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Abstract
In this paper, we introduce the notion of representation of Bol algebra. We prove an analogue of the classical 

Engel’s theorem and the extension of Ado-Iwasawa theorem for Bol Algebras. We study the category of representations 
of Bol algebras and show that it is a tensor category. In the case of regular representations of Bol algebras, we give 
a complete classification of them for all two-dimensional Bol algebras. 

Keywords: Bol algebra; Lie triple System; Non-associative algebras;
Jordan superalgebras; Nilpotent representation

Introduction
It is well known that the algebraic systems which characterize 

locally a totally geodesic subspace is a Lie triple system [1-3]. A Bol 
algebra is realized by equipping Lie triple System with an additional 
binary skew operation which satisfies a pseudo-differentiation property 
[4,5]. A morphism of Bol algebras is a linear map which preserves 
the ternary and the binary operations. More generally, the algebraic 
structures which characterize locally Bol loops are Bol algebras [6]. 
Until now, the representations of these algebras have not been studied. 
Since the representations of Lie algebras and Lie groups have natural 
connection with particulars physics, we claim that the representations 
of Bol algebras should lead with the physical applications. More 
precisely, in physics the representations of Bol algebras will be useful 
for the description of invariant properties of physical systems. and the 
concomitant conservation laws as a result. In literature of Mostovoy 
and Pérez-Izquierdo [7], it is shown that, Malcev algebras and Lie triple 
systems are particular subclasses of Bol algebras. The representations of 
Malcev algebras can be found studies of Kuz’min [8], and those of Lie 
triple systems were constructed by Hodge and Parshall [9], Bertrand, 
et al. [10]. Now, there already exists some representations of other 
classes of non-associative algebras; the case of alternative algebras was 
constructed by Schafer [11], the one of Leibniz algebras by Kolesnikov 
[12] and for Jordan superalgebras, the representations was given by
Consuelo and Zelmanov [13].

Let B be a Bol algebra over a field K of characteristic zero, a 
representation of Bol algebra B on a K-vector space V is a triplet of 
maps ( , , )ρ δ ∆  which respect some conditions which will be given later 
in the paper.

Our first main result is the following.

Theorem 1.1. Let B be a finite dimensional Bol algebra over a field 
K and  consist of nilpotent representations of Bol algebra B in a finite 
dimensional space V. Then there exists a vector v ∈ V, v ≠ 0 such that 
( , , )( ) = 0ρ δ ∆ v  for all ( , , ) .ρ δ ∆ ∈

We agree that the image of any vector v of V by the operator ( , , )ρ δ ∆  
is given by 1 2 3( , , )( ) = ( ( ), ( ), ( ))ρ δ ρ δ∆ ∆v v v v , where 3

1 2 3= ( , , )∈v v v v B .

We define also the regular representations and the adjoint 
representations of Bol algebras. As an easy consequence, we show 
that if any representation of Bol algebra is nilpotent, then its adjoint 
representation is also nilpotent.

We are also interested by the question of the extension theorem 
of Ado-Iwasawa for Bol algebras. Pérez-Izquierdo established the 
existence of a Poincaré-Birkhoff-Witt type basis for a universal 
envelope of Bol algebra [5]. The above result allows us to interest 
ourselves to an extension of Ado-Iwasawa theorem for Bol algebra. let 
A be an alternative algebra, the the generalized right alternative nucleus 
is the algebra RNalt (A) defined by ( ) = { / ( , , ) = ( , , )}altRN A a A x a y x y a∈ − . 
We then give our second theorem.

Theorem 1.2. Let B be a finite-dimensional right Bol algebra over 
a field of characteristic different to 2 and 3. Then there exists a unital 
finite-dimensional algebra A and a monomorphism of Bol algebras B→ 
RNalt (A). 

The analogue of our second result above was established for Malcev 
algebras framed by Pérez-Izqquierdo and Shestakov [14]. The collection 
of all representations of Bol algebra and the morphisms between them 
form a category, named the category of representations of Bol algebras 
Rep(B). One can view a representation of Bol algebra as a B-module 
analogously as in literature of Consuelo and Zelmanov [13] in the case 
of Jordan superalgebras. One can understand also the representations of 
Bol algebras in term of matrices with sweet properties. The investigation 
between the category Rep(B) and the category of left U(B) -modules, 
where U(B) is the universal enveloping algebra of B, endowed with its 
bialgebra structure, leads us to our third main theorem.

Theorem 1.3. The category of representations of Bol algebra Rep(B) 
is equivalent to the category of representations of its universal enveloping 
algebra Rep(U(B)). 

The paper is organized as follows: We introduce in section 2 the 
notion of representations of Bol algebra. In section 3 we establish the 
Engel’s theorem for Bol algebras. In section 4 an extension of Ado-
Iwasawa theorem to Bol algebras is proved. Finally in section 5, we 
present the category of representations of Bol algebras and show that 
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it is equivalent to the category of left modules under its universal 
enveloping algebra. As immediate consequence, we show the category 
Rep(B) is a tensor category. We end the section by given a complete 
classification of regular representations of two-dimensional Bol 
algebras.

Bol Algebras and their Representations
Bol algebras were introduced in differential geometry to study 

smooth Bol loops [6,15,16]. A right loop is a set , together with a 
binary operation ( , )a b a b⋅ , such that for any b in , the right 
multiplication operator :bR x x b⋅  is bijective, and there exists an 
element ε ∈ , such that =b bε ⋅  for any b in . The dual definition 
gives rise to a left Bol loop. In case that , ,ε〈 ⋅ 〉  is both left and right 
loop then it is called a loop with identity element ε. 

 A right smooth loop  is a right loop equipped with a structure 
of smooth manifold, that is the map ( , )a b a b⋅  and 1

bR−  are smooth, 
[15,16]. Since groups are particular loops, so the Lie groups are 
particular cases of smooth loops. In scientific literature, many classes 
of loops are known: homogeneous loops, Moufang loops, Bol loops, 
Kikkawa loops among others.

 A right Bol loop , ,ε〈 ⋅ 〉  is a right loop that satisfies the right Bol 
identity 

(( ) ) = (( ) )x a y a x a y a⋅ ⋅ ⋅ ⋅ ⋅ ⋅

for all a, x, y in . Similarly, a left Bol loop satisfies the identity 
( ( )) = ( ( ))a x a y a x a y⋅ ⋅ ⋅ ⋅ ⋅ ⋅ .

As in the case of Lie groups where the tangent space at each point is 
equipped with Lie algebra structure, the tangent space at each point of 
Bol loop is equipped with the structure of Bol algebra.

Definition 2.1. A vector space B over a field K is called Bol algebra 
if it is equipped with a trilinear operation [ ; , ]− − −  and a skew-symmetric 
operation x ⋅ y satisfying the following identities:  

(i)  [ ; , ] = 0x x y  

(ii)  [ ; , ] [ ; , ] [ ; , ] = 0.x y z z x y y z x+ +  

(iii) [[ ; , ]; , ] = [[ ; , ]; , ] [ ;[ ; , ], ] [ ; ,[ ; , ]]x y z x y z x y z x y zα β α β α β α β+ +  

(iv) [ ; , ] = [ ; , ] [ ; , ] [ ; , ] [ ] [ ]x y x y x y x y x yα β α β α β α β α β⋅ ⋅ + ⋅ + ⋅ + ⋅ ⋅ ⋅  

for all x, y, z, α and β in B.

In other words, a Bol algebra is a Lie triple system ( ,[ ; , ])− − −B  
with an additional bilinear skew-symmetric operation x ⋅ y such that, 
the derivation , : [ ; , ]D x xα β α β→  on a ternary operation is a pseudo-
differentiation with components α, β on a binary operation, that is; for 
all x, y and z in B, we have 

, , ,( ) = ( ( )) ( ( )) [ ; , ] ( ) ( ).D x y D x y x D y x y x yα β α β α β α β α β⋅ ⋅ + ⋅ + ⋅ + ⋅ ⋅ ⋅

Dα,β is a differentiation on ternary operation [ ; , ]− − −  that is; 

, , , ,[ ; , ] = [ ( ); , ] [ ; ( ), ] [ ; , ( )].D x y w D x y w x D y w x y D wα β α β α β α β+ +

In fact, the Bol algebra defined above is called right Bol algebra. In 
particular, any Lie triple system may be regarded as Bol algebra with 
the trivial multiplication x ⋅ y=0, for all x, y ∈ B.

Bol algebras can be realized as the tangent algebras of Bol loops 
with the right Bol identity, and they allow embedding in Lie algebras 
[6,15].

Definition 2.2. A linear map :ϕ →1 2B B  between two Bol algebras 

is called morphism of Bol algebras if it is preserve the ternary and the 
binary operations. 

The subspace S of Bol algebra B is a sub-Bol algebra if the inclusion 
j : →B  is a morphism of Bol algebras.

Definition 2.3. Let ( ,[ ; , ], )− − − ⋅B  be a Bol algebra over 
a field K, a pseudo-differentiation is a linear map :P →B B  
for which, there exists z ∈ B (a companion of D) such that 

( ) = ( ) ( ) [ ; , ] ( ) ;P x y P x y x P y z x y x y z⋅ ⋅ + ⋅ + + ⋅ ⋅  the companion is not 
necessarily unique. 

The set of all companions of D is denoted Com(D). The map 
, : [ ; , ]D x xα β α β→  is a pseudo-differentiation with companion α . β, 

called inner pseudo-differentiation of B. The pseudo-differentiations 
of B form a Lie algebra, denoted by pder B under the natural product 
[ , ] =P P PP P P′ ′ ′− . The algebra ipder B generate by ,{ / , }a bD a b∈B  is 
a Lie subalgebra of pder B, called the Lie algebra of inner pseudo-
differentiations of B. The enlarged algebra of pseudo-differentiations 
of B is defined as = {( , ), , ( )}Pder D z D pder z Com D∈ ∈B B  and 
the enlarged algebra of inner pseudo-differentiation is defined as 

= {( , ), , ( )}Ipder D z D ipder z Com D∈ ∈B B .

It is showed in [4,5] that, those algebras defined below are the Lie 
algebras with the brackets [ , ] =P P PP P P′ ′ ′−

The direct sum =L Ipder⊕B B  is a Lie algebra with the operation 
,[ , ] = x yx y D , , ,[ , ] = ( )a b a bx D D x , for all x, y, a, b in B. The Lie algebra (L,[,]) 

is called the standard enveloping Lie algebra of Bol algebra B. 

The map :a x x aδ ⋅  is a linear map of B. We denote by B  the 
Lie algebra generate by { , }a aδ ∈B  with brackets [ , ] = .a b a b b aδ δ δ δ δ δ−  
We get an other Lie algebra =L Ipder⊕B B  which is a subalgebra of 
the Lie algebra generated by linear maps of B.

If the subspace  of B satisfies the stronger condition 
( ; , )⋅ + ⊂B B B   , then  is an ideal of B. An ideal  of B automatically 

satisfies ( ; , ) ⊂B B   and ( ; , ) .⊂B B  

For more understanding of Bol algebras and Bol loops, it is 
important to investigate about their representations. We defined a 
representation of Bol algebra as follows.

Definition 2.4. If B is a Bol algebra over a field K and V a 
vector field over K, the pair (ρ,δ) with the skew-symmetric bilinear 
map 2: EndVρ →B  and the linear map : EndVδ →B  is said to be a 
representation of Bol algebra B in V if there exists a bilinear operation 

2: EndV∆ →B  such that the following statements are satisfied:

(R1)  ( , ) = ( , ) ( , )u v u v v uρ ∆ − ∆  

(R2)  [ ( , ), ( , )] = ([ , , ], ) ( ,[ , , ])a b u v a u v b a b u vρ ρ ρ ρ+  

(R3) [ ( , ), ( )] = ([ , , ]) ( , ) ( ) ( )u v a a u v u v a u v aρ δ δ δ δ+ ∆ ⋅ + ⋅

for all x, y, a, b in B.

The operation ∆ is called a companion of the representation (ρ,δ) 
of the Bol algebra B.

In this case we can denoted by (ρ,δ,∆,V) or simply (ρ,δ,∆), the 
representation (ρ,δ,V) with companion ∆. Following the approach 
of Consuelo and Zelmanov for the representations of Jordan 
Superalgebras [2], it is equivalent to say that the vector space V is a 
Bol module (B-module) i.e., =VE V⊕B  possesses the structure of Bol 
algebra such that:

(a) B is a sub-Bol algebra of EV, 
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(b) V is an ideal of Bol algebra EV and 

(c) x ⋅ y = 0 if both x, y ∈V and [ , , ] = 0x y z  if any two of x, y, z lie in V.

A particular instance where V = B and we set ,( , ) = , ( ) =u v uD u v D uδ δ  
the pair (D,δ) is a representation of Bol algebra with companion 

( , ) = [ , , ]u v u v∆ −  called regularrepresentation of B.

Example 2.1. Let ( ,[ ; , ], )− − − ⋅B  be the Bol algebra with basis 1 2( , )e e  
over a field of complex numbers, were 1 2 1 1[ , , ] =e e e e , 2 1 2 2[ , , ] =e e e e  and 

1 2 2=e e e⋅ . We recall that ( , )det u v  is the determinant of the pair of 
vectors ( , )u v  with 1 1 2 2=u u e u e+  and 1 1 2 2= .u u e u e+  Note that this Bol 
algebra arise from the classification of two-dimensional Bol algebras 
obtained by Kuz’min and Zaidi [4]. We set

( , ) 0
( , ) =

0 ( , )
det u v

D u v
det u v

− 
 
 

2 1

0 0
( ) =u

u u
δ

 
 − 

1 2 1 1

2 2 2 1

( , ) = .
u v u v

u v
u v u v
− 

∆  − 

It is clear that ( , , )D δ ∆  is a regular representation of B.

Now let ( , , )ρ δ ∆  and ( , , )ρ δ′ ′ ′∆  be two representations of Bol algebra 
B on V. a morphism of the representation ( , , )ρ δ ∆  to a representation 
( , , )ρ δ′ ′ ′∆  is a linear map :f V V→  such that = fρ ρ′ , = fδ δ′  and 

= .f′∆ ∆  Clearly the composition of morphisms of representations is a 
morphism of representations. The collection of all representations and 
their morphisms forms a K-linear category denoted by Rep(B) and 
called the category of representations of Bol algebra B.

We consider 1( ) = ( )
y

Z ker y
∈

− ⋅


B

B  and 2
,

( ) = [ ; , ]
y z

Z ker y z
∈

−


B

B , the center 

of Bol algebra is 1 2( ) = ( ) ( ).Z Z Z∩B B B  It is simple to see that, the kernel of 
the operation < , >ρ δ  given by < , >= { / ( , ) ( ) = 0}Ker x x xρ δ ρ δ∈ +B B  
is the center of B.

Engel’s Theorem for Bol Algebras 
Before giving the Engel’s theorem, we first need to define and 

characterize the nilpotent representations.

A representation ( , , )ρ δ ∆  of Bol algebra B in V is nilpotent if for all 
, ,x y z∈B , ( , ), ( )x y xρ δ  and ( , )x y∆  are nilpotent endomorphisms; that 

is if there is a positive integer n such that ( , , ) = 0.nρ δ ∆  Let ( , , )ρ δ ∆  be a 
representation of B in V. we define the triplet ( , , )ad ad adρ δ ∆  as follows: 

( , ) = [ ( , ), ]ad x y x yρ ρ − , ( , ) = [ ( ), ]ad x y xδ δ −  and ( , ) = [ ( , ), ].ad x y x y∆ ∆ −

Proposition 3.1. With the above notations, the pair ( , )ad adρ δ  is a 
representation of Bol algebra B in a vector space V with companion ad∆.

Proof. The objective is to show that (R1), (R2) and (R3) are satisfied. 
Let , , ,a b u v∈B  and .f EndV∈  We have  

[ ( , ), ( , )]( ) = [ ( , ),[ ( , ), ]]
= [ ( , ),[ ( , ), ]] [ ( , ),[ ( , ), ]]
= [[ ( , ), ( , )], ]
= [ ( , ), ( , )] [ ( , ), ( , )]
= ([ ; , ], ) ( ,[ , , ]) ([ ; , ], ) ( ,[ , , ])
= (

ad a b ad u v f ad a b ad u v f
a b u v f u v a b f
a b u v f

a b u v f f a b u v
a u v b f a b u v f f a u v b f a b u v

ad

ρ ρ ρ ρ

ρ ρ ρ ρ
ρ ρ
ρ ρ ρ ρ
ρ ρ ρ ρ

−

−
+ − −

([ ; , ], ) ( ,[ , , ]))( )a u v b ad a b u v fρ ρ+

Then (R2) holds. In other hand we have
 [ ( , ), ( , )] = ([ ; , ], ) ( ,[ , , ])ad a b ad u v ad a u v b ad a b u vρ ρ ρ ρ+

( , )( ) = [ ( , ), ] = ( , ) ( , )
= ( , ) ( , ) ( , ) ( , )
= [ ( , ), ] [ ( , ), ]
= (( ( , ) ( , ))( )

ρ ρ ρ ρ

∆ ∆

−

∆ − ∆ − ∆ + ∆
∆ − ∆

−

lclad a b f a b f a b f f a b
a b f a b f b a f f b a
a b f b a f

ad a b ad b a f

Therefore we have the desire equality ( , ) = ( , ) ( , ).ad a b ad a b ad b aρ ∆ ∆−  
This shows that (R1) is satisfied. Finally, we have for all ,f EndV∈

Thus [ ( , ), ( )] = ([ ; , ]) ( ) ( ) ( , )ad a b ad u ad u a b ad a b ad u ad a b uρ δ δ δ δ ∆+ ⋅ + ⋅  
and the desire conclusion follows, that is (R3) is verified. 

Definition 3.1. The representation ( , , )ad ad adρ δ ∆  is called the 
adjoint representation of ( , , ).ρ δ ∆  

 Now we give the link between nilpotent representation and adjoint 
representation. The above result arises to the representations of Lie 
algebras.

lemma 3.1. Let ( , , )ρ δ ∆  be a representation of Bol algebra on the 
vector space V. If ( , , )ρ δ ∆  is nilpotent, then its adjoint representation is 
also nilpotent.

Proof. Let ( , , )ρ δ ∆  be a nilpotent representation of Bol algebra, and 
( , , )ad ad adρ δ ∆  its adjoint representation. Then there exists a positive 
integer p such that ( ) = 0pρ , ( ) = 0pδ  and ( ) = 0p∆ . If σ is one of the 
map ρ, δ, or ∆ it is clear that =ad l hσ σ σ+  where lσ and hσ are nilpotent. 
we have 2 1 2 1( ) = ( ) = 0.p pad l hσ σ σ

− −+  Hence the result.

 Now we are in position to prove our first main theorem.

Theorem 3.1. Let B be a finite dimensional Bol algebra over a field 
K and  consists of nilpotent representations of Bol algebra B in a finite 
dimensional space V. Then there exists a vector v ∈V3, v ≠ 0 such that 
( , , )( ) = 0vρ δ ∆  for all ( , , ) .ρ δ ∆ ∈

Proof. We agree that 1 2 3( , , )( ) = ( ( ), ( ), ( ))v v vρ δ ρ δ∆ ∆ , where 
1 2 3= ( , , ),v v v v  that is we identify ( , , )ρ δ ∆  by ( ( , ), ( ), ( , ))a b a a bρ δ ∆  for all 

a, b in B. It is clear that  is a subspace of (Env)3 and we can define 
on it the following bracket [( , , ), ( , , )] = ([ , ],[ , ],[ , ]).f g h f g h f f g g h h′ ′ ′ ′ ′ ′  
( ,[ , ])− −  is a Lie algebra.

The proof of the theorem goes by induction on dim. When dim 
= 1, since  is generated by a single nilpotent representation then the 
claim is immediate.

Suppose now that the claim is true for all subalgebras of nilpotent 
representations spaces of dimension less than dim ≥ 1.

Since, dim ≥ 1, we have a proper Lie subalgebra .L ⊆  We can 
choose L to be a maximal subalgebra. We show before continuing that, 
L has a codimension one in  and L is an ideal.

L acts via the adjoint operator on  and L. In the latter case, 
since dimL< dim, we know by Engel’s theorem apply for L, 
that there exists a nonzero element /r L∈  such that [ , ] = 0l r  
( , , ) / Lρ δ ∆ ∈  and 1 2 3[( , , ), ( , , )] = 0l l l ρ δ ∆  for 1 2 3( , , ) .l l l L∈  We know 
that ( , , ) = ( , , ) ;Lρ δ ρ δ∆ ∆ +  then ( , , ) .Lρ δ ∆ ∈ −  It follows that 
[ ( , , ) , ] .K L L Lρ δ ∆ + ⊆  Moreover [ ( , , ) , ( , , ) ] .K L K L Lρ δ ρ δ∆ + ∆ + ⊆  These 
imply that ( , , )K Lρ δ ∆ +  is a Lie subalgebra of , and contains L as an 
ideal. By maximality of L, it follows that = ,Kr L+   so we are done.

Now we define the vector space 3= { / = 0}.w V Lw∈W  Let 
1 2 3= ( , , )w w w w ∈W  and ( , , ) ,Lρ δ ∆ ∈  then 1 2 3( , , )( , , )( ) = 0l l l wρ δ ∆  for all 

1 2 3( , , ) .l l l L∈  Other we have

1 2 3 1 2 3 1 2 3

1 2 3

( , , )( , , )( ) = ( , , )( , , )( ) [( , , ), ( , , )]( )
= [( , , ), ( , , )]( )

l l l w l l l w l l l w
l l l w

ρ δ ρ δ ρ δ
ρ δ

∆ ∆ + ∆
∆



Citation: Ndoune N, Bouetou TB (2015) On Representations of Bol Algebras. J Generalized Lie Theory Appl S2: 005. doi:10.4172/1736-4337.S2-005

Page 4 of 6

J Generalized Lie Theory Appl
Recent Advances of Lie Theory in 
differential Geometry, in memory of 

John Nash
ISSN: 1736-4337 GLTA, an open access journal

and 1 2 3[( , , ), ( , , )] .l l l Lρ δ ∆ ∈  Since L is an ideal, we have also 
1 2 3[( , , ), ( , , )]( ) = 0.l l l wρ δ ∆

Now we have = ( , , )K Lρ δ ∆ +  for some ( , , ) .Lρ δ ∆ ∈  We know 
that ( , , )ρ δ ∆  is a nilpotent operator on W, so ( , , ) 0.ker ρ δ ∆ ∩ ≠W  Let 

1 2 3= ( , , ) ( , , )v v v v ker ρ δ∈ ∆ ∩W  such that 0;v ≠  then any element of L 
and r annihilates v.

An Extension of Ado-Iwasawa Theorem to Bol Algebras
Let L be a finite-dimensional Lie algebra over a field K. The classical 

Ado-Iwasawa theorem asserts the existence of a finite-dimensional 
L-module which gives a faithful representation of L. However, Filippov 
proved [17] showed that this theorem does not hold for Malcev 
algebras, that is homogeneous Bol algebras. Thus it is not hold for 
general Bol algebras.

For the Lie algeras, the Poincaré-Birkhoff-Witt theorem says that 
any Lie algebra L is a subalgebra of A−  for some unital associative 
algebra A. In the case that L is finite dimensional, the Ado-Iwasawa 
theorem says that A can be taken finite dimensional too. This 
extension of Ado-Iwasawa theorem was established for the Malcev 
algebras by Pérez-Izqquierdo and Shestakov [14]. There is a version 
of the Poincaré-Birkhoff-Witt theorem for Bol algebra proved by 
Kuz’min and Zaidi [4]. Now let B be a Bol algebra [14] that there is 
an alternative algebra A and an injective map ( )altRN A→B , where 

( ) = { / ( , , ) = ( , , )}altRN A a A x a y x y a∈ −  is the generalized right alternative 
nucleus. In this section we prove that if B is a finite-dimensional Bol 
algebra then A can be taken finite dimension too. Our second main 
result is the following.

Theorem 4.1. Let B be a finite-dimensional right Bol algebra over a 
field of characteristic ≠ 2,3. Then there exists a unital finite-dimensional 
algebra A and a monomorphism of Bol algebra : ( ).altj RN A→B  

Proof. Let B be a Bol algebra, according to Pérez-Izquierdo 
[5], there exists a linear map : ( ( )),altj RN U→B B  a a  such that 

( ) =j a b ab ba⋅ −  and ( , , ) = ( ) ( ) [ , ]j a b c ab c ac b b c a− − , where U(B) is the 
universal enveloping algebra of B. Since ( ( ))altRN U B  is closed under 
the binary product [ , ]− −  given by the commutators and the ternary 
operation [ , , ] = ( ) ( ) [ , ]a b c ab c ac b b c a− −  for all a,b,c in ( ( )).altRN U B  
By the methods of Pérez-Izquierdo [5], ( ( ))altRN U B  with the binary 
and ternary operations defined above has the structure of Bol 
algebra. Thus j is a monomorphism of Bol algebras. Let EB  be the Lie 
enveloping algebra of B. Then =E E E+ −⊕B  is the 2-gradation and 
E− B  as vector space. According to Pérez-Izquierdo and Shestakov 

[14], there exists a two side ideal ( )U⊆ B  of finite codimension. 
Then = ( ) /A U B   is a unital finite-dimensional algebra and there 
exists an injective map : ( )j U→B B . The injective map j induces a 
monomorphism of Bol algebras : ( ).altj RN A→B

The Category of Representations of Bol Algebra
We give a relation between the category of representation of 

Bol algebra B and the category of representations of its universal 
enveloping algebra. As immediate consequence, we show that the 
representation category of a Bol algebra is monoidal, or tensor 
category. We recall that the category of representations of Bol algebras 
is Rep(B), and the one of finite dimensional representations of Bol 
algebra is rep(B). Let = ( , , , )A A ε⋅ ∆  be a bialgebra, Mod(A) means the 
category of left A-modules (ie., representations of A). If U, V are left 
A-modules, then the tensor product becomes a left A-module with 
multiplication rule ( ) = ( ) ( )a u v a u v⋅ ⊗ ∆ ⋅ ⊗  for all a A∈ , u U∈  and 
v V∈ . The field K is also a left A-module by = ( )a aς ε ς⋅ . The category of 

left A-modules is equivalent to the category of (A, A)-bimodules. Any 
(A, A)-bimodule can be considered as left module over opA A⊗ , where 

opA  is define on the same space as A, by new multiplication = .x y y x⋅ ⋅  
We know in virtue of Pérez-Izqquierdo [5] that for a given Bol algebra 
( ,[ , ],[ , , ])− − − − −B  there exists a universal enveloping U(B) endowed 
with the structure of bialgebra, that is ( ( ), , , )U ε⋅ ∆B  is a bialgebra. 
Analogously we denote Rep(U(B)) the category of representation of the 
bialgebra ( ( ), , , ).U ε⋅ ∆B  Now we state an equivalent characterization of 
the representation category Rep(B). We prove our third main result.

Theorem 5.1. The category of representations of Bol algebra Rep(B) 
is equivalent to the category of representations of its universal enveloping 
algebra Rep(U(B)). 

Proof. We recall that Rep(B) is the category of modules over the 
Bol algebra B. Following the consideration of Consuelo and Zelmanov 
[13], apply for the modules over Bol algebras, every B-module has 
the form =VE V⊕B , where V is a vector space over a field K and EV 
possesses the structure of Bol algebra such that:

(a)  B is a sub-Bol algebra of EV, 

(b)  V is an ideal of Bol algebra EV and 

(c)  x . y=0 if both x, y ∈ V and [x, y, z] = 0 if any two of x, y, z lie 
in V.

We define the multiplication ( )U V V× →B  by = ( )a x a xε⋅ ⋅ . We 
consider the following mapping defined from Rep(B)  to Mod(U(B)) 
define on the objets by ( ) = .VF E V  The map F is naturally extended 
on the morphisms. If U and V are the images of EU and EV under F, in 
virtue of Pérez-Izqquierdo [5] there exits a map : ( ) ( )U Uµ → ⊗B B B  
with ( ) = 1 1 .a a aµ ⊗ + ⊗  This implies that U V⊗  is a (U(B)-module.

Conversely, let V be a (U(B)-module, in virtue of Pérez-
Izquierdo [5] there exist an injective map : ( )Uη →B B . We define the 
multiplication V V× →B  by = ( )a x a xη⋅ ⋅ . Then V has the structure 
of module. We set now the mapping G from Mod(U(B) to Rep(B) 
by ( ) = .VG V E  It remains to define the image of U V⊗ . Let EU and 
EV be two modules over B, We set = .E U V⊕ ⊗B  We define the 
binary operation by [ , ] = [ , ]a u v a u v⊗⊗ ⊗ ; [ , ] = [ , ]a u v a u v⊗⊗ ⊗  and 

a ternary by [ , , ] = [ , , ]a b u v a b u v⊗⊗ ⊗ ; [ , , ] = [ , , ]a u v b a u b v⊗⊗ ⊗  and 

[ , , ] = [ , , ]a b u v a b u v⊗⊗ ⊗  for all a, b in B, u in V and v in V. We assume 
also that the restrictions of [ , ]⊗− −  and [ , , ]⊗− − −  on B correspond 
respectively to the binary and ternary operations of B; and x ⋅ y = 0 if 
both ,x y U V∈ ⊗  and [ , , ] = 0x y z  if any two of x,y,z lie in .U V⊗  

 It remains to show that ( ,[ , ] ,[ , , ] )E ⊗ ⊗− − − − −  is a Bol algebra, that 
is the conditions (i) - (iv) hold. By the definition, the condition (i) is 
satisfied. Now let , , , ,x y z α β  in B; u in U and v in V. We have

[ ; , ] [ ; , ] [ ; , ] = [ ; , ] [ ; , ] [ ; , ]
= ([ ; , ] [ ; , ] [ ; , ])
= 0,

x y u v u v x y y u v x x y u v u x y v y z u v
x y u u x y y z u v

⊗ + ⊗ + ⊗ ⊗ + ⊗ + ⊗
+ + ⊗

this shows that (ii) is true.

Now let us show that (iii) holds. We have
[[ ; , ]; , ] = [[ ; , ] ; , ]

= [[ ; , ]; , ]
= ([[ ; , ]; , ] [ ;[ ; , ], ] [ ; ,[ ; , ]])
= [[ ; , ]; , ] [ ;[ ; , ], ] [ ; ,[ ; , ]]

x y u v x y u v
x y u v
x y u x y u x y u v

x y u v x y u v x y u v

α β α β
α β

α β α β α β
α β α β α β

⊗ ⊗
⊗
+ + ⊗

⊗ + ⊗ + ⊗

One can show that the above equality holds for any , , ,x y α β  stands 
for .u v⊗  That is (iii) holds.
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Finally, we have

[[ ; ]; , ] = [[ ; ] ; , ]
= [[ ; ]; , ]
= ([ ; , ] [ ,[ ; , ]] [[ , ]; , ] [[ , ],[ , ]]) .

u v y u y v
u y v
u y u y u y u y v

α β α β
α β

α β α β α β α β

⊗ ⊗
⊗

⋅ + + + ⊗

Thus [[ ; ]; , ] = [ ; , ] [ ,[ ; , ]] [[ , ]; , ] [[ , ],[ , ]].u v y u v y u v y u v y u v yα β α β α β α β α β⊗ ⊗ ⋅ + ⊗ + ⊗ + ⊗  
One can show this equality for any y, α, β stands for .u v⊗  This 
completes the proof.

Definition 5.1. A monoidal (tensor) category ( , , , , )α λ⊗ 1  is a category 
 equipped with tensor functor :⊗ × →   , with a fix objet 1 (called the unit 
of a tensor category), : ( ) ( )Id Idα ⊗ ⊗× →⊗ ×⊗ 

, : ,λ ⊗−→ Id1  Id−⊗ →1  are 
natural isomorphisms such that the associativity and unitary constraints 
hold, or equivalently the pentagon and the triangle diagrams are 
commutative [18-20]. 

 We can now give a special characterization of the category 
of representations of Bol algebra as a consequence of the above 
proposition.

Corollary 5.1. Every category of representations of Bol algebras is a 
monoidal category.

Proof. It was proved by Kassel [20] that ( , , , )A ε⋅ ∆  is bialgebra if and 
only if the category Mod(A) is monoidal category. In virtue of Theorem 
5.0.6, the category of representations of Bol algebra is equivalent to the 
category of representations of its enveloping algebra endowed with 
bialgebra structure. Hence the category Rep(B) is monoidal.

More recently it was proved by Huang and Torecillas [21], that 
the path coalgebra KQ of a given quiver Q always admits a bialgebra 
structure. So the monoidal category arising from this quiver bialgebra 
is the category of representations of the bialgebra KQ. This leads to the 
following conjecture.

Conjecture 5.1. Find necessary and sufficient conditions for the 
existence of quiver Q such that the monoidal category arising from 
quiver bialgebra KQ is the category of representations of a Bol algebra 
over algebraically closed field K.

A monoidal category is said to be finite, if it is equivalent 
to the category of finite dimensional comodules over the finite 
dimensional coalgebra. Thus the category Rep(B) of finite dimensional 
representations is finite monoidal category. This is a particular case 
of tensor categories of Etingof et al. [19]. The particular case where Q 
is a quiver without loops and 2-cyles should leads to strong relation 
between Bol algebras and cluster algebras of Fomin and Zelevinsky 
[22,23] for more details. In the same vein, it has been shown in literature 
of Schauenburg [24] that if A is a finite dimensional bialgebra, then A is 
Hopf algebra if and only if the category of finitely generated A-modules 
is rigid, that is finitely generate modules admit dual objets. This allows 
us to the following conjecture.

Conjecture 5.2. Find necessary and sufficient conditions for a finite 
dimensional Bol algebra to have Hopf algebra as universal enveloping 
algebra. 

Representations of Free Bol Algebra Bol[X] of Finite 
Dimension

Let 1 2= { , ,..., },nX x x x  we construct the set of binary-ternary 
monomials BT[X], and we assume that BT[X] is closed under [ , ]− −  
and [ , , ]− − − . Let 

=1
[ ] = { | }i i iBT X xα α ∈∑  be the space spanned by X. 

We define the multiplication by the following rules: if 
=1

= ,
n

i i
i

f xα∑

=1
=

n

j j
j

g xβ∑  and 
=1

=
n

k k
k

h xγ∑  in BT[X], then 
, =1

[ , ] = [ , ]
n

i j i j
i j

f g x xα β∑ , 

, , =1
[ , , ] = [ , , ]

n

i j k i j k
i j k

f g h x x xα β γ∑ . The free Bol algebra Bol[X] is the free 

binary-ternary algebra BT[X] satisfying the identities (i) - (iv). The Bol 
types of degree m are always to construct a product of degree m in 
Bol[X]. For general construction and more details of the free Bol algebra 
Bol[X] [25,26]. In studies of Peresi [26] it has been shown that any 
multilinear identity f of degree m can be written as a linear combination 
of multilinear monomials. We denote the Bol types of degree m by B1, 
B2, …, Bb(m), that is 1 ( )= .. b mf f f+ + , where fk is a linear combination 
of polynomial having Bol type k. Therefore the author regards f as an 
element of b(m) copies of Sm, where Sm is group algebra of the group 
of permutation Sm. Applying the representation : ( )mS Mdσ σΦ →  , (σ 
partition of m) of Sm to f we obtain the representation matrix of f in 
partition σ: 1 2 ( )( ( ) | ( ) | ... | ( ))b mf f fσ σ σΦ Φ Φ . 

Now let V be finite dimensional space, dim(V) = s and B is a Bol 
algebras of dimension n. Give a representation ( , , )ρ δ ∆  of B over the 
space V is equivalent to give the matrix ( ( , ) | ( ) | ( , ))D u v u u vδ ∆ , where 

( , )D u v , ( , )u v∆  are s × n s × n matrices and ( )uδ  is also a s × n matrix. 
Hence the block matrix ( ( , ) | ( ) | ( , ))D u v u u vδ ∆  is a (3 )n s×  matrix.

In the special case where = [ ]Bol XB , =K   and V S , with Bol types 
B1, B2, …, Bb(m) the representation matrix 1 2 ( )( ( ) | ( ) | ... | ( ))b mf f fσ σ σΦ Φ Φ  
of f corresponds to the matrix δ f, that is the expression 

1 2 ( )( ) = ( ( ) | ( ) | ... | ( ))b mf f f fδ δ δ δ . At this specific case mentioned 
by Peresi and Jacobson [26,27], the representation of element f is 
understood as a the representation of Bol algebra Bol[X] given by the 
matrix ( ( ,0) | ( ) | ( ,0))D f f fδ ∆ .

Actually we recall the classification theorem of Kuz’min and Zaidi 
for two-dimensional Bol algebras [4] which states as follows. 

Theorem 5.2. (Kuz'min-Zaidi). Every Bol algebra B of dimension 
two over  has a canonical basis (e1,e2) in which its multiplication table 
is one of the following:  

I.  1 2[ , ] = 0e e , 2 1 2 1 1[ , , ] = ,e e e eε  1 2 1 2 2[ , , ] =e e e eε , where 1 2( , ) = (0,0)ε ε , 
( 1,0)− , (1,0) , (1, 1)− , (1,1) , ( 1, 1)− −  

II. 1 2 2[ , ] =e e e , 2 1 2 1[ , , ] = ,e e e eε  1 2 1 2[ , , ] =e e e eβ , where = 0, 1,1;ε −  

2 1 2 2[ , , ] = ,e e e e  1 2 1 1[ , , ] = .e e e e

Now we are in position to prove our classification result for regular 
representations of the two-dimensional Bol algebras.

Theorem 5.3. Every regular representation of two-dimensional Bol 
algebra B over K is up to equivalence of matrices given by one of the 
following matrices: 

(i)  1 2 2 1 2 1 1
1

2 1 2 2 1 1 2

0 ( , ) 0 0
( , ) =

( , ) 0 0 0
det u v u v u v

R u v
det u v u v u v

ε ε ε
ε ε ε

− 
 − − 

(ii)  2 2 2 1
2

2 1 1 2 1 1

0 ( , ) 0 0
( , ) =

( , ) 0
det u v u v u v

R u v
det u v u v u v u v

ε ε ε
β β β

− 
 − − − 

(iii)  1 2 1 1
3

2 1 2 2 2 1

( , ) 0 0 0
( , ) =

0 ( , )
det u v u v u v

R u v
det u v u v u v u v

− 
 − − 

Proof. In virtue of classification theorem of Kuz’min and Zaidi [4], 
every Bol algebra of dimension two is of type (I) or of type (II) by using 
the items of their theorem. 

We suppose in the first case that our Bol algebra is of type (I), that 
is B has a canonical basis (e1,e2) in which its multiplication table is given 
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by 1 2[ , ] = 0e e , 2 1 2 1 1[ , , ] = ,e e e eε  1 2 1 2 2[ , , ] =e e e eε , where 

 1 2( , ) = (0,0)ε ε , ( 1,0)− , (1,0) , (1, 1)− , (1,1) , ( 1, 1).− −

 Let u and v be the two vectors of B, with 1 1 2 2=u u e u e+  and
1 1 2 2= .u u e u e+  We have 1 1 2 1 1 2 2 1 1 2 1( , )( ) = [ , , ] [ , , ].D u v e u v e e e u v e e e+  Since 

1 1 2 1 2 1[ , , ] = [ , , ]e e e e e e− , we have

1 1 2 1 2 1 2 1 1 2 1

1 2 2 1 2 2

2 2

( , )( ) = [ , , ] [ , , ]
= ( )
= ( , ) ,

D u v e u v e e e u v e e e
u v u v e

det u v e
ε

ε

− +
− +
−

We have also 

2 1 2 2 1 2 2 1 2 2 1

1 2 2 1 1 1

1 1

( , )( ) = [ , , ] [ , , ]
= ( )
= ( , ) .

D u v e u v e e e u v e e e
u v u v e

det u v e
ε

ε

+
−

Thus 1

2

0 ( , )
( , ) = .

( , ) 0
det u v

D u v
det u v

ε
ε

 
 − 

Now we compute the matrix of ( , )u v∆  as follows. We have

1 1 2 1 1 2 2 2 2 1 2

2 2 1 1 1 2 2 2

( , )( ) = [ , , ] [ , , ]
= ,

u v e u v e e e u v e e e
u v e u v eε ε

∆ +
−

and 

2 1 1 1 2 1 2 1 2 2 1

2 1 1 1 1 1 2 2

( , )( ) = [ , , ] [ , , ]
= ,

u v e u v e e e u v e e e
u v e u v eε ε

∆ +
− +

hence 2 2 1 2 1 1

1 2 2 1 1 2

( , ) = .
u v u v

u v
u v u v

ε ε
ε ε

− 
∆  − 

 Because 1 2[ , ] = 0,e e  we have ( ) = 0.uδ  

Therefore the bloc matrix ( ( , ) | ( ) | ( , ))D u v u u vδ ∆  corresponds to the 
matrix 1( , ).R u v

The second case corresponds to Bol algebra of type (I), that is B 
has a canonical basis 1 2( , )e e  in which its multiplication table is given 
by 1 2 2[ , ] =e e e , 2 1 2 1[ , , ] = ,e e e eε 1 2 1 2[ , , ] =e e e eβ , where = 0, 1,1;ε −

2 1 2 2[ , , ] = ,e e e e  1 2 1 1[ , , ] = .e e e e  

If 1 2 2[ , ] =e e e , 2 1 2 1[ , , ] = ,e e e eε
1 2 1 2[ , , ] =e e e eβ , where = 0, 1,1;ε −  we use the 

analogous methods as at the first case to get 0 ( , )
( , ) =

( , ) 0,
det u v

D u v
det u v

ε
β

 
 − 

2 1

0 0
( ) =u

u u
δ

 
 − 

 and 2 2 2 1

1 2 1 1

( , ) = .
u v u v

u v
u v u v

ε ε
β β

− 
∆  − 

 Hence the bloc matrix 

( ( , ) | ( ) | ( , ))D u v u u vδ ∆  corresponds to the matrix 2 ( , ).R u v

Finally, for 1 2 2[ , ] =e e e  and 2 1 2 2[ , , ] = ,e e e e  1 2 1 1[ , , ] = ,e e e e  we have
1 2 1 1

2 1 2 2 2 1

( , ) 0 0 0
( ( , ) | ( ) | ( , )) = ,

0 ( , )
det u v u v u v

D u v u u v
det u v u v u v u v

δ
− 

∆  − − 
 this end the proof. 
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