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Abstract

In this paper, we have introduce a new class of sets in topological spaces called ng*B- closed set and also we
have introduce and study the properties of a ng*B-neighbourhood, ng*B-interior and ng*B-closure in topological

spaces.
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Introduction

The study of g-closed sets in a topological space was initiated by
Andrijevi [1]. Arya and Nour [2] introduced g'-closed sets. Aslim [3]
introduced the concepts ofrt-closed sets. Dontchev [4] and Dontchev
and Noiri [5] introduced ng-closed sets. Gnanambal [6] and Janaki
[7] introduce and study the mgP-closed sets. The aim of this paper, is
to introduce and study the concepts of ng*B-closed sets [8-10], mg*p-
open sets in topological spaces and obtain some of their properties [11-
15]. Also, we introduce ng*B-neighbourhood (briefly ng*p-nbhd) in
topological spaces by using the notion of ng*B-open sets. Further we
have prove that every nbhd of x in X is g*8-nbhd of x but not conversely
[16-20].

Preliminaries

Let us recall the following definitions which we shall require in
sequal.

Definition
A subset A of a topological space (X, 1) is called

1. A pre-open set [16] if ACint(cl(A)) and a pre-closed set if
cl(int(A)) SA.

2. A semi-open set [9] if AC cl(int(A))and a semi-closed set if
int(cl(A)) CA.

3. An-open set [11] if AC int(cl(int(A))) and an-closed set if
cl(int(cl(A))) CA.

4. A semi-pre open set(f-open) [1] if AScl(int(cl(A))) and a
semi-pre closed set(=p-closed) if int(cl(int(A))) SA.

5. A regular open set [17] if A=int(cl(A)) and a regular closed set
if A=cl(int(A)).

6. m-closed [20] if A is the union of regular closed sets.

The intersection of all semi-closed (resp.pre-closed, semi-preclosed,
regular-closed and-closed) sets containing a subset A of (X,T) is called
the semi-closure (resp.pre-closure, semi-pre-closure, regular-closure
and a-closure) of A and is denoted by scl(A) (resp. pcl(A),spcl(A),
rcl(A) and cl(A)).

Definition

A subset A of a topological space(X,1) is called

1. A regular generalized closed set (briefly rg-closed) [13] if
cl(A)SU whenever ACU and U is regular open in (X,7).

2. Am generalized closed set (briefly mg-closed) [5] if cl(A) €U
whenever ACU and U is-open in (X,1).

3. A 7 generalized a closed set (briefly nga-closed) [7] if acl(A)
CU whenever ACU and U is m-open in (X,T).

4. A m generalized regular closed set (briefly ngr-closed) [8] if
rcl(A)SU whenever ACU and U is m-open in (X, 7).

5. A generalized preclosed set (briefly mgp-closed) [14] if
pcl(A)EU whenever ACU and U is-open in (X,T1).

6. A m generalized semi-closed set(briefly mgs-closed) [3] if
scl(A)EU whenever ACU and U is m-open in (X,T).

7. A 7 generalized B closed set(briefly mgP-closed) [15] if P
cl(A)SU whenever ACU and U is m-open in (X,7).

8. A generalized preregular closed set(briefly gpr-closed) [6] if
pcl(A)EU whenever ACU and U is regular open in (X, 7).

9. A oageneralized regular closed set(briefly agr-closed) [19] if
acl(A)EU whenever ACU and U is regular open in (X,7).

10. A regular generalized B closed set(briefly rgp-closed)[15] if
Bcl(A)SU whenever ACU and U is regular open in (X,7).

11. A regular w generalized closed set(briefly rwg-closed)[11] if
cl(int(A))EU whenever ACU and U is regular open in (X,1).

ng B-Closed Sets

In this section, we introduce a new class of sets called ng'3-open
sets, ig'P-closed sets and study some of its properties.

Definition

A subset A of a topological space (X,7) is called ng'p-closed set if
Bcl(A)SU whenever ASU and U is ng-open in (X,T).
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Theorem
Every r-closed set is g"p-closed.

Proof: Let A be r-closed set in X. Let U be a nig-open set such that
ACU.Since A isr-closed, we have rcl(A)=ACSU. But, Bcl(A)Srcl(A)SU.
Therefore pcl(A)EU. Hence A is a ng'B-closed set in X.

Remark: The converse of the above theorem is not true as seen
from the following example.

Example: Let X={a; b; ¢} and t ={6,{a}},{a,b},{{a,c},X}.Let ng'B-
closed set={0,{b},{c},{{b,c}.X} and y-closed set={0,X}.Let A={b}. Then
the subset A isng’B-closed but not a y-closed set.

Remark: The following diagram shows the relationship of ng's-
closed set with other known existing sets (Figure 1).

Example: Let X={a,b,c} with t={0,{b},{c},{b,c},X}. Then ng*p-
closed set={0,{a},{b},{c},{a,c},{a,b},X},ng-closed, nga-closed and ngy-
closed={0,y-closed, yg-closed, ngp-closed, ngs-closed and mngs-closed
and ngp-closed set={0,{a},{b},{c}.{a,b}.{b,c}.{a,c},X}. Let A={a}. Then
the subset A is gs-closed, sg-closed, gp-closed, gsp-closed, gr-closed,
gp-closed, gs-closed and ngp-closed set but not ng’s-closed set.

Example: Let X={a,b,c} with t={6,{a},{b},{a,b}X}.Then ng's-closed
set={0,{a},{b}.{c}.{a,c},{b,c}, X}, m-closed, yg-closed, ag-closed, mg-
closed, mga-closed={0,{c},{b,c},{a,c}X} and ywg={0,{a,b},b,c}.{a,c}
X}. Let A={a}. Then the subset Ais ng's-closed but not n-closed,
y-closed,ag-closed,nga-closed and ywg-closed set.

Theorem
Union of two nig'B-closed subset is ng'P closed.

Proof: Let A and B be any two ng'p-closed sets in X such that
ACU and BEU where U isng-open in X and so AUBEU. Since
A and B are ngP-closed. ASPcl(A) and BEPcl(A) and hence
AUBEPC(A)UBCI(B)SPcl(AUB). Thus, AUB is g*B-closed set in (X, 7).

Example: Let X={a;b;c} and t={6,{c},{a,c}{b,c},X}. Let A={a} and
B={b} then AUB ={a}U {b}={a;b} is ng'P closed set.

Theorem
Intersection of two ng’B-closed subset is g} closed.

Proof: Let A and B be any two ng'B-closed sets in X such that ACU
and BEU where U is nig-open in X and so ANBEU. Since A and B are

rwg-closed set

rg- closed set rgf3- closed set

r- closed set ngfi-closed set

I

n-closed set mgx B-closed set mgp- closed set

L
T \
nmga-closed set / \ gpr- closed set

mgs- closed set agr-closed set

mg-closed set rgr-closed set

Figure 1: A—B represents A implies B but not conversely.

nig B-closed. AScl(A) and BScl(A) and hence ANBEPcl(A)NPcI(B)S
Bcl(ANB). Thus, ANB is ngB-closed set in (X,T).

Example: Let X={a;b;c} and 1={0,{a},{c},{a,c},X} . Let A={a;b}and
B={bsc} then ANB ={a;b}N {b} is a ng'P closed set.

Theorem

A subset A of X is g'B-closed if f fcl(A)-A contains no non-empty
closed set in X.

Proof: Let A be a ng'B-closed set. Suppose F is a non-empty closed
set such that FCSPcl(A)-A. Then F SBcl(A)NAS, since Pcl(A)-A=
Bcl(A)NA-. Therefore FEBcl(A) and FEA*. Since FEA© is open, it is
nig-open. Now, by the definition ng’-closed set, Bcl(A)S F<, That is
FC[Bcl(A)]~. Hence FScl(A)N[Pcl(A)]°=0. That is F=0, which is a
contradiction. Thus, Pcl(A)-A contains no non-empty closed set in X.

Conversely, assume that fcl(A)-A contains no non-empty closed
set. Let ACU, where U is ng-open. Suppose that Bcl(A) is not contained
in U, then Bcl(A)NU* is a non-empty closed subset of Bcl(A)-A, which
is a contradiction. Therefore Bcl(A)SU and hence A is ng*B-closed.

Theorem
For any element x€X. The set X is g’ closed set or ng-open.

Proof: Suppose X{x} is not ng-open, then X is the only ng-open set
containing X{x}.This implies pclX{x}cX. Hence X{x} is ng'p closed or
nig-open set in X.

Theorem

If A is an ig'B closed subset of X such that Ac Bc Bcl(A) then B is
an nig'P closed set in X.

Proof: Let A be an ng'B closed set of X such that Ac Bc Bcl(A).
Let U be a ng-open set of X such that BCU, then AcU. Since A is ng'B-
closed, we have fcl(A)cU. Now, Bcl(B)cBcl(B cl(A))cU, therefore B is
an nig Bclosed set in X.

Definition

A subset A of a topological space (X,7) is called nig'B-open set if and
only if A<is ng'p-closed in (X, 7).

Theorem

Let AcX is ng'P-open if and only if Fcint(A),where F is ng-open
and FEA.

Proof: Let A be a ng'B-open set in X. Let F be ng-closed set and
FcA. Then X-AcX-F, where X-F is ng-open, since X-A is ng'p closed,
Bcl(X-A)cX-F. Therefore fcl(X-F)=X-int(A)cX-int(A)cX-F, i.e,) FC
int(A). Conversely, suppose F is ng-closed and FC A implies FCint(A).
Let X-AcU, where U is ng-open. Then X-UcA, where X-U is ng-
closed, By hypothesis, X-U cint(A), i.e.,) X-int(A)cU since Pcl(X-
A)=X-int(A), Bcl(A) U, where U is ng-open this implies X-A is ng'p-
closed and hence A is ng’B-open.

Theorem
If int(A)cBCA and A is ng'B-open then B is also nig’p open.

Proof: We know that if A is ng'B-closed and AcBcfcl(A) then B is
also ng'B-closed. Here X-A is ng'B-closed, then X-B is also ng'B-closed.
Hence B is ng'B-open.
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Theorem
If AcX is ng'B-closed then Bcl(A)-A is ng-open.

Proof: Let A be a ng'B-closed set in X. Let F be a nig-closed set such
that FCPcl(A)-A. Then Bcl(A)-A does not contain any non-empty ng-
closed set. Therefore F=6, so FCint(Bcl(A)-A). This shows Bcl(A)-A is
ng-open. Hence A is ng'p-closed in (X,1).

Theorem
If int(B)EBEA and if A is ig'B-open in X, then B is nig’B-open in X.

Proof: Suppose that int(B)EBEA and A is ng'B-open in X then
ASBCcl(A). Since Acis g'p-closed in X. we have B is g’B-open in X.

Theorem
If A is ywg-open and ng'B-closed then A is nig-closed.

Proof: Let A be a ywg-open and ng-closed set in X. Let ACA where
A is wg-open. Since A is nig'p closed; Pcl(A)cA whenever ACA and A
is wg-open. the implies fcl(A)=ywg. Hence A is nig-closed.

Theorem
If A is wg-open and ng'B-closed then A is nig-closed.

Proof: Let A be a wg-open and nig’B-closed set in X. Let ACA where
A is wg-open. Since A is ng'B-closed; Bcl(A)cA whenever ACA and A
is wg-open. the implies Bcl(A)=ywg. Hence A is nig-closed.

g-Neighbourhoods

Definition

Let X,1) be a topological space and let x€X, A subset N of X is said
be ng'B-neighbourhood of x if there exists an ng"P-open set G such that
x €GEN. The collection of all ng"B-neighbourhood of xeX is called g’
neighbourhood system at x shall be denoted by ng'-N(X).

Theorem
Every neighbourhood N of x€X is ng'B-neighbourhood of X.

Proof: Let N be a neighbourhood of point x €X, To prove that N is
a mig’B-neighbourhood of x by definition of neighbourhood, there exists
an open set G, such that x €GE N. Hence N is ntg p-neighbourhood of X.

Remark: In general, a ng'f-neighbourhood N of xéX need not be a
nbhd of x in X as seen from the following example.

Example: Let X={a;b;c} with topology t={0 ;X; {a};{a;c}}. Then
ng B-o(X)={0;X;{b}; {c}; {b; c}}. The set {a;b} is ng'B-nbhd of point b,
since the ng'B-open set {b} is such that be {b}c {a;b}. However the set
{a; b} is not a nbhd of the point b, since no open set G exists such that
beG c{a;b}.

Theorem

If a subset N of a space X is g'B-open, then N is ng’B-nbhd of each
of its points.

Proof: Suppose N is nig'B-open. Let xeN. We claim that N is ng'p-
nbhd of x. For N is a ng'B-open set such that xeN €N. Since x is an
arbitrary point of N, it follows that N is a tg"B-nbhd of each of its points.

Theorem

Let X be a topological space. If F is a ng'B-closed subset of X, and
x€F < P rove that there exists a ng'p-nbhd N of x such that NNF=0.

Proof: Let F be ng'B-closed subset of X and x€F<: T hen F¢ is ng'p-
open set of X. So by Theorem 4.5 F° contains a g’ f-nbhd of each of its
points. Hence there exists a ng’f-nbhd N of x such that NcF< That is
NNF=0.
ng p-Interior
Definition

Let A be a subset of X. A point x€X is said to be ng'B-interior point
of A if A is a ng'B-nbhd of x. The set of all ng'B-interior points of A is
called the ng'B-interior of A and is denoted by ng'B-int(A).

Theorem
If A be a subset of X. Then nigB-int(A)=U{G:G is ng'B-open,GEA}.

Proof : Let A be a subset of X:xe ng'B-int(A)ex is a ng B-interior
point of A.

> AisamngB-nbhd of point x.

» There exists ng'B-open set G such that x € GEA.

> x €U{G:G is nig'p-open, GEA.

Hence ng'B-int(A)=U{G: G is ng'p-open, GEA}:
Theorem

Let A and B be subsets of X. Then

1. ngB-int(X)=X and ng'B-int(6)=0 .

2. ngB-int(A)EA.

3. IfBisany ng'p-open set contained in A, then BEng B-int(A).

4. 1If ACB, then ng'B-int(A)<S ng'B-int(B).

5. ng'B-int(rm ng B-int(A))=m ng'B-int(A).

Proof: 1. Since X and 0 are ng'p-open sets, by Theorem ng'B-
int(X)= U{G:G is ng'p-open, GEX}=XU{all fall ng’B-open sets}=X.
That is ng'p-int(A)=X. Since 0 is the only ng'B-open set contained in
6, ng'B-int(0)=0 .

2. Let x€ ng'B-int(A))=>x is a ng'B-interior point of A.
> AisamngB-nbhd of x.
» XeA. Thus x € ng'B-int(A))= x €A. Hence ng'B-int(A) A.

3. Let B be any ng'B-open sets such that BCA. Let x €B, then since
B is a mg'B-open set contained in A. x is a ig'p-interior point of A. That
is xe ng'B-int(A). Hence BEng B-int(A).

4. Let A and B be subsets of X such that ACB. Let x€ ng'B-int(A).
then x is a mg'B-interior point of A and so A is ng’p-nbhd of x. Since
BDA, B is also a ng'B-nbhd of x. This implies that x € ng'B-int(B).
Thus we have shown that x € nig'B-int(A)) xe ng'B-int(B). Hence ng'B-
int(A)c ng'B-int(B).

5. From (2) and (4) ng'B-int(ng B-int(A)) Sng'p-int(A). Let x €
ng B-int(A) this implies A is a neighbourhood of x, so there exists a
nig' B-open set G such that x eGEA. so every element of G is an ng'B-
interior of A, hence xeGEng'B-int(A) which means that x is an ng'p-
interior point of ng'B-int(A) that is ng'B-int(A)S ng B-int(ng B-int(A)).
That is ng'B-int(ng B-int(A))= ng'B-int(A). Let A be any subset of X.
By the definition of ng'B-interior ngB-int(A)cA, by ng B-int(ng'p-
int(A)) c ng'B-int(A). Hence g p-int(ng B-int(A))cN{F:AcFe ng'p-
C(X)}=ng B-cl(A).
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Theorem
If a subset A of space X is ng'B-open, then ng'B-int(A)=A.

Proof: Let A be ng'B-open subset of X. ng'B-int(A)cA. Also, A is
ng'B-open set contained in A. From (3) AcngB-int(A). Hence ng'B-
int(A)=A.

Remark: The converse of the above theorem need not be true, as
seen from the following example.

Example: Let X={a;b;c} with topology 1={0, {c}; {b;c}; X}. ng'B-
closed set is {6, {a}, {b},{a;b}, X}. ng'B-O(X) is ng'B-open sets in X={0,
{c}; {bsc}; {asch; X} ng'B-int(A)=ng B-int({a;b})={a}uU {b}={a;b}; but {a;b}
is not g-open set.

Theorem

If A and B are subsets of X, then ng'p-int(A)U ng'B-int(B)c ng'p-
int(AUB).

Proof: Theorem ng'B-int(A)c ng'p-int(AUB) and ng'B-int(B)c
ng'B-int(AUB). This implies that ng'f-int(A)U ng'B-(B)c ng'B-
int(AUB).

g-Closure in a Space X

Definition

Let A be a subset of a space X. The ng'B-closure of A is de ned as the
intersection of all ng’B-closed sets containing A. ng'B-cl(A)=N{F:AcFe
ng' BC(X)}.

Theorem
If A and B are subsets of a space X. Then
(1) ng'B-cl(X)=X and ng'B-cl(0)=6 .
(2) AcngB-cl(A).
(3) If B is any nig'B-closed set containing A, then ng'p-cl(A)cB.
(4) If AcB, then ng'B-cl(A)c ng'B-cl(B).
(5) ng'B-cl(A)=ng B-cl(ng B-cl(A)).

Proof: (1) By the definition of ng'p-closure, X is the only ng'B-
closed set containing X. Therefore ng'p-cl(X)=Intersection of all the
ng'B-closed sets containing X=N{X}=X: That is ng'B-cl(X)=X. By the
definition of ng'B-closure, ng’B-cl(0)=Intersection of all the ng’B closed
sets containing 6= any ng'p-closed sets containing 6=6 . That is ngp-

cl(0)=0.

2. By the definition of nig'B-closure of A, it is obvious that Acngp-
cl(A).

3. Let B be any ng'p-closed set containing A. Since ng'B-cl(A) is the
intersection of all g-closed sets containing A, ng'B-cl(A) is contained in
every g B-closed set containing A. Hence in particular ng'B-cl(A)cB.

4. Let A and B be subsets of X such that ACB. By the definition of
ng B-closure, ng'B-cl(B)=N{F: B ceng’BC(X)g. If B cF € ng'p C(X),
then nig'B-cl(B) F. Since AcB, AcB cFe ng'p C(X), ng'B-cl(A)cF.
Therefore ng'B-cl(A) cN{F: BcFe ng'p C(X)}= ng'B-cl(B). That is
ng B-cl(A)c ng'B-cl(B).

5. Let A be any subset of X. By the definition of ng'B-closure, ng'p-
cl(A)= N{F: Ac Fe ng'B C(X)g, If A cF € ng'B C(X), then ng'P-cl(A)
F. Since F is ng'B-closed set containing ng'B-cl(A), by (3) ng'B-cl(ngB-
cl(A))cF. Hence g B-cl(ng B-cl(A)) cN{F: Ac Fe ng'p C(X)}= ng'B-

cl(A). that is ng'B-cl(ng B-cl(A))=(A).
Theorem
If AcX is ng'B-closed, then ng'B-cl(A)=A.

Proof: Let A be ng'B-closed subset of X. By the definition of ng'p-
cl(A), AcngB-cl(A). Also AcA and A is ng'p-closed. By Theorem
ng B-cl(A)cA. Hence nig'B-cl(A)=A.

Remark: The converse of the above theorem need not be true as
seen from the following example.

Example: Let X={a;b;c} with topology 1={0, {a}, {a;b}, {a;c}, X}.
ng'B-closed set is {0, {b}, {c}, {b; c}, X} and ng'B-O(X)= ng'B-open sets
in X={6, {a} ; {a; b} ; {a; ¢} ; X}. ng'B-cl(A)=ng B-cl({a}={a; b} N {a; c}={a}
but {a} is not ng'p-closed set.

Theorem
If A and B are subsets of a space X, Then ng'p-cl(ANB)c ng'B-
cl(A)N ng'B-cl(B).

Proof: Let A and B be subsets of X. clearly ANBcC and ANBCB.
by Theorem, g B-cl(ANB)cng B-cl(A) and ng B-cl(ANB)cng B-cl(B).
Hence nig'B-cl(ANB)c ng B-cl(A)N ng'B-cl(B).

Conclusion

This paper is to introduced and study the concepts of ng'B-closed
sets and mg'B-neighbour hood in topological spaces. We had proved
that the defined set was properly contains ngp-closed and contained
in mg-closed set. Further the defined set satisfies the union and
intersection property. Hence we conclude that the defined set forms a
topology which results this work may be extend widely.
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