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Abstract
Let Vect(1) be the Lie algebra of smooth vector fields on 1. In this paper, we classify aff(1) -invariant linear 

differential operators from Vect(1) to λ,µ;v vanishing on aff(1), where λ,µ;v≔Homdiff(λ⊗µ;v) is the space of bilinear 
differential operators acting on weighted densities. This result allows us to compute the first differential aff(1)-relative 
cohomology of Vect(1) with coefficients in λ,µ;v.

Keywords: Differential operators; Transvectants; Lie algebra;
Cohomology

Introduction
Let g be a Lie algebra and let  and  be two g-modules. It is well-

known that nontrivial extensions of g-modules:

0→→.→→0	

are classified by the first cohomology group H1(g; Hom(,)) [1]. 
Any 1-cocycle  generates a new action on ⊕ as follows: for all 
g∈g and for all (a,b)∈⊕, we define g*(a,b)≔(g*a+Cst(b),g*b). For 
the space of tensor density of weight λ, λ, viewed as a module over 
the Lie algebra of smooth vector fields Vect(1), the classification of 
nontrivial extensions

0→µ→.→λ→0,

leads Feigin and Fuks [2] to compute the cohomology group 
H1(Vect(1); Hom(λ,µ)). Later, Ovsienko and Bouarroudj [3] have 
computed the corresponding relative cohomology group with respect 
to sl(2, ), namely

H1(Vect(1), sl(2, );Hom(λ,µ)).

In this paper, we will compute the first cohomology group

H1(Vect(1),aff(1);Hom(λ⊗,µ, v)).

Vect()-Module Structures on the Space of Bilinear 
Differential Operators

Consider the standard (local) action of aff(1) on  by linear-
fractional transformations. Although the action is local, it generates 
global vector fields

{ , },d dx
dx dx

that form a Lie subalgebra of Vect() isomorphic to the Lie algebra 
aff(1). This realization of aff(1) is understood throughout this paper.

The space of tensor densities on 1

The space of tensor densities of weight λ (or λ-densities) on 1, 
denoted by:

λ={f(dx)λ|f∈C∞()}, λ∈,
is the space of sections of the line bundle * 1( )T

λ⊗ . This space
coincides with the space of functions and differential forms for λ=0 
and for λ=1, respectively. The Lie algebra Vect(1) acts on λ by the 
Lie derivative. For all X∈ Vect(1) and for all φ∈ λ:

LX(φ(dx)λ)=Xφ ′+λφX′,			  (1)

where the superscript ′ stands for d/dx.

The space of bilinear differential operators as a Vect(1)-
module

We are interested in defining a three-parameter family of 
Vect(1)-modules on the space of bilinear differential operators. 
The counterpart Vect(1)-modules of the space of linear differential 
operators is a classical object [4].

Consider bilinear differential operators that act on tensor densities:

A:λ⊗µ→v	          (2)

The Generalized Lie algebra Vect(1) acts on the space of bilinear 
differential operators as follows. For all φ∈λ and for all ψ∈ µ :

, ; ( )( , ) = ( , ) ( , ) ( , )X X X XL A L A A L A Lλ µ ν ν λ µφ ψ φ ψ φ ψ φ ψ− −

	    (3)

where XLλ  is the action (1). We denote by λ,µ;v the space of bilinear 
differential operators (2) endowed with the defined Vect(1)-module 
structure (3).

Relative Cohomology
Let us first recall some fundamental concepts from cohomology 

theory [1]. Let g be a Lie algebra acting on a vector space V and let h be 
a sub- algebra of g. (If h is omitted it assumed to be {0}.) The space of 
h-relative n-cochains of g with values in V is the g-module

Cn(g,h;V): =Homh(Λ
n(g/h);V)

The coboundary operator δn:C
n(g,h;V)→Cn+1(g,h;V) is a g-map 

satisfying nδn1=0. The kernel of δn, denoted Zn(g,h;V), is the space of 
h-relative n- cocycles, among them, the elements in the range of δn−1
are called h-relative n- coboundaries. We denote Bn(g,h;V) the space
of n-coboundaries.



Citation: Meher A (2017) On the First aff(1)-Relative Cohomology of the Lie Algebra of Vector Fields and Differential Operators. J Generalized Lie 
Theory Appl 11: 269. doi: 10.4172/1736-4337.1000269

Page 2 of 6

Volume 11 • Issue 2 • 1000269J Generalized Lie Theory Appl, an open access journal
ISSN: 1736-4337

By definition, the nth h-relative cohomolgy space is the quotient 
space

Hn(g, h; V)=Zn(g,h;V)/Bn(g,h;V).

We will only need the formula of δn (which will be simply denoted 
δ) in degrees 0,1 and 2: for v∈C0(g,h;V)=Vh, δv(g)≔(−1)gvg.v, where

Vh={v∈V|h.v=0 for all h∈h},

and for ϒ∈C1(g,h;V),

δ(ϒ)(x,y)≔x⋅ϒ(y)−y⋅ϒ(x)−ϒ([x,y]) for any x,y∈g.

aff(1)-Invariant Differential Operators
The following steps to compute the relative cohomology has 

intensively been used in refs. [3,5-8]. First, we classify aff(1)-invariant 
differential operators, then we isolate among them those that are 
1-cocycles. To do that, we need the following Lemma.

Lemma 4.1

Any 1−cocycle vanishing on the subalgebra aff(1) of Vect() is 
aff(1)-invariant.

The 1-cocycle condition of ϒ reads:

X⋅ϒ(Y)−Y⋅ϒ(X)−ϒ([X,Y])=0,			                 (4)

where X,Y∈ Vect(1). Thus, if ϒ(X)=0 for all X∈ aff(1), eqn. (4) 
becomes

ϒ([X,Y])=X⋅ϒ(Y)

expressing the aff(1)-invariance property of ϒ.

As our 1-cocycles vanish on aff(1), we will investigate aff(1)-
invariant linear differential operators that vanish on aff(1).

Proposition 4.2: There exist aff(1)-invariant bilinear differential 
operators , :k kJ λ µ

λ µ λ µ+ +⊗ →    given by:

, ( ) ( )
,

=
( , ) = i j k

k i j
i j k

J dx dx dxλ µ λ µ λ µϕ φ γ ϕ φ + +

+
∑ 		                   (5)

where k∈ and the coefficients γi,j are constants.

Proof. Any differential operator , :kJ λ µ
λ µ ν⊗ →    is of the form

, ( ) ( )
,

=0 =
( , ) =  ,   

m
i j

k i j
n i j k

J fdx gdx f g dx mλ µ λ µ νγ
+

∈∑ ∑ 

The osp(1|2) -invariant property of the operators ,
kJ λ µ  with respect 

to the vector field = dX x
dx  yields:

, = 0 = = .i j
d and k with k i j
dx

γ ν λ µ− − +

So, we see that the corresponding operator can be expressed as (5).

Proposition 4.3: There exist aff(1)-invariant trilinear differential 
operators , , :k kKτ λ µ

τ λ µ τ λ µ+ + +⊗ ⊗ →     given by:

, , ( ) ( ) ( )
, ,

=
( , , ) = .i j l

k i j l
i j l k

Kτ λ µ ϕ φ ψ γ ϕ φ ψ
+ +
∑ 		                 (6)

where i+j+l=k and the coefficients γi,j,l are constants.

If τ, λ and µ are generic, then the space of solutions is 1 ( 1)( 2)
2

k k+ +
-dimensional.

Proposition 4.4: There exist aff(1)-invariant trilinear differential 

operators , 1
1: Vect( )k kK λ µ

λ µ λ µ+ + −⊗ ⊗ →     that vanishe on 
aff(1) given by:

, ( ) ( ) ( )
, ,

=
( , , ) = .i j l

k i j l
i j l k

K X Xλ µ φ ψ γ φ ψ
+ +
∑ 		                (7)

where i+j+l=k and the coefficients γi,j,l are constants but γ0,j,k−j=γ1,j,k−

j−1=0. Moreover, the space of solutions is 1 ( 1)
2

k k − -dimensional, for 
all λ and µ.

Proof of Proposition 4.3 and 4.4: We are going to prove 
Proposition 4.3 and 4.4 simultaneously. Any differential operator 

, , :k kKτ λ µ
τ λ µ τ λ µ+ + +⊗ ⊗ →     is of the form

, , ( ) ( ) ( )
, ,

=
( , , ) = .i j l

k i j l
i j l k

Kτ λ µ ϕ φ ψ γ ϕ φ ψ
+ +
∑ 		               (8)

where γi,j,l are functions. The aff(1) -invariant property of the operators 
, ,

kKτ λ µ  reads as follows.

, , , , , , , ,( , , ,) = ( , , ) ( , , ) ( , , ).X k k X k X k XL K K L K L K Lν τ λ µ τ λ µ τ τ λ µ λ τ λ µ µφ ϕ ψ φ ϕ ψ φ ϕ ψ φ ϕ ψ+ +  (9)

The invariant property with respect to the vector field = dX
dx

 
implies that , , = 0i j lγ ′ . On the other hand, the invariant property 
with respect to the vector fields = dX x

dx
 implies that v=τ+λ+µ+k. If 

τ, λ and µ are generic, then the space of solutions is 1 ( 1)( 2)
2

k k+ +
-dimensional, spanned by

0,0, 0,1, 1 0, ,0

1,0, 1 1,1, 2 1, 1,0

1,0,1 1,1,0

,0,0

, , , ,
, , , ,

            
, ,

.

k k k

k k k

k k

k

γ γ γ
γ γ γ

γ γ
γ

−

− − −

− −







			                 (10)

Now, the proof of Proposition 4.4 follows as above by putting τ−1. 
In this case, the space of solutions is 1 ( 1)

2
k k − -dimensional, spanned by

2,0, 2 2,1, 3 2, 2,0

3,0, 3 3,1, 4 3, 3,0

1,0,1 1,1,0

,0,0

, , , ,
, , , ,

            
, ,

.

k k k

k k k

k k

k

γ γ γ
γ γ γ

γ γ
γ

− − −

− − −

− −







	               (11)

Cohomology of Vect(1) acting on λ,µ;v

In this section, we will compute the first cohomology group of 
Vect(1) with values in λ,µ;v, vanishing on aff(1). Our main result 
is the following:

Theorem 5.1

(i) For v−µ−λ≤11, the space 1 1
diff , ;H (Vect( ), (1); )λ µ ν aff   has the 

following structure:

(1) If v−µ−λ=1, then

1 1
diff , ;

if   0.2 ( , ) = (0,0),
H (Vect( ), (1); )

0   .
cm

otherwiseλ µ ν

λ µ




 aff  

   (12)

(2) If v−µ−λ=2, then

1 1
diff , ;

1 10.2 if   ( , ) {(0,0), (0, ), ( ,0)},0.2
H (Vect( ), (1); ) 2 2

0   .

cm cm

otherwise
λ µ ν

λ µ ∈ − −




 aff  

   (13)

(3) If v−µ−λ=3, then
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1 1
diff , ;

1(0, 1), ( 1,0), (0, ),
30.2 if   ( , ) ,0.2

H (Vect( ), (1); ) 1 1 1( ,0), ( , )
3 2 2

0   .

cm cm

otherwise

λ µ ν

λ µ

  − − −    ∈  
  − − −   




 aff   (14)

 (4) If v−µ−λ=4, then

1 1
diff , ;

2 2 3 3( ,0), (0, ), ( ,0), (0, ),
3 3 2 20.2 if   ( , ) ,

H (Vect( ), (1); ) 1 1 1 1( , 1), ( 1, ), ( , )
2 2 3 3

0   .

cm

otherwise

λ µ ν

λ µ

  − − − −    ∈  
  − − − − − −   




 aff  

  (15)

(5) If v−µ−λ=5, then

1 1
diff , ;

( 2,0), (0, 2), ( 1,0), (0, 1),
2 1 1 20.2 if   ( , ) ( 1, 1), ( , ), ( , ), ,

H (Vect( ), (1); ) 3 3 3 3
3 1( , )
2 2

0   .

cm

otherwise

λ µ ν

λ µ

  
  − − − −
  

  ∈ − − − − − −  
  
  

− −   



 aff  

(16)

(6) If v−µ−λ=6, then

1 1
diff , ;

1 1 3 2 2( , ), (0, ), ( , ),
2 4 4 3 3
1 4 50.2 if   ( , ) ( , 1), (0, ), ( ,0), ,

H (Vect( ), (1); ) 3 3 2
1 3 1( 2, ), ( , 1), ( , 2)
2 2 2

0   .

cm

otherwise

λ µ ν

λ µ

  − − − − −  
  

  ∈ − − − −  
  
  

− − − − − −   



 aff     (17)

(7) If v−µ−λ=7, then

1 1
diff , ;

1 1(0,0), ( ,0), (0, ),
7 7

3 30.2 if   ( , ) ( ,0), (0, ), (0, 1), ,
H (Vect( ), (1); ) 5 5

1 5( 2, 1), ( , ), (0, 3)
2 2

0   .

cm

otherwise

λ µ ν

λ µ

  − −  
  

  ∈ − − −  
  
  

− − − − −   



 aff  

  (18)

(8) If v−µ−λ=8, then

1 1
diff , ;

1 2(0,0), (0, ), ( ,0),
8 7

2 1 10.2 if   ( , ) (0, ), ( ,0), (0, ), ,
H (Vect( ), (1); ) 7 2 2

3 1 7( , ), (0, 2), (0, )
5 5 2

0   .

cm

otherwise

λ µ ν

λ µ

  − −  
  

  ∈ − − −  
  
  

− − − −   



 aff  

   (19)

(9) If v−µ−λ=9, then

1 1
diff , ;

1 1(0,0), (0, ), ( ,0),
9 4

2 2 3 20.2 if   ( , ) ( ,0), (0, ), ( , ), ,
H (Vect( ), (1); ) 3 3 5 5

7(0, ), (0, 4)
3

0   .

cm

otherwise

λ µ ν

λ µ

  − −  
  

  ∈ − − − −  
  
  

− −   



 aff  

   (20)

(10) If v−µ−λ=10, then

1 1
diff , ;

1 2(0,0), (0, ), ( ,0),
10 9

5 5 3 30.2 if   ( , ) ( ,0), (0, ), ( , ), ,
H (Vect( ), (1); ) 6 6 5 5

8 9(0, ), (0, )
3 2

0   .

cm

otherwise

λ µ ν

λ µ

  − −  
  

  ∈ − − − −  
  
  

− −   



 aff  

   (21)

(11) If v−µ−λ=11, then

1 1
diff , ;

1 1(0,0), (0, ), (0, ),
11 5

1 5 70.2 if   ( , ) (0, ), (0, ), ( ,0), ,
H (Vect( ), (1); ) 3 7 5

7 1 9(0, ), ( , )
5 2 2

0   .

cm

otherwise

λ µ ν

λ µ

  − −  
  

  ∈ − − −  
  
  

− − −   



 aff  

  (22)

(ii) If v−µ−λ is semi-integer but λ and µ are generic then,

1 1
diff , ;H (Vect( ), (1); ) = 0.λ µ ν aff 

Proof of Theorem 5.1: To proof Theorem (5.1) we proceed bye 
following the three steps:

• We will investigate the dimension of the space of operators that 
satisfy the 1-cocycle condition. By Proposition (4.4), its dimension is at 

most 1 ( 1)
2

k k − , where k=v−µ−λ+1, since any 1-cocycle that vanishes 

on aff(1) is certainly aff(1)-invariant.

• We will study all trivial 1-cocycles, namely, operators of the form

LXB,

where B is a bilinear operator. As our 1-cocycles vanish on the 
Lie algebra aff(1), it follows that the operator B coincides with the 
transvectant ,

kJ λ µ .

• By taking into account Part 1 and Part 2 and depending on λ and 
µ the dimension of the cohomology group 1 1

diff , ;H (Vect( ), (1); )λ µ ν aff   
will be equal to

( ) ( ),1  .X kdim operators that are cocycles dim operators of the form L J λ µ− −

Now, clearly the coboundary ,
X kL J λ µ  has the following form:

, ( ) ( ) ( )
, ,

= 1
( , , ) = ,i j l

X k i j l
i j l k

L J X Xλ µ φ ψ β φ ψ
+ + +
∑ 		                  (23)

where

β0,j,l=β1,j,l=0.

The following Lemma is proved directly which will be useful in the 
proof of Theorem 5.1.

Lemma 5.2

For λ,µ∈

( ) ( )1 1
, , 1 1 1, 1 1 ,= ( ) ( ) ( ) ( ) ,k k

k k k
α β α β β β

α β α β α α α β α β α α β ββ λ γ µ γ+ − + − − −
− − + − + − − − + − −− + − +

where α≥2 and β≥0.

We need also the following Lemma.

Lemma 5.3

Every 1-cocycle on Vect(1) with values in λ,µ;v) is differentiable

Proof [7].

Now we are in position to prove Theorem (5.1). By Lemma (5.3), 
any 1-cocycle on Vect(1) should retains the following general form:

( ) ( ) ( )
, ,

=
( , , ) = ,i j l

i j l
i j l k

C X c Xφ ψ φ ψ
+ +
∑ 			                (24)

where ci,j,l are constants. The fact that this 1-cocycle vanishes on aff(1) 
implies that

c0,j,l=c1,j,l=0.

The 1-cocycle condition reads as follows: for all φ∈λ, for all ψ∈µ 
and for all X∈ Vect(1), one has

, ; , ;([ , ], , ) ( , , ) ( , , ) = 0.X Yc X Y L B Y L B Xλ µ ν λ µ νφ ψ φ ψ φ ψ− +

The case where v−µ−λ=1: In this case, according to Proposition 
4.4, the 1-cocycle (24) can be expressed as follows:

'
2,0,0( , , ) = .X c Xφ ψ φψ′ϒ

By a direct computation, we can see that the 1-cocycle condition 
is always satisfied. Let us study the triviality of this 1-cocycle. A direct 
computation proves that
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, ' '
1 2,0,0 1,0 0,1= = ( ) .XL J X Xλ µ β φψ λγ µγ φψ′ ′− +

So, for(λ,µ)=(0,0), the coeffcient c2,0,0 cannot be eliminated by adding 
a coboundary. Hence, the cohomology space is one-dimensional. While 
for (λ,µ)≠(0,0), we can see that the coeffcient c2,0,0 can be eliminated 
because β2,0,0≠0. Hence, the cohomology is zero-dimensional.

The case where v−µ−λ=2:  In this case, according to Proposition 
4.4, the 1-cocycle (24) can be expressed as follows:

' ' '
3,0,0 2,1,0 2,0,1( , , ) = .X c X c X c Xφ ψ φψ φψ φψ′′ ′ ′′ ′ϒ + +

By a direct computation, we can see that the 1-cocycle condition 
is always satisfied. Let us study the triviality of this 1-cocycle. A direct 
computation proves that

, ' ' '
2 3,0,0 2,1,0 2,0,1= .XL J X X Xλ µ β φψ β φ ψ β φψ′′ ′ ′′ ′+ +

where
3,0,0 2,0 0,2 2,1,0 2,0 1,1 2,0,1 1,1 0,2= ;  = (2 1)   = (2 1) .andβ λγ µγ β λ γ µγ β λγ µ γ− − − + − − − +

So, for 1 1( , ) = (0,0),( ,0),(0, )
2 2

λ µ − − , the cohomology space 

is one-dimensional, since only one of the coefficients c3,0,0, c2,1,0 
or c2,0,1 cannot be eliminated by adding a coboundary. While for 

1 1( , ) (0,0), ( ,0), (0, )
2 2

λ µ ≠ − − , the coeffcient c3,0,0, c2,1,0 and c2,0,1 can 

be eliminated because β3,0,0, β2,1,0 and β2,0,1 are nonzero. Hence, the 
cohomology space is zero-dimensional.

The case where v−µ−λ≥3: In this case, the 1-cocycle condition is 
equivalent to the system:

1, , , 1,

, 1, , , 1

1 1 1 1
1 1

1 1 1 1
1 1

1 1

a a

a a

c c

a a
c c

a a

α β γ β α γ

α β γ β γ α

α β α β α γ α γ
λ

α α α α

β γ β γ α α
λ µ

β β α α

β β
λ

β β

+ − + −

+ − + −

 + − + −   + − + −        
− + +          − −          

 + − + −   + − + −        
− + + +          − −          

+ − + − 
− +  − 

, , 1 = 0,
1 acα γ β+ −

  
  

  

  (25)

where α+β+γ+a=k+1, α>β≥2, α>γ and α>a, obtained from the 
coefficient of X(α)Y(β)(γ)(a).

This system can be deduced by a simple computation. Of course, 
such a system has at least one solution in which the solutions ci,j,l are 
just the coefficients βi,j,l of the coboundaries (23).

The case where v−µ−λ=3:  In this case, according to Proposition 
4.4, the space of solutions is spanned by:

c4,0,0, c3,1,0, c3,0,1, c2,2,0, c2,1,1, c2,0,2.

Moreover, by formula (25), we readily obtain:

−2c2,0,0+λc2,0,0λc2,0,0+µc2,0,0−µc2,0,0=0.

Thus, we have just proved that the coefficients of every 1-cocycle is 
expressed in terms of

c3,1,0, c3,0,1, c2,2,0, c2,1,1, c2,0,2.

A direct computation proves that
, ' 4 ' ' (4) ' '

3 2,1,1 2,2,0 2,0,2

(4) ' (4) '
3,1,0 3,0,1

= ( ) ( )
2 2

( ) ( ).
2 2

XL J X X X X X

X X X X

λ µ λ µβ φ ψ β φψ φ ψ β φψ φψ

λ µβ φψ φ ψ β φψ φψ

′ ′ ′ ′ ′

′′ ′′

′ ′ + + + +

′ ′+ − + + − +

where

3,1,0 3,0 1,2 3,0,1 2,1 0,3

2,2,0 3,0 2,1 2,0,2 1,2 0,3

2,1,1 2,1 1,2

= (3 1) , = (3 1) ,
= 3( 1) , = 3( 1) ,
= (2 1) (2 1) .

β λ γ µγ β λγ µ γ
β λ γ µγ β λγ µ γ
β λ γ µ γ

− + − − − +
− + − − − +
− + − +

So, for 1 1 1 1( , ) = ( ,0), (0, ), ( 1,0), (0, 1), ( , )
3 3 2 2

λ µ − − − − − − , the cohomology 

space is one-dimensional, since only one of the coefficients c3,1,0, 
c3,0,1, c2,2,0, c2,1,1 or c2,0,2 cannot be eliminated by adding a coboundary. 

While for 1 1 1 1( , ) ( ,0), (0, ), ( 1,0), (0, 1), ( , )
3 3 2 2

λ µ ≠ − − − − − − , the coeffcient 

c3,1,0, c3,0,1, c2,2,0, c2,1,1 and c2,0,2 can be eliminated because β3,1,0, β3,0,1, β2,2,0, 
β2,1,1 and β2,0,2 are nonzero. Hence, the cohomology space is zero-
dimensional.

The case where v−µ−λ=4: In this case, according to Proposition 
4.4, the space of solutions is spanned by:

5,0,0 4,1,0 4,0,1 3,2,0 3,1,1 3,0,2 2,3,0 2,2,1 2,1,2 2,0,3, , , , , , , , , .c c c c c c c c c c

Moreover, by formula (25), we readily obtain:

4,1,0 2,3,0 3,2,0 2,1,2 3,1,1

4,0,1 2,2,1 3,1,1 2,0,3 3,0,2

5,0,0 2,3,0 4,1,0 2,0,3 4,0,1

2 (3 1) (2 1) = 0,
2 (3 1) (2 1) = 0,
5 = 0.

c c c c c
c c c c c
c c c c c

λ λ µ µ
λ λ µ µ
λ λ µ µ

− + + − + + −
− + − + + − +
− + − + −

Thus, we have just proved that the coefficients of every 1-cocycle is 
expressed in terms of

3,2,0 3,1,1 3,0,2 2,3,0 2,2,1 2,1,2 2,0,3, , , , , , .c c c c c c c
A direct computation confirms that, the coefficients of ,

4XL J λ µ  are 
expressed in terms of:

2,2,1 3,1 2,2 2,1,2 2,2 1,3

3,2,0 4,0 2,2 3,0,2 2,2 0,4

2,3,0 4,0 3,1 2,0,3 1,3 0,4

3,1,1 3,1 1,3

= 3( 1) (2 1) , = (2 1) 3( 1) ,
= 2(3 2) , = 2(3 2) ,
= 2(2 3) , = 2(2 3) ,
= (3 1) (3 1) .

β λ γ µ γ β λ γ µ γ
β λ γ µγ β λγ µ γ
β λ γ µγ β λγ µ γ
β λ γ µ γ

− + − + − + − +
− + − − − +
− + − − − +
− + − +

So, for 2 2 3 3 1 1 1 1( , ) = ( ,0), (0, ), ( ,0), (0, ), ( , 1), ( 1, ), ( , ),
3 3 2 2 2 2 3 3

λ µ − − − − − − − − − −  

the cohomology space is one-dimensional, since only one of 
the coefficients 3,2,0 3,1,1 3,0,2 2,3,0 2,2,1 2,1,2 2,0,3, , , , , orc c c c c c c  

cannot be eliminated by adding a coboundary. While for 
2 2 3( , ) ( ,0), (0, ), ( ,0),
3 3 2

λ µ ≠ − − −  3 1 1 1 1(0, ), ( , 1), ( 1, ), ( , )
2 2 2 3 3

− − − − − − − , the coeffcient 

3,2,0 3,1,1 3,0,2 2,3,0 2,2,1 2,1,2 2,0,3, , , , , andc c c c c c c  can be eliminated because 

3,2,0 3,1,1 3,0,2 2,3,0 2,2,1 2,1,2 2,0,3, , , , ,  d anβ β β β β β β  are nonzero. Hence, the 
cohomology space is zero-dimensional.

The case where v−µ−λ=5: In this case, according to Proposition 
4.4, the space of solutions is spanned by:

6,0,0 5,1,0 5,0,1 4,2,0 4,1,1 4,0,2 3,3,0 3,2,1

3,1,2 3,0,3 2,4,0 2,3,1 2,2,2 2,1,3 2,0,4

, , , , , , , ,
, , , , , , .

c c c c c c c c
c c c c c c c

Moreover, by formula (25), we readily obtain:

4,1,1 2,3,1 3,2,1 2,1,3 3,1,2

5,1,0 2,4,0 4,2,0 2,1,3 4,1,1

5,0,1 2,3,1 4,1,1 2,0,4 4,0,2

4,2,0 2,4,0 3

2 (3 1) (2 1) (3 1) (2 1) = 0,
5 (4 1) (2 1) = 0,
5 (4 1) (2 1) = 0,
2 2(3 2) 3( 1)

c c c c c
c c c c c
c c c c c
c c c

λ λ µ µ
λ λ µ µ

λ λ µ µ
λ λ

− + + − + + + − +
− + + − + + −
− + − + + − +
− + + − + ,3,0 2,2,2 3,2,1

4,0,2 2,2,2 3,1,2 2,0,4 3,0,3

6,0,0 2,4,0 5,1,0 2,0,4 5,0,1

6,0,0 3,3,0 4,2,0 3,0,3 4,0,2

= 0,
2 2(3 2) 3( 1) = 0,
9 = 0,
5 = 0.

c c
c c c c c
c c c c c
c c c c c

µ µ
λ λ µ µ
λ λ µ µ
λ λ µ µ

+ −
− + − + + − +
− + − + −
− + − + −
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Thus, we have just proved that the coefficients of every 1-cocycle is 
expressed in terms of

2,4,0 2,0,4 3,3,0 3,0,3 3,2,1 3,1,2 2,3,1 2,2,2, , , , , , , .c c c c c c c c
A direct computation confirms that, the coefficients of ,

5XL J λ µ  are 
expressed in terms of:

3,2,1 4,1 2,3 3,1,2 3,2 1,4

2,3,1 4,1 3,2 2,2,2 3,2 2,3

3,3,0 5,0 3,2 3,0,3 2,3 0,5

2,4,0 5,0 4,1

= 2(3 2) (3 1) , = (3 1) 2(3 2) ,
= 2(2 3) (2 1) , = 3( 1) 3( 1) ,
= 10( 1) , = 10( 1) ,
= 5( 2) ,

β λ γ µ γ β λ γ µ γ
β λ γ µ γ β λ γ µ γ
β λ γ µγ β λγ µ γ
β λ γ µγ

− + − + − + − +
− + − + − + − +
− + − − − +
− + − 2,0,4 1,4 0,5= 5( 2) .β λγ µ γ− − +

So, for 2 1 1 2 3 1( , ) = ( , ), ( , ), ( , ), ( 1, 1), ( 1,0), (0, 1), ( 2,0), (0, 2),
3 3 3 3 2 2

λ µ − − − − − − − − − − − −  

the cohomology space is one-dimensional, since only one of the 

coefficients 2,4,0 2,0,4 3,3,0 3,0,3 3,2,1 3,1,2 2,3,1 2,2,2, , , , , , or c c c c c c c c  

cannot be eliminated by adding a coboundary. While for 
2 1 1 2 3 1( , ) ( , ), ( , ), ( , ), ( 1, 1), ( 1,0), (0, 1), ( 2,0), (0, 2)
3 3 3 3 2 2

λ µ ≠ − − − − − − − − − − − − , 

the coeffcient 2,4,0 2,0,4 3,3,0 3,0,3 3,2,1 3,1,2 2,3,1 2,2,2, , , , , , and c c c c c c c c  can be 

eliminated because 2,4,0 2,0,4 3,3,0 3,0,3 3,2,1 3,1,2 2,3,1 2,2,2, , , , , , andβ β β β β β β β  
are nonzero. Hence, the cohomology space is zero-dimensional.

The case where v−µ−λ=6:  In this case, according to Proposition 
4.4 together with formulas (25), we check that the coefficients of every 
1-cocycle are expressed in terms of

4,2,1 4,0,3 3,2,2 3,1,3 3,0,4 2,5,0 2,4,1 2,3,2 2,1,4, , , , , , , , .c c c c c c c c c

A direct computation confirms that, the coefficients of ,
6XL J λ µ  are 

expressed in terms of:

4,2,1 4,0,3 3,2,2 3,1,3 3,0,4 2,5,0 2,4,1 2,3,2 2,1,4, , , , , , , , .β β β β β β β β β
So, in the same way as before, by Lemma 5.2, we can see, with the 

help of the maple, that the cohomology space is given as in (17).

The case where v−µ−λ=7:  In this case, according to Proposition 
4.4 together with formulas (25), we check that the coefficients of every 
1-cocycle are expressed in terms of

8,0,0 7,1,0 7,0,1 5,3,0 5,0,3 4,0,4 2,4,2 2,1,5 2,0,6, , , , , , , , .c c c c c c c c c

A direct computation confirms that, the coefficients of ,
7XL J λ µ  are 

expressed in terms of:

8,0,0 7,1,0 7,0,1 5,3,0 5,0,3 4,0,4 2,4,2 2,1,5 2,0,6, , , , , , , , .β β β β β β β β β

So, in the same way as before, by Lemma 5.2, we can see, with the 
help of the maple, that the cohomology space is given as in (18).

The case where v−µ−λ=8:  In this case, according to Proposition 
4.4 together with formulas (25), we check that the coefficients of every 
1-cocycle are expressed in terms of:

9,0,0 8,0,1 7,2,0 7,0,2 6,3,0 6,0,3 5,3,1 3,0,6 2,0,7, , , , , , , , .c c c c c c c c c

A direct computation confirms that, the coefficients of ,
8XL J λ µ  are 

expressed in terms of:

9,0,0 8,0,1 7,2,0 7,0,2 6,3,0 6,0,3 5,3,1 3,0,6 2,0,7, , , , , , , , .β β β β β β β β β

So, in the same way as before, by Lemma 5.2, we can see, with the 
help of the maple, that the cohomology space is given as in (19).

The case where v−µ−λ=9:  In this case, according to Proposition 
4.4 together with formulas (25), we check that the coefficients of every 
1-cocycle are expressed in terms of

10,0,0 9,0,1 8,2,0 6,4,0 6,0,4 5,3,2 3,0,7 2,0,8, , , , , , , .c c c c c c c c

A direct computation confirms that, the coefficients of ,
9XL J λ µ  are 

expressed in terms of:

10,0,0 9,0,1 8,2,0 6,4,0 6,0,4 5,3,2 3,0,7 2,0,8, , , , , , , .β β β β β β β β

So, in the same way as before, by Lemma 5.2, we can see, with the 
help of the maple, that the cohomology space is given as in (20).

The case where v−µ−λ=9:  In this case, according to Proposition 
4.4 together with formulas (25), we check that the coefficients of every 
1-cocycle are expressed in terms of

11,0,0 10,0,1 9,2,0 6,5,0 6,0,5 5,3,3 3,0,8 2,0,9, , , , , , , .c c c c c c c c
A direct computation confirms that, the coefficients of ,

10XL J λ µ  are 
expressed in terms of:

11,0,0 10,0,1 9,2,0 6,5,0 6,0,5 5,3,3 3,0,8 2,0,9, , , , , , , .β β β β β β β β

So, in the same way as before, by Lemma 5.2, we can see, with the 
help of the maple, that the cohomology space is given as in (21).

The case where v−µ−λ=11:  In this case, according to Proposition 
4.4 together with formulas (25), we check that the coefficients of every 
1-cocycle are expressed in terms of

12,0,0 11,0,1 10,0,2 9,0,3 7,0,5 5,7,0 5,0,7 2,1,9, , , , , , , .c c c c c c c c

A direct computation confirms that, the coefficients of ,
11XL J λ µ  are 

expressed in terms of:

12,0,0 11,0,1 10,0,2 9,0,3 7,0,5 5,7,0 5,0,7 2,1,9, , , , , , , .β β β β β β β β

So, in the same way as before, by Lemma 5.2, we can see, with the 
help of the maple, that the cohomology space is given as in (22). This 
completes the proof.

Conjecture 5.1

Forv−µ−λ∈+12, λ and µ are generic, one hase
1 1
diff , ;H (Vect( ), (1); ) = 0.λ µ ν aff 

Conclusion
In this paper, we classify aff(1) -invariant linear differential 

operators from Vect(1) to ,µ;v vanishing on aff(1), where 
,µ;v≔Homdiff(λ⊗;v) is the space of bilinear differential operators 
acting on weighted densities. This result allows us to compute the first 
differential aff(1)-relative cohomology of Vect(1) with coefficients 
in λ,µ;v.
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