each of its points.

Proof: Suppose N is $\pi g^*\beta$ -open. Let $x \in N$. We claim that N is $\pi g^*\beta$ -nbhd of x. For N is a $\pi g^*\beta$ -open set such that $x \in N \subseteq N$. Since x is an arbitrary point of N, it follows that N is a $\pi g^*\beta$ -nbhd of each of its points.

Theorem

Let X be a topological space. If F is a $\pi g^*\beta$ -closed subset of X, and $x \in F$ c : P rove that there exists a $\pi g^*\beta$ -nbhd N of x such that $N \cap F = \theta$.

Proof: Let F be $\pi g^*\beta$ -closed subset of X and $x \in F^c$: T hen F^c is $\pi g^*\beta$ -open set of X. So by Theorem 4.5 F^c contains a $\pi g^*\beta$ -nbhd of each of its points. Hence there exists a $\pi g^*\beta$ -nbhd N of x such that $N \subset F^c$: That is $N \cap F = \theta$.

$\pi g^* \beta$ -Interior

Definition

Let A be a subset of X. A point $x \in X$ is said to be $\pi g^*\beta$ -interior point of A if A is a $\pi g^*\beta$ -nbhd of x. The set of all $\pi g^*\beta$ -interior points of A is called the $\pi g^*\beta$ -interior of A and is denoted by $\pi g^*\beta$ -int(A).

Theorem

If A be a subset of X. Then $\pi g^*\beta$ -int(A)= \cup {G:G is $\pi g^*\beta$ -open,G \subseteq A}.

Proof: Let A be a subset of $X:x \in \pi g^*\beta$ -int(A) $\Leftrightarrow x$ is a $\pi g^*\beta$ -interior point of A.

- \triangleright A is a $\pi g^*\beta$ -nbhd of point x.
- \triangleright There exists $\pi g^*\beta$ -open set G such that x ∈ G⊆A.
- $ightharpoonup x \in \bigcup \{G: G \text{ is } \pi g^*\beta\text{-open, } G \subseteq A.$

Hence $\pi g^*\beta$ -int(A)= \cup {G: G is $\pi g^*\beta$ -open, G \subseteq A}:

Theorem

Let A and B be subsets of X. Then

- 1. $\pi g^* \beta int(X) = X$ and $\pi g^* \beta int(\theta) = \theta$.
- 2. $\pi g^* \beta$ -int(A) \subseteq A.
- 3. If B is any $\pi g^*\beta$ -open set contained in A, then $B \subseteq \pi g^*\beta$ -int(A).
- 4. If $A \subseteq B$, then $\pi g^* \beta int(A) \subseteq \pi g^* \beta int(B)$.
- 5. $\pi g^* \beta \operatorname{int}(\pi \pi g^* \beta \operatorname{int}(A)) = \pi \pi g^* \beta \operatorname{int}(A)$.

Proof: 1. Since X and θ are $\pi g^*\beta$ -open sets, by Theorem $\pi g^*\beta$ -int(X)= \cup {G:G is $\pi g^*\beta$ -open, G \subseteq X}=X \cup {all fall $\pi g^*\beta$ -open sets}=X. That is $\pi g^*\beta$ -int(A)=X. Since θ is the only $\pi g^*\beta$ -open set contained in θ , $\pi g^*\beta$ -int(θ)= θ .

- 2. Let $x \in \pi g^*\beta$ -int(A)) $\Rightarrow x$ is a $\pi g^*\beta$ -interior point of A.
- \triangleright A is a $\pi g^*\beta$ -nbhd of x.
- \triangleright X∈A. Thus x ∈ π g*β-int(A)) \Rightarrow x ∈A. Hence π g*β-int(A) A.
- 3. Let B be any $\pi g^*\beta$ -open sets such that $B \subseteq A$. Let $x \in B$, then since B is a $\pi g^*\beta$ -open set contained in A. x is a $\pi g^*\beta$ -interior point of A. That is $x \in \pi g^*\beta$ -int(A). Hence $B \subseteq \pi g^*\beta$ -int(A).
- 4. Let A and B be subsets of X such that $A \subseteq B$. Let $x \in \pi g^*\beta\text{-int}(A)$. then x is a $\pi g^*\beta$ -interior point of A and so A is $\pi g^*\beta\text{-nbhd}$ of x. Since $B \supset A$, B is also a $\pi g^*\beta\text{-nbhd}$ of x. This implies that $x \in \pi g^*\beta\text{-int}(B)$. Thus we have shown that $x \in \pi g^*\beta\text{-int}(A)$) $x \in \pi g^*\beta\text{-int}(B)$. Hence $\pi g^*\beta\text{-int}(A) \subset \pi g^*\beta\text{-int}(B)$.
- 5. From (2) and (4) $\pi g^*\beta$ -int($\pi g^*\beta$ -int(A)) $\subseteq \pi g^*\beta$ -int(A). Let $x \in \pi g^*\beta$ -int(A) this implies A is a neighbourhood of x, so there exists a $\pi g^*\beta$ -open set G such that $x \in G \subseteq A$. so every element of G is an $\pi g^*\beta$ -interior of A, hence $x \in G \subseteq \pi g^*\beta$ -int(A) which means that x is an $\pi g^*\beta$ -interior point of $\pi g^*\beta$ -int(A) that is $\pi g^*\beta$ -int(A) $\subseteq \pi g^*\beta$ -int($\pi g^*\beta$ -int(A)). That is $\pi g^*\beta$ -int($\pi g^*\beta$ -int(A)) = $\pi g^*\beta$ -int(A). Let A be any subset of X. By the definition of $\pi g^*\beta$ -interior $\pi g^*\beta$ -int(A) $\subseteq A$, by $\pi g^*\beta$ -int($\pi g^*\beta$ -int(A)) $\subseteq \pi g^*\beta$ -int(A). Hence $\pi g^*\beta$ -int($\pi g^*\beta$ -int(A)) $\subseteq \cap \{F:A \subseteq F \in \pi g^*\beta$ -C(X) $\}$ = $\pi g^*\beta$ -cl(A).

Theorem

If a subset A of space X is $\pi g^*\beta$ -open, then $\pi g^*\beta$ -int(A)=A.

Proof: Let A be $\pi g^*\beta$ -open subset of X. $\pi g^*\beta$ -int(A) \subset A. Also, A is $\pi g^*\beta$ -open set contained in A. From (3) $A \subset \pi g^*\beta$ -int(A). Hence $\pi g^*\beta$ -int(A)=A.

Remark: The converse of the above theorem need not be true, as seen from the following example.

Example: Let X={a;b;c} with topology τ ={0, {c}; {b;c}; X}. $\pi g^{\circ}\beta$ -closed set is {0, {a}, {b},{a;b}, X}. $\pi g^{\circ}\beta$ -O(X) is $\pi g^{\circ}\beta$ -open sets in X={0, {c}; {b;c}; {a;c}; X} $\pi g^{\circ}\beta$ -int(A)= $\pi g^{\circ}\beta$ -int({a;b})={a}U{b}={a;b}; but {a;b} is not g-open set.

Theorem

If A and B are subsets of X, then $\pi g^*\beta$ -int(A) $\cup \pi g^*\beta$ -int(B) $\subset \pi g^*\beta$ -int(A \cup B).

Proof: Theorem $\pi g^*\beta$ -int(A) $\subset \pi g^*\beta$ -int(AUB) and $\pi g^*\beta$ -int(B) $\subset \pi g^*\beta$ -int(AUB). This implies that $\pi g^*\beta$ -int(A) $\cup \pi g^*\beta$ -(B) $\subset \pi g^*\beta$ -int(AUB).

g-Closure in a Space X

Definition

Let A be a subset of a space X. The πg ' β -closure of A is de ned as the intersection of all πg ' β -closed sets containing A. πg ' β -cl(A)= $\bigcap \{F: A \subset F \in \pi g$ ' $\beta C(X)\}$.

Theorem

If A and B are subsets of a space X. Then

- (1) $\pi g^*\beta$ -cl(X)=X and $\pi g^*\beta$ -cl(θ)= θ .
- (2) A⊂πg*β-cl(A).
- (3) If B is any $\pi g^*\beta$ -closed set containing A, then $\pi g^*\beta$ -cl(A) \subset B.
- (4) If $A \subseteq B$, then $\pi g^* \beta cl(A) \subseteq \pi g^* \beta cl(B)$.
- (5) $\pi g^*\beta$ -cl(A)= $\pi g^*\beta$ -cl($\pi g^*\beta$ -cl(A)).

Proof: (1) By the definition of $\pi g^{\circ}\beta$ -closure, X is the only $\pi g^{\circ}\beta$ -closed set containing X. Therefore $\pi g^{\circ}\beta$ -cl(X)=Intersection of all the $\pi g^{\circ}\beta$ -closed sets containing $X=\cap\{X\}=X$: That is $\pi g^{\circ}\beta$ -cl(X)=X. By the definition of $\pi g^{\circ}\beta$ -closure, $\pi g^{\circ}\beta$ -cl(θ)=Intersection of all the $\pi g^{\circ}\beta$ closed sets containing $\theta=\cap$ any $\pi g^{\circ}\beta$ -closed sets containing $\theta=\theta$. That is $\pi g^{\circ}\beta$ -cl(θ)= θ .

- 2. By the definition of $\pi g^*\beta$ -closure of A, it is obvious that $A \subset \pi g^*\beta$ cl(A).
- 3. Let B be any $\pi g^*\beta$ -closed set containing A. Since $\pi g^*\beta$ -cl(A) is the intersection of all g-closed sets containing A, $\pi g^*\beta$ -cl(A) is contained in every $\pi g^*\beta$ -closed set containing A. Hence in particular $\pi g^*\beta$ -cl(A) \subset B.
- 4. Let A and B be subsets of X such that $A \subseteq B$. By the definition of $\pi g^*\beta$ -closure, $\pi g^*\beta$ -cl(B)= \cap {F: B $\subset \in \pi g^*\beta$ C(X)g. If B $\subset F \in \pi g^*\beta$ C(X), then $\pi g^*\beta$ -cl(B) F. Since $A \subset B$, $A \subset B \subset F \in \pi g^*\beta$ C(X), $\pi g^*\beta$ -cl(A) $\subset F$. Therefore $\pi g^*\beta$ -cl(A) $\subset \cap \{F: B \subset F \in \pi g^*\beta$ C(X)}= $\pi g^*\beta$ -cl(B). That is $\pi g^*\beta$ -cl(A) $\subset \pi g^*\beta$ -cl(B).
- 5. Let A be any subset of X. By the definition of $\pi g^*\beta$ -closure, $\pi g^*\beta$ -cl(A)= $\cap \{F: A \subset F \in \pi g^*\beta \ C(X)g$, If $A \subset F \in \pi g^*\beta \ C(X)$, then $\pi g^*\beta$ -cl(A) F. Since F is $\pi g^*\beta$ -closed set containing $\pi g^*\beta$ -cl(A), by (3) $\pi g^*\beta$ -cl($\pi g^*\beta$ -cl(A)) $\subseteq F$. Hence $\pi g^*\beta$ -cl($\pi g^*\beta$ -cl(A)) $\subseteq \cap \{F: A \subset F \in \pi g^*\beta \ C(X)\} = \pi g^*\beta$ -

cl(A). that is $\pi g^*\beta - cl(\pi g^*\beta - cl(A)) = (A)$.

Theorem

If $A \subset X$ is $\pi g^*\beta$ -closed, then $\pi g^*\beta$ -cl(A)=A.

Proof: Let A be $\pi g^*\beta$ -closed subset of X. By the definition of $\pi g^*\beta$ -cl(A), $A \subset \pi g^*\beta$ -cl(A). Also $A \subset A$ and A is $\pi g^*\beta$ -closed. By Theorem $\pi g^*\beta$ -cl(A) \subset A. Hence $\pi g^*\beta$ -cl(A)=A.

Remark: The converse of the above theorem need not be true as seen from the following example.

Example: Let X={a;b;c} with topology τ ={θ, {a}, {a;b}, {a;c}, X}. $\pi g^*\beta$ -closed set is {θ, {b}, {c}, {b; c}, X} and $\pi g^*\beta$ -O(X)= $\pi g^*\beta$ -open sets in X={θ, {a}; {a; b}; {a; c}; X}. $\pi g^*\beta$ -cl(A)= $\pi g^*\beta$ -cl({a}={a; b}) {a; c}={a} but {a} is not $\pi g^*\beta$ -closed set.

Theorem

If A and B are subsets of a space X, Then $\pi g^*\beta\text{-cl}(A\cap B) \subset \pi g^*\beta\text{-cl}(A) \cap \pi g^*\beta\text{-cl}(B)$.

Proof: Let A and B be subsets of X. clearly $A \cap B \subset C$ and $A \cap B \subset B$. by Theorem, $\pi g^*\beta - cl(A \cap B) \subset \pi g^*\beta - cl(A)$ and $\pi g^*\beta - cl(A \cap B) \subset \pi g^*\beta - cl(B)$. Hence $\pi g^*\beta - cl(A \cap B) \subset \pi g^*\beta - cl(A) \cap \pi g^*\beta - cl(B)$.

Conclusion

This paper is to introduced and study the concepts of $\pi g^*\beta$ -closed sets and $\pi g^*\beta$ -neighbour hood in topological spaces. We had proved that the defined set was properly contains $\pi g\beta$ -closed and contained in πg -closed set. Further the defined set satisfies the union and intersection property. Hence we conclude that the defined set forms a topology which results this work may be extend widely.

References

- 1. Andrijević D (1986) Semi-preopen sets. Matematički Vesnik 38: 24-32.
- 2. Arya SP (1990) Characterizations of s-normal spaces. Indian J Pure Appl Math 21: 717-719.
- 3. Aslim G, Caksu Guler A, Noiri T (2006) On π gs-closed sets in topological spaces. Acta Mathematica Hungarica 112: 275-283.
- Dontchev J (1995) On generalizing semi-preopen sets. Mem Fac Sci Kochi Univ Ser A (Math) 16: 35-48.
- 5. Dontchev J, Noiri T (2000) Quasi-normal spaces and π g-closed sets. Acta Math Hungar 89: 211-219.
- Gnanambal Y (1997) On generalized preregular closed sets in topological spaces. Indian J Pure Appl Math 28: 351-360.
- Janaki C (2009) nStudies on g -closed sets in topology. Ph.D Thesis, Bharathiar University, Coimbatore.
- Jayanthi V, Janaki C (1963) On gr-closed set in topological spaces. Amer Math Monthly 70: 36-41.
- Levine N (1970) Generalized closed sets in topology. Rendiconti del Circolo Matematico di Palermo 19: 89-96.
- Maki H (1996) Every topological space is pre-T_< 1/2. Mem Fac Sci Kochi Univ Ser A Math 17: 33-42.
- Nagaveni N (1999) Studies on generalizations of homeomorphisms in topological spaces. Ph. DThesis.
- Njåstad O (1965) On some classes of nearly open sets. Pacific Journal of Mathematics 15: 961-970.
- 13. Palaniappan N (1995) Regular generalized closed sets.
- Park JH, Park JK (2004) On πgp-continuous functions in topological spaces. Chaos Solitons & Fractals 20: 467-477.

- Sarsak MS, Rajesh N (2010) π–Generalized Semi–Preclosed Sets. In International Mathematical Forum 5: 573-578.
- 16. Sundaram P, John MS (2000) On omega-closed sets in topology. Acta Ciencia Indica Mathematics 26: 389-392.
- 17. Stone MH (1937) Applications of the theory of Boolean rings to general topology. Trans Am Math Soc 41: 375-481.
- 18. Kumar MV (2000) Between closed sets and g-closed sets. Mem Fac Sci Kochi Univ (Math) 21: 1-19.
- 19. Veerakumar MKRS (2002) On -Generalised regular closed sets. Indian J Math 44: 165-181.
- 20. Zaitsev VI (1968) Some classes of topological spaces and their bicompact extensions. In Doklady Akademii Nauk 178: 778-779.