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Introduction
In this paper, we are concerned with the oscillatory behavior of 

solutions of third order differential equations of the type

( ) ( )=1 0( ) ( ) , ( ( )) = 0, ,
'

'' m
i i ia t z t f t x t t t

γ
σ  + ≥                   (1)

where =1( ) = ( ) ( ) ( ( ))n
j j jz t x t p t x tτ+ , m,n are positive integers, 0 > 0t  and 

( )a t , ( )jp t , ( )j tτ , ( )0( ) [ , )i t C tσ ∈ ∞ , = 1,2,...,i m , = 1,2,....,j n .

In the sequel, we assume the following conditions:

1. ( )a t , ( )jp t , ( )j tτ , ( )i tσ  are positive functions, 1γ ≥  is a 
quotient of odd positive integers;

2. ( )j t tτ ≤ , ( ) =lim j
t

tτ
→∞

∞ , ( ) =lim i
t

tσ
→∞

∞ , 00 ( )j jp t p≤ ≤  and 

=1 0 < 1n
j jp , = 1,2,..,j n , = 1,2,..,j n ;

3. ( ) ( )0, [ , ) ,if t u C t∈ ∞ ×   satisfies ( ), > 0iuf t u  for all 0u ≠  
and there exist positive continuous functions ( )iq t  defined on 0[ , )t ∞
such that ( , ) ( )i if t u q t u γ≥ , = 1,2,...,i m .

The study of the oscillatory behavior of solutions of third-order 
differential equations has recieved great interest in the last few decades. 
One of the reasons for that is because in the real life, during the study 
of some physical phenomena, the qualitative behavior of solutions of 
third-order differential equations can be succesfully used to predict 
dynamic behavior of solutions of third-order partial differential 
equations.

Following this trend we are concerned in this paper with the 
oscillatory behavior of the third-order neutral differential equation (E).

By a solution of (E), we mean a function ( )[ , ),xx C T∈ ∞  , 0xT t≥ , 
which has the properities ( )2 [ , ),xz C T R∈ ∞ , ( )1( ) ( ) [ , ),''

xa t z t C T R
γ

  ∈ ∞   and 
satisfies (E) on [ , )xT ∞ . In this paper, we consider only those solutions x 
of (E) which satisfy { }sup ( ) : > 0x t t T≥  for all xT T≥ . A solution of (E) is 
called oscillatory if it has arbitrarily large zeros on [ , )xT ∞ ; otherwise it 
is called nonoscillatory.

Recently, increasing attention has been devoted to the oscillation 
of differential equations of the form (E) and some of its exceptions; 
have been the subject of intensive researchs see for example the papers 
[1-13] and references cited in. In particular, we mention here the paper 
of Grace et al. [5] which studied the oscillation of the third order delay 
differential equation.

( ) ( ) 0( ) ( ) ( ) ( ( )) = 0, ,
'

''a t x t q t f x t t t
γ

τ  + ≥                 (1.1)

By comparing with the first order delay equation, where in their 

comparison principle it is always required that ( ) <t tτ . More recently, 
Baculková and Džurina [3] improved their results for the case when

1

0
( ) = .t a t dtγ

−
∞ ∞             (1.2)

While the same authors, Baculková and Džurina [2] discussed the 
oscillation behavior of eqn. (1.1) in the case when

1

0
( ) < .t a t dtγ

−
∞ ∞                (1.3)

Zhong et al. [13] adapted Grace et al.’s method and extended some 
of their results to the neutral differential equation

( ) ( )( ) ( ) ( ) ( ( )) ( ) ( ( )) = 0.
'

''a t x t p t x t q t f x t
γ

σ τ  + +   
However, the results [13] cannot be applied when

1

0
( ) < and ( ) .t a t dt t tγ τ

−
∞ ∞ ≥

In this paper are cocerned with this gap for the more general 
equation (E) by applying a technique similar to that given by those of 
refs. [8] and [10].

Preliminaries
Lemma 1

Let x(t) be a positive solution of eqns. (E) and (1.2) holds. Then 
there are only one of the following two cases:

( )( ) ( ) > 0, ( ) > 0, ( ) > 0and ( ) ( ) < 0;
'

' '' ''I z t z t z t a t z t
γ

  

( )( ) ( ) > 0, ( ) < 0, ( ) > 0and ( ) ( ) < 0,
'

' '' ''II z t z t z t a t z t
γ

  
for 1t t≥ , where 1 0t t≥  is sufficiently large. 

Proof: The proof is similar to the proof of Lemma 1 [1] and so it 
is omitted.
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Lemma 2
Let x(t) be a positive solution of (E). Suppose further that (1.2) 

holds and the corresponding z(t) satisfies case (II) in Lemma 1. If

0
=1

1 ( ) = ,
( )

m

t v i
i u

q s ds dudv
a u

γ∞
∞ ∞

 
∞ 

  
∑

                  (2)

then ( ) = 0lim
t

x t
→∞

. 

Proof: Assume that x(t) is a positive solution of (E). It is clear that 
there exists a finite limit, say ( ) = 0lim

t
z t l

→∞
≥ . We claim that l=0. If not, 

then for any > 0ε , there exists a 1 0t t≥  such that < ( ) <l z t l ε+ . By 

choosing 
0 0

=1 =1
0 < < (1 ) /

n n

j j
j j

l p pε −∑ ∑ , we get

=1
( ) = ( ) ( ) ( ( ))

n

j j
j

x t z t p t x tτ−∑

=1
> ( ) ( ( ))

n

j j
j

l p t z tτ−∑

0
=1

> ( ) = ( ) > ( )
n

j
j

l p l N l Nz tε ε− + +∑               (2.1)

where 0
=1

= ( ( )) / ( )
n

j
j

N l p l lε ε− + +∑ . This with (E) in view of (A3) leads to

( ) ( )=10 = ( ) ( ) , ( ( ))
'

'' m
i i ia t z t f t x t

γ
σ  +                                   (2.2)

( ) ( )=1( ) ( ) ( ( ))
'

'' m
i i ia t z t N q t z t

γ γ σ ≥ +                                   (2.3)

Integrating from t to ∞  and using the fact that ( ) >z t l , we obtain

( )
=1

0 ( ) ( ) ( ) .
m

''
i

i t

a t z t Nl q s ds
γ γ

∞

 ≥ − +  ∑∫
i.e.,

( )
1

=1

1( ) ( ) .
( )

m
''

i
i t

z t Nl q s ds
a t

γ∞ 
≥  

 
∑∫                    (2.4)

Again by integrating eqn. (2.4) from t to ∞ , we get
1

=1

1( ) ( ) .
( )

m
'

i
it u

z t Nl q s ds du
a u

γ∞ ∞ 
− ≥  

 
∑∫ ∫                  (2.5)

Integrating eqn. (2.5) from t1 ( 1 0t t≥ ) to ∞ , it follows that
1

1

=1
1

( ) 1 ( ) .
( )

m

i
it v u

z t q s ds dudv
Nl a u

γ∞∞ ∞ 
≥  

 
∑∫∫ ∫

This contradicts eqn. (2.1). Hence l=0. But since 0 ( ) ( )x t z t≤ ≤ , 
then ( ) = ( ) = 0lim lim

t t
z t x t

→∞ →∞
. This completes the proof.

Now we outline the following two lemmas [1].

Lemma 3

Assume that ( ) > 0u t , ( ) > 0'u t  and ( ) 0''u t ≤ , for 0t t≥ . If 

( )0[ , ),(0, )C tσ ∈ ∞ ∞ , ( )t tσ ≤  and ( ) =lim
t

tσ
→∞

∞ , 

Proof: Then for every, there exists a 0T tα ≥  such that 
( ( )) / ( ) ( ) /u t t u t tσ σ α≥  for t Tα≥ .

Lemma 4

Assume that ( ) > 0u t , ( ) > 0'u t , and ( ) 0'''u t ≤ , for 0t t≥ . Then 
for each (0,1)β ∈ , there exists a 0T tβ ≥  such that ( ) ( ) / 2'u t tu tβ≥  
for t Tβ≥ . 

Further, we give the following auxiliary result which is extracted 
from those [6]and [7].

Lemma 5
Let 1γ ≥  be a ratio of two odd positive numbers. Then,

( ) [ ]
1

1 11 1 ( 1) ,forall 0BA A B A B AB
γ

γ γ γ
γ

+ +− − ≤ + − ≥                 (2.6)

and
1 1 11 11 1 ,forany , 0.C CD D C Dγ γ γγ

γ γ

+ ++ −
− ≥ ≥                (2.7)

Main Results
In this section, we establish new oscillation criteria for eqn. (E) 

by using a generalized Riccati transformation and integral averaging 
technique of Philos-type [12]. Let

( ){ } ( ){ }0 0 0= , : and = , : > .D t s t s t D t s t s t≥ ≥ ≥                     (3)

A function ( )1 ,H C D∈   is said to belong to the class X γ  if

1. ( , ) = 0H t t  and ( , ) > 0H t s  for all 0( , )t s D∈ ;

2. H has a nonpositive continuous partial derivative /H s∂ ∂  
on D0 with respect to the second variable and there exist functions 

( )1
0[ , ),(0, )C tρ ∈ ∞ ∞ , ( )1

0[ , ),(0, )C tϕ ∈ ∞ ∞  and ( )0 ,h C D∈   such 

that

( )
1

1
( , ) ( ) ( 1) ( ) ( , ) = ( , ) ( , ) .

( )

'H t s s s H t s h t s H t s
s s

γ
γ γ

ρ γ ϕ
ρ

+
 ∂

+ + + − 
∂   

 (3.1)

Note that for = 1γ . X γ  reduces to the class of functions X used 
[8]. For = 1ρ  and = 0ϕ , X γ  reduces to the class of functions Wγ  
used [9].

Theorem 6
Suppose that the conditions (A1)-(A3) hold, ( )i t tσ ≤ , for 

= 1,2,...,i m , eqn. (1.2) and (2.1) be satisfied. Assume further that

( )
( )

1

1
0 0

( , ) ( ) ( )1sup ( , ) ( ) =lim
( , ) 1

t

t t

h t s a s s
H t s G s ds

H t t

γ

γ

ρ

γ

+
−

+
→∞

 
− ∞ 

+  
∫ (3.2)

holds for some (0,1)c∈  and for some H X γ∈ , where
12

=1 0
=1

1 ( ( ))( ) = ( ) (1 ) ( ) ( ) ( ) ( ( ) ( ))
2

m
n 'i
j j i

i

tG t t c p q t a t t a t t
t

γγ γ
γσρ ϕ ϕ
+    − + −  

    
 (3.3)

and { }( , ) = max 0, ( , ) .h t s h t s− −                 (3.4)

Then every solution x of (E) is either oscillatory or satisfies 
( ) = 0lim

t
x t

→∞
. 

Proof: Assume that x(t) is a non-oscillatory solution of eqn. (E). 
Without loss of generality, we may assume that x(t) is eventually 
positive. Then, there exists a 1 0t t≥  such that ( ) > 0x t , ( ( )) > 0jx tτ  
and ( ( )) > 0ix tσ  for 1t t≥  and = 1,2,..,i m , = 1,2,..,j n . By Lemma 
1, it follows that z satisfies either (I) or (II) for 2t t≥ , where 2 1t t≥  is 
large enough. We consider each of the two cases separately. Assume 
first that case (I) holds. Hence since ( ) > 0'z t , we have
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=1( ) = ( ) ( ) ( ( ))n
j j jx t z t p t x tτ−

=1 0 =1 0( ) ( ) = ( )(1 )n n
j j j jz t p z t z t p≥ − −                (3.5)

In view of (E), we have

( ) ( ) ( )=1 =1( ) ( ) = , ( ( )) ( ( ))
'

'' m m
i i i i i ia t z t f t x t q t x t

γ γσ σ  − ≤ − 

( )=1 0 =1(1 ) ( ( ))n m
j j i i ip q t z tγ γ σ≤ − −                (3.6)

Now, consider a generalized Riccati substitution of the form

2
( )( ) = ( ) ( ) ( ) , .
( )

''

'

z tt t a t t t t
z t

γ

ω ρ ϕ
  
 + ≥ 
   

               (3.7)

Then by eqn. (3.6), we get

( ) =1 0 =1
( ) ( ) ( ( ))( ) ( ) ( ) ( ) ( ) (1 ) ( )
( ) ( )

'
'' n m i i

j j i '

t q t z tt t t a t t p t
t z t

γ
γ

γ

ρ σω ω ρ ϕ ρ
ρ

≤ + − −

1

( )( ) ( ) ( )
( ) ( )

tt a t t
a t t

γ
γωγρ ϕ

ρ

+

 
− − 

 
                (3.8)

Therefore from Lemma 4 and Lemma 5, it follows that, for any 
(0,1)α ∈  and (0,1)β ∈ , we have

( )2( )( ( )) ( ( )) ( ( ))= , = 1,2,.., .
( ) ( ( )) ( ) 2

'
ii i i

' ' '
i

tz t z t z t i m
z t z t z t t

σσ σ σ αβ
σ

≥

Thus

( )2( )( ( )) , = 1,2,.., .
( ) 2

ii
'

tz t i m
z t t

γγ σσ αβ  
≥   
    

                              (3.9)

Combining eqns. (3.8) and (3.9), we get

( )2

=1 0 =1

( )( ) 1( ) ( ) (1 ) ( ) ( )
( ) 2

'
i' n m

j j i i

ttt t c p t q t
t t

γγ σρω ω ρ
ρ

    ≤ − −      

( )
1

( )( ) ( ) ( ) ( ) ( ) ( ) ,
( ) ( )

' tt a t t t a t t
a t t

γ
γωρ ϕ γρ ϕ

ρ

+

 
+ − − 

 
                    (3.10)

where =c αβ . Applying the inequality eqn. (2.6) of Lemma 3 with 

( )=
( ) ( )

tA
a t t
ω
ρ

 and = ( )B tϕ , we get

11 1

( ) ( ) ( ) ( 1) ( )( ) ( ) .
( ) ( ) ( ) ( ) ( ) ( )

t t t tt t
a t t a t t a t t

γ γ
γγ γω ω ϕ γ ωϕ ϕ

ρ ρ γ ρ

+ +

     +
− ≥ − −     

     
(3.11)

This with eqn. (3.3) yields

( )2

=1 0 =1

( )( ) 1( ) ( ) (1 ) ( ) ( )
( ) 2

'
i' n m

j j i i

ttt t c p t q t
t t

γγ σρω ω ρ
ρ

    ≤ − −      

( )
1

1

1

( )( ) ( ) ( ) ( 1) ( ) ( )
( ( ) ( ))

' tt a t t t t
a t t

γ
γ

γ

γ

γωρ ϕ γ ϕ ω
ρ

+

+ − + +

1

( ) ( ) ( )a t t t
γ
γρ ϕ
+

−
12

=1 0
=1

1 ( ( ))= ( ) (1 ) ( ) ( ) ( ) ( ( ) ( ))
2

m
n 'i
j j i

i

tt c p q t a t t a t t
t

γγ γ
γσρ ϕ ϕ
+    − − + −  

    
1

1

1

( ) ( )( 1) ( ) ( ) .
( )

( ( ) ( ))

' t tt t
t

a t t

γ
γ

γ

γ

ρ γωγ ϕ ω
ρ

ρ

+

 
+ + + − 
  

i.e.
1

1

( )( ) ( ) ( ) ( ) ,
( ( ) ( ))

' tt G t t t
a t t

γ
γ

γ

γωω ψ ω
ρ

+

≤ − + −                              (3.12)

where 
1( )( ) = ( 1) ( )

( )

' tt t
t

γρψ γ ϕ
ρ

 
+ + 

  
. Replacing t in the place of s eqn. (3.12), 

multiplying both sides by ( , )H t s  and integrating with respect to s 
using eqns. (3.1) and (3.4), we get

( , )( , ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( )t t t
T T T

H t sH t s G s ds H t T T s ds H t s s s ds
s

ω ω ψ ω∂
≤ + +

∂
1

1

( , ) ( )
( ( ) ( ))

t
T

H t s s ds
a s s

γ
γ

γ

γ ω
ρ

+

−

( )
1

1
1

( , )= ( , ) ( ) ( , ) ( , ) ( ) ( )
( ( ) ( ))

t
T

H t sH t T T h t s H t s s s ds
a s s

γγ
γγ

γ

γω ω ω
ρ

+

+

 
 + − − 
  

( )
1

1
1

( , )( , ) ( ) ( , ) ( , ) ( ) ( ) .
( ( ) ( ))

t
T

H t sH t T T h t s H t s s s ds
a s s

γγ
γγ

γ

γω ω ω
ρ

+

+
−

 
 ≤ + − 
  

   (3.13)

Now define

1 11
1

1

( , ) ( ) ( , )( ( ) ( ))= and = .
( 1)

( ( ) ( ))

H t s s h t s a s sC D
a s s

γ γγ γ
γ γ

γ

γ ω γ ρ
γ

ρ

+ +
+

−

   
   
   +   
   

Applying the inequality eqn. (2.7) of Lemma 3, we get

( )
1

1
1

1 1

( , ) ( ) ( ( , )) ( ) ( )( , ) ( , ) ( ) .
( 1)

( ( ) ( ))

H t s s h t s a s sh t s H t s s
a s s

γ
γγγ

γ
γ

γ

γ ω ρω
γ

ρ

+
+

−+
− +− ≤

+
(3.14)

Thus by eqns. (3.13) and (3.14), we have
1

1

1 ( ( , )) ( ) ( )( , ) ( ) ( ).
( , ) ( 1)

t

T

h t s a s sH t s G s ds T
H t T

γ

γ

ρ ω
γ

+
−

+

 
− ≤ + 

This contradicts eqn. (3.2). Now consider the case (II) in Lemma 
1. Then by Lemma 2, we have ( ) = 0lim

t
x t

→∞
. This completes the proof.

In the following result, we consider the case when (1.3) holds, 
where in this case, there is one more possibility other than (I) and (II) 
mentioned in Lemma 1.

Theorem 7
Let all the assumptions of Theorem 6 be satisfied. Suppose further 

that the condition (1.2) is replaced by (1.3) for some (0,1)c∈  and 
for some H X γ∈ , (3.2) holds. If for ( ) = 1tρ , ( ) = 0tϕ , there exists a 
function 1( , )H t s X γ∈  such that,

( )
1

1
=1 0 1 =1 1 1

1 2 2

1 ( ( , )) ( )sup (1 ) ( , ) ( ) ( ) > 0lim
( , ) ( 1)

t
n m
j j i i i

t t

h t s a sp H t s q s s t ds
H t t

γ
γγ

γσ
γ

+

+
→∞

 
− − − + 

(3.15)

for all sufficiently large 1 0t t≥  and 2 1 0t t t≥ ≥ , then every solution x of 
(E) is either oscillatory or satisfies ( ) = 0lim

t
x t

→∞
.

Proof: Assume that x(t) is a positive solution of (E). Based on the 
condition eqn. (1.3), there exist three possible cases (I), (II) (as those of 
Lemma 1), and the following third possibility

( ) 1 1( ) ( ) > 0, ( ) > 0, ( ) < 0, ( ) ( ) < 0, for ,  is  large enough.
'

' '' ''III z t z t z t a t z t t t t
γ

  ≥ 

Firstly if case (I) and case (II) hold, respectively, we can obtain the 
conclusion of Theorem 7 by applying the proof of theorem 6.
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Now assume the case (III) holds. Then, ( ) < 0''z t  for all 1t t≥ . 
Define the function

( )
1

( ) ( )
( ) = , .

( )

''

'

a t z t
t t t

z t

γ

γφ ≥                (3.16)

It is clear that ( ) < 0tφ  for 1t t≥ , and

( )( ) ( ) 1

1

( ) ( ) ( ) ( )
( ) = .

( ) ( )

'
'' ''

'

' '

a t z t a t z t
t

z t z t

γ γ

γ γ

γ
φ

+

+−                                        (3.17)

Since ( ) > 0'z t , then by eqns. (3.5) and (3.17) in view of (E), we get

=1 0 =1
( ( )) ( )( ) (1 ) ( ) .

( )
( )

' n m
j j i i

z t tt p q t
z t

a t

σ γφ 
≤ − − − 

 
             (3.18)

In view of (III), we have

1( ) ( ) ( ).'z t t t z t≥ −               (3.19)

Hence,

1

( ) 0.

'

z t
t t

 
≤ 

− 
                 (3.20)

This implies that

1

1

( ( )) ( ) , = 1,2,.., .
( )
i iz t t t i m

z t t t
σ σ −

≥
−

               (3.21)

This with eqn. (3.19), leads to

( )1
( ( )) ( ) .

( )
i

i'

z t t t
z t
σ σ≥ −

Substituting in eqn. (3.18), we get

( )
1

=1 0 =1 1 1

( )( ) (1 ) ( ) ( ) .
( )

' n m
j j i i i

tt p q t t t
a t

γ
γ

γγ

γ

γφφ σ

+

≤ − − − −              (3.22)

Interchanging t with s in eqn. (3.22), multiplying both sides by 
1( , )H t s  and integrating with respect to s from t2 to t ( 2 1t t≥ ). Then in 

view of the properties of  H(t,s) with ( ) = 1tρ , ( ) = 0tϕ  it follows that,

( ) 1
1 =1 0 =1 1 1 2 22 2

( , )( , )(1 ) ( ) ( ) ( , ) ( ) ( )t n m t
t j j i i i t

H t sH t s p q s s t H t t t s ds
s

γγ σ φ φ∂
− − ≤ +

∂
1

1
12

( ) ( , )

( )

t
t

s H t s ds
a s

γ
γ

γ

γφ
+

−

( ) 1
1 2 2 1 12
( , ) ( ) ( , ) ( , ) ( )t

tH t t t h t s H t s s ds
γ
γφ φ+≤ + −

( )
1

1
12

( , ) ( )
( )

t
t

H t s s ds
a s

γ
γ

γ

γ φ
+

 
 + − − 
  

               (3.23)

Now define

( ) ( )
1 1

1 1
1

1 1
1 11

( , ) ( ) ( , ) ( )
= and = .

( 1)
( )

H t s s h t s a s
C D

a s

γ
γ

γ γ
γ γ

γ

γ φ γ
γ

+
+

+−
+

Applying the inequality eqn. (2.7), it follows that

( ) ( ) ( ) 11
111

1 1 1 1

( , ) ( )( , )( , ) ( , ) ( ) ( ) .
( 1)

( )

h t s a sH t sh t s H t s s s
a s

γγ γ
γ γ

γ
γ

γφ φ
γ

++
+

+− − − ≤
+

(3.24)

This with eqn. (3.23) leads to

( ) ( ) 1
1

=1 0 1 =1 1 21
1 2 2

( , ) ( )1 (1 ) ( , ) ( ) ( ) ( ),
( , ) ( 1)

t
n m
j j i i i

t

h t s a s
p H t s q s s t ds t

H t t

γ
γγ

γσ φ
γ

+

+

 
− − − ≤ 

+  

which contradicts eqn. (3.15). This completes the proof. 

Theorem 8

Assume that the conditions (A1)-(A3) hold. Suppose that = 1,2,..,i m , for 
= 1,2,..,i m , eqn. (1.2), (2.1) and (3.4) hold. If for some (0,1)β ∈  and 

for some H X γ∈ ,

( ) 1

1 1
0 0

( , ) ( ) ( )1sup ( , ) ( ) =lim
( , ) ( 1)

t

t
t

h t s a s s
H t s G s ds

H t t

γ

γ

ρ
γ

+
−

+
→∞

 
− ∞ 

+  
(3.25)

where
1

1 =1 0
=1

1( ) = ( ) (1 ) ( ) ( ) ( ) ( ( ) ( )) ,
2

m
n '
j j i

i

G t t t p q t a t t a t t
γ γ

γρ β ϕ ϕ
+  − + −  

   
(3.26)

then every solution x of eqn. (E) is either oscillatory or satisfies 
( ) = 0lim

t
x t

→∞
. 

Proof: Assume that x(t) is a non-oscillatory solution of (E). 
Without loss of generality, we may assume that x(t) is eventually 
positive. Going through as in the proof of Theorem 6, we arrive eqn. 
(3.8). Since ( ) > 0'z t  and ( )i t tσ ≥ , for = 1,2,..,i m , we obtain

( ) =1 0 =1
( ) ( ) ( )( ) ( ) ( ) ( ) ( ) (1 ) ( )
( ) ( )

'
'' n m i

j j i '

t q t z tt t t a t t p t
t z t

γ
γ

γ

ρω ω ρ ϕ ρ
ρ

≤ + − −

1

( )( ) ( ) ( )
( ) ( )

tt a t t
t a t

γ
γωγρ ϕ

ρ

+

 
− − 

 
               (3.27)

Then from Lemma 5 It follows for any (0,1)β ∈ that, 
( ) .
( ) 2'

z t t
z t

β
≥

i.e.,

( ) .
( ) 2'

z t t
z t

γ γβ   ≥   
  

                 (3.28)

Combining eqns. (3.27) and (3.28), we get

( ) =1 0 =1
( ) 1( ) ( ) ( ) ( ) ( ) ( (1 )) ( ) ( )
( ) 2

'
'' n m

j j i i
tt t t a t t t p t q t
t

γρω ω ρ ϕ β ρ
ρ

≤ + − −

1

( )( ) ( ) ( )
( ) ( )

tt a t t
t a t

γ
γωγρ ϕ

ρ

+

 
− − 

 

              (3.29)

Using the inequality eqns. (2.6) to (3.29), we conclude that
1

=1 0
=1

1( ) ( ) (1 ) ( ) ( ) ( ) ( ( ) ( ))
2

m
' n '

j j i
i

t t t p q t a t t a t t
γ γ

γω ρ β ϕ ϕ
+  ≤ − − + −  
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1
1

1
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( ) ( ) ( )

' t tt t
t t a t

γ
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ρ γωγ ϕ ω
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( )

1

1 1

( )= ( ) ( ) ( ) ,
( ) ( )

tG t t t
t a t

γ
γ

γ

γωψ ω
ρ

+

− + −                (3.30)

where 
1( )( ) = ( 1) ( )

( )

' tt t
t

γρψ γ ϕ
ρ

 
+ + 

  
. Replacing t with seqn. (3.30), 
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multiplying both sides by H(t,s)  and integrating with respect to s from 
T1 ( 1 0T t≥ ) to t. In view of the fact that ( , ) = 0H t t , it follows eqns. (3.1) 
and (3.4) that

( )
1

1
1 1 1 11 1

( , )( , ) ( ) ( , ) ( ) ( , ) ( , ) ( ) ( ) .
( ( ) ( ))

t t
T T

H t sH t s G s ds H t T T h t s H t s s s ds
a s s

γγ
γγ

γ

γω ω ω
ρ

+

+
−

 
 ≤ + − 
  

(3.31)

Again following the proof of Theorem 6, we get a contradiction eqn. 
(3.25). Assume that case (II) holds. By virtue of Lemma 2, ( ) = 0limx t

→∞
, 

and thus the proof is completed.

Theorem 9
Let all the assumptions of Theorem 8 be satisfied. Suppose that the 

condition eqn. (1.2) is replaced by eqn. (1.3) and for some (0,1)β ∈  and 
some H X γ∈ , eqn. (3.25) holds. Suppose further that for ( ) = 1tρ , ( ) = 0tϕ , 
there exists a function 2 ( , )H t s X γ∈  such that, for all sufficiently large 

1 0t t≥  and 2 1 0t t t≥ ≥ ,

( ) 1
2

=1 0 1 2 =1 1
2 2 2

( , ) ( )1sup (1 ) ( ) ( , ) ( ) > 0.lim ( , ) ( 1)

t
n m
j j i i

t t

h t s a s
p s t H t s q s ds

H t t

γ
γ γ

γγ

+

+
→∞

 
− − − 

+  
(3.32)

Then every solution x of eqn. (E) is either oscillatory or satisfies 
( ) = 0lim

t
x t

→∞
. 

Proof: Assume that x(t) is a positive solution of eqn. (E). Based 
on the condition eqn. (1.3), there exist the three possible cases (I), (II) 
and (III) for 1t t≥ , t1 is large enough. Assume that case (I) and case 
(II) hold, respectively. We can obtain the conclusion of Theorem 9 by 
applying the proof of Theorem 8. Now assume that case (III) holds. 
Consider again the function ( )tφ  defined by eqn. 3.16. Then we can 
easily deduce eqn. 3.18. Since ( ) > 0'z t  and ( )i t tσ ≥ , = 1,2,..,i m , we 
obtain

1

=1 0 =1 1

( ) ( )( ) (1 ) ( ) .
( )

( )

' n m
j j i i '

z t tt p q t
z t

a t

γ
γ γ

γ

γ

γφφ

+

 
≤ − − − 

 
        (3.33)

In view of (III), we see that

1
( ) ( ) .
( )'

z t t t
z t

γ
γ 

≥ − 
 

                 (3.34)

This with eqn. (3.33) leads to
1

=1 0 =1 1 1

( )( ) (1 ) ( )( ) .
( )

' n m
j j i i

tt p q t t t
a t

γ
γ

γ γ

γ

γφφ

+

≤ − − − −

Going through as in the proof of Theorem 7, we can easily deduce that
( ) 1

2
=1 0 1 2 =1 21

2 2 2

( , ) ( )1 (1 ) ( ) ( , ) ( ) ( ),
( , ) ( 1)

t
n m
j j i i

t

h t s a s
p s t H t s q s ds t

H t t

γ
γ γ

γ φ
γ

+

+

 
− − − ≤ 

+  

which contradicts eqn. 3.32. This completes the proof.

Example 1
Consider the differential equation

3

3
1 1
5 2

1 1 1 1 3993( ) ( ) ( ) ( ) = 0, 1.
5 2 125

5

'
''

x t x t x t x t t
ee

      + − + − + ≥        

        (3.35)

Choosing 3

1( ) =t
t

ρ , 3

1( ) =
8

t
t

ϕ  and 2( , ) = ( )H t s t s− . It is clear that 

all assumptions of Theorem 6 are satisfied. Hence, every solution x of 
eqn. (3.35) is either oscillatory or satisfies ( ) = 0lim

t
x t

→∞
. As a matter of 

fact, one such solution is ( ) = tx t e− . 

Example 2
Consider the differential equation

3 1 1( ) ( ) ( ) 42 ( ) = 0, 1.
16 2 108 3

'''t tt x t x x x t t
  + + + ≥     

             (3.36)

By choosing 1( ) =t
t

ρ , 1( ) =
2

t
t

ϕ , ( , ) = ( )H t s t s , 
2

1 2

( )( , ) = t sH t s
s
−  and 2 1 0= = = 1t t t . It is clear that all assumptions 

of Theorem 7 are satisfied. Hence, every solution x of eqn. 3.36 is 

either oscillatory or satisfies ( ) = 0lim
t

x t
→∞

, when 
108>
2807

c . In fact such 

solution of eqn. 3.36 is 3

1( ) =x t
t

. 

Example 3
Consider the differential equation

1 2( ) ( ) ( ) = 0, > 0, 1.
2

'''tt x t p x x t t
t
λ λ

  + + ≥     
             (3.37)

By choosing ( ) = 1tρ , ( ) = 0tϕ  and 2( , ) = ( )H t s t s− . It is clear that 
all assumptions of Theorem 6 and Theorem 8 are satisfied. Hence, 
every solution x of eqn. 3.37 is either oscillatory or satisfies ( ) = 0lim

t
x t

→∞
, 

provided that > 0λ . We note that the authors [10] proved that eqn. 
3.37 is oscillatory if 1> 1/ (4 (1 ))k pλ −  for some (1 / 4,1)k ∈  and so our 
result improves those [10]. 
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