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Abstract

Let Vect(RP') be the Lie algebra of smooth vector fields on RP'. In this paper, we classify aff(1) -invariant linear

differential operators from Vect(RP') to D,

vanishing on aff(1), where D,

s=Homdiff(F, ®}' ;F) is the space of bilinear

differential operators acting on weighted éen5|t|es This result allows us to compute the first differential aff(1)-relative

cohomology of Vect(RP") with coefficients in D, i
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Introduction

Let g be a Lie algebra and let M and N be two g-modules. It is well-
known that nontrivial extensions of g-modules:

0->M—>->N>0

are classified by the first cohomology group H'(g; Hom(N,M)) [1].
Any 1-cocycle £ generates a new action on M®N as follows: for all
geg and for all (a,b) e M®N, we define g'(a,b):=(g'a+C'L(b),g'b). For
the space of tensor density of weight A, F,, viewed as a module over
the Lie algebra of smooth vector fields Vect(R]P"), the classification of
nontrivial extensions

0_>}—,4_>-_’f/1_>0’

leads Feigin and Fuks [2] to compute the cohomology group
H'(Vect(RP'); Hom(F,F)). Later, Ovsienko and Bouarroudj [3] have
computed the corresponcﬁng relative cohomology group with respect
to s1(2, R), namely

H!(Vect(RPY), sl(2, ]R);Hom(]:l,f#)).

In this paper, we will compute the first cohomology group
H!(Vect(RP"),aff(1);Hom(F,®,F , F)).

Vect(R)-Module Structures on the Space of Bilinear
Differential Operators

Consider the standard (local) action of aff(1) on R by linear-
fractional transformations. Although the action is local, it generates
global vector fields

d d

{dx 7‘x dx}’
that form a Lie subalgebra of Vect(R) isomorphic to the Lie algebra
aff(1). This realization of aff(1) is understood throughout this paper.

The space of tensor densities on RP*

The space of tensor densities of weight A (or A-densities) on RP?,
denoted by:

F={fldx)"|[feC*(R)}, AR,

is the space of sections of the line bundle (T*R]P‘)@ . This space
coincides with the space of functions and differential forms for A=0
and for A=1, respectively. The Lie algebra Vect(RP") acts on F, by the
Lie derivative. For all Xe Vect(RP') and for all pe F:

v

LX((p(dx)“):X(p "+ApX', (1)
where the superscript ’ stands for d/dx.

The space of bilinear differential operators as a Vect(RP')-
module

We are interested in defining a three-parameter family of
Vect(RP')-modules on the space of bilinear differential operators.
The counterpart Vect(RP')-modules of the space of linear differential
operators is a classical object [4].

Consider bilinear differential operators that act on tensor densities:
AF®F —F, (2)

The Generalized Lie algebra Vect(RP") acts on the space of bilinear
differential operators as follows. For all g€ 7, and for all ye F :

L (A w) = Ly o A@) — AL ) = A, Ly ©)

where L’ is the action (1). We denote by D, v the space of bilinear
dlfferentlal operators (2) endowed with the deﬁned Vect(RP')-module
structure (3).

Relative Cohomology

Let us first recall some fundamental concepts from cohomology
theory [1]. Let g be a Lie algebra acting on a vector space V and let h be
a sub- algebra of g. (If h is omitted it assumed to be {0}.) The space of
h-relative n-cochains of g with values in V is the g-module

C'(gh;V): =Hom, (A"(g/h); V)

The coboundary operator §:C"(g,h;V)—>C"'(g,h;V) is a g-map
satisfying no5n1=0. The kernel of (Sn, denoted Z"(g,h;V), is the space of
h-relative n- cocycles, among them, the elements in the range of §_,
are called h-relative n- coboundaries. We denote B"(g,h;V) the space
of n-coboundaries.
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By definition, the n™ h-relative cohomolgy space is the quotient
space

H"(g, h; V)=Z"(g,h;V)/B" (g, V).

We will only need the formula of §, (which will be simply denoted
0) in degrees 0,1 and 2: for ve C°(g,1;V)=V", 8v(g)==(—1)'«d”‘g.v, where

Vi={ve V|h.v=0 for all heh},

and for YeC'(g,h;V),

(V) (x,p)=xY()—y-Y(x)-Y([x,y]) for any x,yeg.
aff(1)-Invariant Differential Operators

The following steps to compute the relative cohomology has
intensively been used in refs. [3,5-8]. First, we classify aff(1)-invariant
differential operators, then we isolate among them those that are
1-cocycles. To do that, we need the following Lemma.

Lemma 4.1

Any 1-cocycle vanishing on the subalgebra aff(1) of Vect(R) i

aff(1)-invariant.
The 1-cocycle condition of Y reads:
XY (Y)-Y-Y(X)-Y([X,Y])=0, (4)

where X,Ye Vect(RP?). Thus, if Y(X)=0 for all Xe aff(1), eqn. (4)
becomes

T([X,YD=X-Y(Y)
expressing the aff(1)-invariance property of Y.

As our 1-cocycles vanish on aff(1), we will investigate aff(1)-
invariant linear differential operators that vanish on aff(1).
Proposition 4.2: There exist aff(1)-invariant bilinear differential

operators J;* : F, ® F,.o>F given by:

+u+k

T (pdx’ gax) = 3 7, 0 (5)

i+j=k
where k€N and the coefficients y,; are constants.

Proof. Any differential operator J;** : 7, ® F, — F, is of the form

meN

T f ey =3 Y g, f gV

n=0i+j=k

The osp(1]2) -invariant property of the operators - with respect

to the vector field X =x—— I yields:
diyi.j:O and v-A-u=k with k=i+j.
X

So, we see that the corresponding operator can be expressed as (5).

Proposition 4.3: There exist aff(1)-invariant trilinear differential

operators K’“‘ ]-' ®F, ®J~‘ %}'thk givenby:
K (o) = 7,08 w". (6)

i+j+l=k

where i+j+l=k and the coefficients y, are constants.

If 7,A and p are generic, then the space of solutionsis — (k +1)(k+2)
-dimensional.

Proposition 4.4: There exist aff(1)-invariant trilinear differential

operators K" : Vect(RP'") ® F, ®F, > F, that vanishe on
aff(1) given by:
KX 09)= 2 7, X9y, @)
i+j+l=k
where i+j+l=k and the coefficients y, , are constants but y, ., =y, .

+u+k-1

,=0. Moreover, the space of solutions is lk(k —1) -dimensional, for
all Aand p. 2

Proof of Proposition 4.3 and 4.4: We are going to prove

Proposition 4.3 and 4.4 simultaneously. Any differential operator
K" F®F, ®F, > F. s, is of the form
K (o) = 3 7,000 . )
i+j+l=k

where Y, r€ functions. The aff(1) -invariant property of the operators
K™ reads as follows.

LK o) = K (L) + KEH 9 Loy + K (9, L) )

The invariant property with respect to the vector field X = 4
implies that y; ,=0. On the other hand, the invariant prop
with respect to the vector fields X = x— implies that v=r+A+p+k. If

7, A and y are generic, then the space of solutions is 7(k +1)(k+2)
-dimensional, spanned by

V0,062 Y0,1.k-12"""5 Y 0.k,0

Yiok=1511k=20"""5 V151,00

(10)
Vi-1,0157k-1,1,0
V0.0
Now, the proof of Proposition 4.4 follows as above by putting 7—1.

In this case, the space of solutions is %k(k —1) -dimensional, spanned by

V20k-2>720k-3>"" "7 262,00
V3,0k-35V3,1k—4>"""573,k-3,0
: (11)
Vi-1,010Yk-1,1,0>
Vi0,0°
Cohomology of Vect(RP') acting on D

Ausv

In this section, we will compute the first cohomology group of
Vect(RP!) with values in DAW, vanishing on aff(1). Our main result
is the following:

Theorem 5.1

(i) For v—u—A<11, the space H,; (Vect(RP"),aff(1); D,
following structure:

(1) If v—p—A=1, then

) hasthe

R if 0.2em(A, 1) =(0,0),
0 otherwise.

H},; (Veet(RPY), aff(1); D, ., ) ~ { (12)

(2) If v—p—A=2, then

. 1 1 .
Yy (Vect(RP' ), aff(1;:D, lo 2em R (@) € {0,0,0,-2),(-7,0)1,02em (13)

0 otherwise.

(3) If v—u—A=3, then
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01100,
Hl (Veet(RP),aff (1D, )~

0 otherwise.
(4) If v—p—A=4, then

2 23 3
3:0.0.-3),(=5,0.0,-2),

iy (Vect(RPY), aff(1); D, ,,.) 1

- 02em R if (1,41)5{ 1 L
(*?*IL(*L*E)-(*?*E)

0 otherwise.
(5) If v—u—A=5, then

(=2,0),(0,-2),(=1,0),(0,-1),

[P 2 1 1 2
Hly (Veat (BB, aff(1);D,., )~ 2" & T (091 L0579, 05,730

3 1
32
0 otherwise.
(6) If v—p—A=6, then

-

30,2 2
2 OGP

., ; LN A
Hly (Vect(RP ) aff(1):D, )~ 1 02 B (A0 €350 (5.0,

1 3 1
(*l*?s (*?*l)v(*?*z)

0 otherwise.
(7) If v—pu—A=7, then
1 1
0,0), (*?0), (0’*7),

. 3 3
Hyp (Vect (REY,aff(1);D,,,,) = 2" & i (0 € 50029070,

1 5
(*Zrl)w(*?*z), 0,-3)
0 otherwise.
(8) If v—u—A=8, then
1

2
(0,0),(0, *g)w(*;,ﬂ),

1

. 2 1
02em R if (Au)e (0,7;),(*5,0),(0,*?:

Hj (Vect(RP'), aff(1); D, ) =
3 1 7
5-9.0-2.0.-)

0 otherwise.
(9) If v—p—A=9, then

1 1
©, 0),(0,—5), G 0),

) 2 203 2
Yy (Vect(RP ), aff(1:D, ) ~ 02em R f (4,1 €)(=3.0.0-9.C5.=9)
0-D.0.-49

0 otherwise.

(10) If v—p—A=10, then

1 2
(0,00, =75 (=50,

e 5 S 3 3

Hly (Veat(RP) aff(1;D, ) =1 2" 1 1SR OOZA 579
8 9

0-H0-2)

0 otherwise.

(11) If v—p—A=11, then

1 1
0,0),(0, *ﬁ):(oﬁg),

. 1 5 7
HLy (Vect(RP),aff(1), D, ) = {2 % 1 (440610 029).05,0)
7 1 9
(Ovig)v(iiyia)

0 otherwise.
(ii) If v—p—A is semi-integer but A and y are generic then,

H.,, (Vect(RP"),aff(1): D, ) =0.

Ay )

02cm R if (A,,u)e{(l 0 (7l 71) },0.20}11 (14)
37727 2

}’ (15)
(16)

- (17)

19)

(20)

21

. (22)

Proof of Theorem 5.1: To proof Theorem (5.1) we proceed bye
following the three steps:

» We will investigate the dimension of the space of operators that
satisfy the 1-cocycle condition. By Proposition (4.4), its dimension is at

most %k(k—l) , where k=v—u—A+1, since any 1-cocycle that vanishes
on aff(1) is certainly aff(1)-invariant.
» We will study all trivial 1-cocycles, namely, operators of the form
LB,
where B is a bilinear operator. As our 1-cocycles vanish on the

Lie algebra aff(1), it follows that the operator B coincides with the
transvectant J* .

« By taking into account Part 1 and Part 2 and depending on A and
¢ the dimension of the cohomology group Hy,(Vect(RP'),aff(1); D, )
will be equal to

dim( operators that are 1 — cocycles ) —dim( operators of the form L,J, ,f'"’).

Now, clearly the coboundary Z,J/* has the following form:

LSt Xy = 3 B X9, (23)
i+j+l1=k+
where
ﬁo,j,I:ﬁl,j,l:O'

The following Lemma is proved directly which will be useful in the
proof of Theorem 5.1.

Lemma 5.2
For A,ueR
Bepiann = (CID+ACTD) e g =D+ 1CD) s
where a>2 and $20.
We need also the following Lemma.
Lemma 5.3
Every 1-cocycle on Vect(RP') with values in DAW) is differentiable
Proof [7].

Now we are in position to prove Theorem (5.1). By Lemma (5.3),
any 1-cocycle on Vect(RP?) should retains the following general form:
C(X,p,p) = Z C,,j-JX(i)¢(/)l//(”, (24)
i+j+I=k
where ¢, are constants. The fact that this 1-cocycle vanishes on aff(1)
implies that

¢ .=0.

Coj=C1i

The 1-cocycle condition reads as follows: for all g€ 7, for all ye F,
and for all Xe Vect(RP'), one has

C([X, Y],¢,W) - L/)l('ﬂ;VB(Ya ¢"//) + Lf/.y;VB(X’ ¢"//) =0.

The case where v—u—A=1: In this case, according to Proposition
4.4, the 1-cocycle (24) can be expressed as follows:

Y(X,g,w)= Cz,o,oX”W//-

By a direct computation, we can see that the 1-cocycle condition
is always satisfied. Let us study the triviality of this 1-cocycle. A direct
computation proves that
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LXJIMI = ﬂz,o,oX”W// =—(Ar0+ 170, )X”¢W~

So, for(A,4)=(0,0), the coeffcientc, | cannotbe eliminated by adding
a coboundary. Hence, the cohomology space is one-dimensional. While
for (A,u)#(0,0), we can see that the coeffcient ¢,  can be eliminated

because 3, | #0. Hence, the cohomology is zero-dimensional.

The case where v—y—A=2: In this case, according to Proposition
4.4, the 1-cocycle (24) can be expressed as follows:

Y(X,p,p)= C3,0,0X‘”¢l// + Cz,l,oX”ﬁl// + C2,0,1X”¢l//"

By a direct computation, we can see that the 1-cocycle condition
is always satisfied. Let us study the triviality of this 1-cocycle. A direct
computation proves that

LXJZMJ = ﬂsﬁo.oX'”W// + :Bz,l,oX”¢,‘// + ﬂz,o,1X‘,¢l//,-
where
Bioo = A0 = 023 Bono = —RA+D) 1y —piyyy and Py = =2y, — Qu+1y,,.

So, for (l,y)=(0,0),(—%,0),(0,—%), the cohomology space

is one-dimensional, since only one of the coefficients Co0 Coto

or c,,, cannot be eliminated by adding a coboundary. While for

o u):t(0,0),(—%,O),(O,—%)’ the coeffcient ¢, , ¢, , and ¢, can

be eliminated because §, ., f,,, and f3, , are nonzero. Hence, the

cohomology space is zero-dimensional.

2,0,1

The case where v—y—A>3: In this case, the 1-cocycle condition is
equivalent to the system:

[[a +ﬂ—lj7[a +f- ID%/H,W +((zx + 7—1J+ l(a + yilj]%mﬁ.‘,
« a-l a a-1
p+r-1 L+y—1 ra-1 val
,[[ ; j+l[ ﬁil DQr,ﬁqy_aJr[[ao‘: j+y[aail ]jcﬁ_mml (25)
_[[ﬁﬂz—l]*_l(ﬁ#afl]]c o
B p-1 ) )

where a+f+y+a=k+1, a>f22, a>y and a>a, obtained from the
coeflicient of X@Y®0@,

This system can be deduced by a simple computation. Of course,
such a system has at least one solution in which the solutions ¢, are
just the coefficients 8, of the coboundaries (23).

The case where v—u—1=3: In this case, according to Proposition
4.4, the space of solutions is spanned by:

C4,0,0, C3,l,0, C3,0,l, CZ,Z,O, CZ,l,l, 62,0,2.
Moreover, by formula (25), we readily obtain:
_2Cz,o,o+/\C2,0,0/\C2,0,0+nuCz,o,o_nucz,o‘ozo'

Thus, we have just proved that the coefficients of every 1-cocycle is
expressed in terms of
C3,1,0, 63,0,1, CZ,Z,O, CZ,I,I, C2,0,2.

A direct computation proves that
L)(J;“‘ = ﬂz.mX v+ ,Bz,z,o (E X4¢l// +X )+ :Bz‘o.z (g X(4)¢V/ +X ¢y )

a5 X Py + X Gy By (A X gy 4 X ).

where

ﬁz.m =4y, —Cu+ 1)70,3’
ﬁz,o,z = _/171,2 =3(u+ 1)70,3’

PBiio =GB+ Dy — iy, >
ﬂz,z.o =-3(1+ 1)73,0 —HY s
Poy = QA+ Dy, —Qu+)y,,.

So, for (Lﬂ):(,g,0),(0,,%),(71,0),(0,71),(7%,,%), the cohomology

space is one-dimensional, since only one of the coeflicients ¢
c

3,1,0°
o0 Caa €o1y OF Gy, cannot be eliminated by adding a coboundary.

While for (/1,/1);t(—%,O),(O,—%),(—I,O),(0,—1),(—%,—%), the coeffcient
310 Sso00 Caa00 €1y @0d €, , can be eliminated because B, . B, ., B,
.., and f, . are nonzero. Hence, the cohomology space is zero-
dimensional.

c

The case where v—u—1=4: In this case, according to Proposition
4.4, the space of solutions is spanned by:

C5.0,00€41,00Ca015 32,05 €311 €3,0,2 €2,3,00 2,210 €2.1,25 €203+

Moreover, by formula (25), we readily obtain:

=2¢4,0+BA+1)ey 50— QA+ 1D)ey, 0+ pe,, , — pe;,, =0,

=2¢,0, F ACyy = Ay + Bt 1), 05— 2u+1)e;,, =0,

_Scs,o,o + ﬁcz,s,o - 164.1,0 + HCy 03 = HCy) = 0.

Thus, we have just proved that the coefficients of every 1-cocycle is
expressed in terms of

C32,05 C3,1,15 C3,0,25 €23,00 C2,2,15 €,1,25 €203+

A direct computation confirms that, the coefficients of L,J;* are

expressed in terms of:

ﬂz,z,l =-3(A+1 )73,1 -Qu+l )72,2 P
ﬂs,z,o =-2(31+ 2)74.0 —HYas 5
ﬂz.},o =-224+ 3)74.0 — M3, P
ﬂll,] =-(31+ 1)73,1 -QCu+ 1)71,3'

ﬁz.l,z = _(2/1'*'1)72,2 _3(ﬂ+])71,3’
ﬁs,o.z = _272,2 =2Qu+ 2)ou>
ﬁz.o,s = _171‘3 =2Qu+ 3)704
—2.0,0-2.20.0.-2) L iy c- L L oL
So, for () =( 3,0),(0, 3),( 2:0),(05 2),( 2 D,(-1, 2),( 3 3),
the cohomology space is one-dimensional, since only one of
the coefficients C305C3119C30,25€2305C2215C212 OF €5
cannot be eliminated by adding a coboundary. While for
2 2.3 3001 L1 1 i
(i,ﬂ)i(—g,o),(O,-g)»(—E,O)» 0=21 5D L=, 3-9)s the coeffcient

C3205C3115C302>Ca3.05Caz1sCarp ANA €505 CAN be eliminated because

Biros Biiis Biozs Bozos Posis Boys @0d B, 5 are nonzero. Hence, the

cohomology space is zero-dimensional.

The case where v—u—1=5: In this case, according to Proposition
4.4, the space of solutions is spanned by:

C6,0,00 C5,1,00 C5,0,1> C4,2,00 Ca1,15 Ca.0,25 €33,00 C3 0,1

C31,25C3,03> 2,405 C23,15 €2225€21,3> €204

Moreover, by formula (25), we readily obtain:

—2¢,,,+ B+ Deysy — A+ Dey, +GBu+Dey, , —(2u+1es, , =0,
=S¢5, @A+ 1)C, 0 —RA+1D)ey 0 + ey, 5 — pey, =0,

=S¢5y T ACyy = Acy +(Gu+1)c,, —Qu+1)e,,, =0,

=204, +20BA+2)Cy 40 —3(A+1)cy 50+ piCy,, — ey 5, =0,

=2¢,0, tACyp, = ACs, +20Bu+2)cy =31+ 1)ey ;= 0,

=900+ ACy 40 = ACs 9+ HCy 4 — HCs 5, =0,

=550+ ACy 30 = ACu s+ HC; 3 — HCy g, = 0.
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Thus, we have just proved that the coefficients of every 1-cocycle is
expressed in terms of

€2,4,0>€2,0,4>C33,00 C3,03> C32,1>C3.1,2> €23,1> €222+

A direct computation confirms that, the coefficients of L.J 5“’ are
expressed in terms of:

ﬁs,zl =232+ 2)74,| -Cu+ 1)72‘3 > ﬂz,l,z =-(3A+ Dys, — 2Qu+ 2)71,4’
By =2QA+3)y,, —Qu+Dys, o Bony =-3(A+Dys, =3(u+1)y,;,
Biso =104+ D)5, — pys, s Pios ==A725 —10(u + Dy s,

,52.4.0 =-5(A+ 2)75,0 —HY 4, 5 ﬂz,o,4 = _/171,4 =5(u+ 2)70,5'

—2oh b2 3L Gt 1) -
So, for = (Aw=(3-9657DC5)ELDELOOD2.0.0.-2)

the cohomology space is one-dimensional, since only one of the

coefficients €240 €2,042C33,05 €3035C3215 C312> €31 OF Gy

cannot be eliminated by adding a coboundary. While for

1

2 1 1 2 3
(A, 1) # 37337357 L-D.(=1.0),0,-1),(=2,0),(0.-2) »

the coeffcient ¢, ,, C;4,C330> C3.035C3.215 C31.20 €231 and €,,, can be

eliminatedbecause 5,405 Bro.4> Bsz00 Boss Broi> Brias Bosiand B, 5,
are nonzero. Hence, the cohomology space is zero-dimensional.

The case where v—u—1=6: In this case, according to Proposition
4.4 together with formulas (25), we check that the coefficients of every
1-cocycle are expressed in terms of

C4219€4035C3225C3139C3045C2505C2415C2325Co 140

A direct computation confirms that, the coefficients of L,J/* are
expressed in terms of:

ﬂ4,z,1 > ﬂ4,o,3 > ﬁs,z,z > ﬂs,l,z > ﬂs,o,w ﬂz,s,os ﬂz,4,1 > ﬂzs,z > ﬁ2,1,4-

So, in the same way as before, by Lemma 5.2, we can see, with the
help of the maple, that the cohomology space is given as in (17).

The case where v—u—1=7: In this case, according to Proposition
4.4 together with formulas (25), we check that the coefficients of every
1-cocycle are expressed in terms of

€8.0,00 €7,1,00 €7,0,1> €5,3,0 C5,0,3> C4,0,4> 2,425 €150 C2 0.6

A direct computation confirms that, the coefficients of L,J;* are
expressed in terms of:

ﬂS,0,0’ ﬂ7,1.0’ ﬂ7,0,1 ’ ﬂS,},O’ ﬁ5,0,39 ﬂ470,4’ ﬂ2,4,2 ’ ﬂZ,l,S ’ ﬂZ,O,G'

So, in the same way as before, by Lemma 5.2, we can see, with the
help of the maple, that the cohomology space is given as in (18).

The case where v—u—1=8: In this case, according to Proposition
4.4 together with formulas (25), we check that the coefficients of every
1-cocycle are expressed in terms of:

C9.0,05 C3,0,1> €7,2,00 €7,0,25 C6,3,0> C6,0,3> C5,3.1> €3,0,6> €2,0,7+

A direct computation confirms that, the coefficients of L, J;* are
expressed in terms of:

ﬂ9,0.0 ’ ﬂS,O,] ’ ﬂ7,2,0 > ﬁ7,0.2 4 ﬁé,},o 4 ﬁé,O,} ’ ﬂS,S,l ’ ﬂ},O,G ’ ﬂZ.OJ .

So, in the same way as before, by Lemma 5.2, we can see, with the
help of the maple, that the cohomology space is given as in (19).

The case where v—u—1=9: In this case, according to Proposition
4.4 together with formulas (25), we check that the coefficients of every
1-cocycle are expressed in terms of

€10,0,05 €9,0,15 €8.2,05 C6,4.05 €6.0,4> C5,3,25 C3,0,75 €208

A direct computation confirms that, the coefficients of LXJ;‘ # are
expressed in terms of:

ﬂ]0,0,0’ ﬁ9,0,l > ﬂ8,2,07 ﬂ6,4,0’ ﬁ6,0,4’ ﬂ5,3,2’ ﬁ3,0,7’ ﬂ2,0,8'

So, in the same way as before, by Lemma 5.2, we can see, with the
help of the maple, that the cohomology space is given as in (20).

The case where v—u—1=9: In this case, according to Proposition
4.4 together with formulas (25), we check that the coefficients of every
1-cocycle are expressed in terms of

€11,0,0> €10,0,1> €9,2,0> C6,5,0> C6,0,52 C5,3,35 C3,08> C2,0,9+

A direct computation confirms that, the coefficients of L,J;;"* are
expressed in terms of:

ﬂl 1,0,0> ﬂl0,0,l > ﬂ9$2,0 ’ ﬁ(),S,O s ﬂﬁ,O,S > ﬂ5,3,3 s ﬂB,O,S H ﬁ2,0,9 :

So, in the same way as before, by Lemma 5.2, we can see, with the
help of the maple, that the cohomology space is given as in (21).

The case where v—u—A=11: In this case, according to Proposition
4.4 together with formulas (25), we check that the coefficients of every
1-cocycle are expressed in terms of

€12,0,0> €11,0,1> €10,0,2> €9,0,3> €7,0,5> €5,7,0> C5,0,70 €219

A direct computation confirms that, the coefficients of L,J.}* are
expressed in terms of:

ﬂlZ,,0,0’ 511,0,1’ ﬂl0,0,Z’ ﬂ9,0,33 ﬂ7.0,57 ﬁ5,7,07 ﬁ5,0,7’ ﬁ2,1,9'

So, in the same way as before, by Lemma 5.2, we can see, with the
help of the maple, that the cohomology space is given as in (22). This
completes the proof.

Conjecture 5.1

Forv—u—-AeN+12, A and u are generic, one hase

H,, (Vect(RP"),aff(1);D, ) =0.

A v
Conclusion

In this paper, we classify aff(1) -invariant linear differential
operators from Vect(RP') to D vanishing on aff(1), where
D, /=Homdiff(F,®F;F) is the space of bilinear differential operators
actlng on weighted densities. This result allows us to compute the first
differential aff(1)-relative cohomology of Vect(RP') with coefficients
in DWV.
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