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Abstract

We are attempting to give a new proof to the problem of characterization of the
support of the product of conjugacy classes in the compact Lie group SU(n) without any
reference to the Mehta-Seshadri theorem in algebraic geometry as it was the case in [1].
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1 Introduction

It is well known that the product of two conjugacy classes in SU(n) can be described by a set
of linear inequalities on the Lie algebra of its maximal torus [1], and that these inequalities
are a re-statement of the property of (semi)-stability of certain vector bundles on CP (1) with
three (or more) points removed. The proof in [1] depends on a theorem of Mehta-Seshadri
[9] or equivalently can be reformulated in terms of gauge theory of singular flat connections.
For a survey on the case of sum of Hermitian matrices, see the descriptive papers [6, 7]. The
purpose of this paper is to give a direct and simple proof of the description of the product
of two conjugacy classes in SU(n) which makes no use of the theorem of Mehta-Seshadri
or gauge theory. The main technical tools are an analogue of the Gauss-Bonnet theorem
generally known as the Gauss-Chern formula (see [4]) and a well-known decomposition of
the curvature tensor [8]. These methods are quite elementary and in the course of the proof
we give a clear exposition of some of ideas related to vector bundles on marked Riemann
surfaces.

The main result about the product of two conjugacy classes in SU(n) is given by the
following theorem.

Theorem 1.1. Let α = (α1 ≥ α2 ≥ · · ·αn), β, and γ be n-tuples of real numbers in (−1, 1]
such that

∑
αj =

∑
βj =

∑
γj = 0. Let Cα denote the conjugacy class in SU(n) determined

by the eigenvalues eπiαj . Then a conjugacy class Cγ occurs in the product CαCβ if and only
if

S(α, β, γ) +
∑
i∈I

αi +
∑
j∈J

βj +
∑
k∈K

γk ≤ 0,

where S(α, β, γ) is an integer and I, J,K ⊂ {1, 2, . . . , n} are subsets of the same cardinality
l ≤ n. The exact description of the integer S(α, β, γ) and the subsets I, J , and K is given
in Section 4 below.
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In Section 2 we give generalities about vector bundles on marked Riemann surfaces and
their relationship with products of conjugacy classes. Although the proof of the main theorem
makes no use of algebraic geometry of parabolic vector bundles (which was used in [1, 9]), we
give precise definitions which may be useful in giving a direct and simple algebraic proof of
the Mehta-Seshadri theorem which was also proven by Biquard [4] using differential geometric
methods. In Section 3 we show the (semi)-stability of vector bundles constructed in Section
2 from conjugacy classes by using the Gauss-Chern formula and a decomposition of the
curvature tensor of sub-bundles. Finally in Section 4 we relate the geometric concepts of
Section 3 to our main problem and give an explicit description of the integer S(α, β, γ)
and the subsets I, J , and K thereby proving the main theorem. This description involves
quantum multiplication of Schubert cycles.

2 Generalities on vector bundles on marked Riemann surfaces

Let M∗ be a compact Riemann surface with m marked points or cusps ps, s = 1, . . . ,m.
Throughout the paper the subscript s refers to the cusps. Set M = M∗ \ {p1 · · · pm}. We
assume that the Euler characteristic of M is negative so that its universal covering space is
the upper half-plane H. In addition, we assume that m ≥ 1 so that the fundamental group
of M is the free group F2g+m−1 on 2g + m − 1 generators. The fundamental group of a
neighborhood of a cusp ps is isomorphic to Z. A neighborhood Us of ps is uniformized by
the subset HT = {z ∈ H | =(z) > T} for some large T > 0 and the action of the local
fundamental group is by translation z

k−−→ z + k. Let ρ : π1(M, ζ) → SU(n) and note that
for γ ∈ π1(M, ζ) ' F2g+m−1, ρ(γ) is conjugate in U(n) to a matrix of the forme

2πiγ1 O
. . .

O e2πiγn

 .

Let E = Eγ denote the diagonal matrix with entries [γ1, . . . , γn] and through the paper we
assume that all the eigenvalues are integer numbers in [−1, 1). The given representation ρ
gives a holomorphic vector bundle Eρ of rank n on M as a fibre product in the usual manner.
For each j let FT = {z ∈ HT | −1

2 < <(z) ≤ 1
2}. For z ∈ HT define l ∈ Z to be the unique

integer l such that z − l = z1 ∈ FT . Set

g : HT −→ GL(n,C), g(z) = z
NEγj
1 ρ

(
γ−lj
)
,

in which N is the least integer number such that Nγj ∈ Z for 1 ≤ j ≤ n (the choice of N is
for the matter of holomorphicity of the map g). Note that

g(z + 1) = z
NEγj
1 ρ

(
γ−l−1
j

)
= g(z)ρ(−1). (2.1)

Since a holomorphic vector bundle on M is holomorphically trivial, it can be extended to
any other vector bundle of rank n on M?. We will describe a specific extension of Eρ to M?

and throughout we will only consider this extension. Identifying Uj with the unit disc with
the origin removed D?, we glue Eρ|Uj ' Uj × Cn with D? × Cn by the map

Uj × Cn −→ D? × Cn, (z, ξ) −→
(
z1, g(z)ξ

)
.

This gives us the extension of Eρ to M? which we call the standard extension and denote by
E?ρ if necessary for emphasis. In view of the standard extension we define the (first) Chern
class of Eρ as c1(E?ρ) ∈ H2(M?;Z) ' Z.
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Lemma 2.1. The line bundle detE∗ρ is holomorphically trivial and consequently the Chern
class of E∗ρ is zero.

Proof. By the above construction the transition functions of E?ρ are given by

gαβ(z) = zα P z−βP−1,

where matrices E and E′ are diagonal matrices in U(n) with diagonal entries [α1, . . . , αn]
and [β1, . . . , βn], and P ∈ U(n).

Precisely, according to the construction of the trivialization around the point 0 and 1 in
the previous step, for each trivialization we consider the diagonalization of the generator of
the stabilizer subgroup of the corresponding cusp, so in general we cannot simultaneously
diagonalize the two matrix corresponding to the parabolic points 0 and 1. Let

E = α =

α1 O
. . .

O αn


and the matrix E′ is conjugate to the diagonal matrix β by a matrix P ∈ SU(n) as follows:

P−1E′P = β =

β1 O
. . .

O βn

 .

So by the construction for the transition function gαβ : Uα ∩ Uβ → GL(n,C) we have

gαβ(z) = zα P z−βP−1.

The Chern class of the bundle E∗ρ is equal to the Chern class of the determinant bundle,
which is a line bundle with transition function

ϕαβ(z) = det gαβ(z) =
z

∑n
i=1 αi

z
∑n
i=1 βi

proving that detE∗ρ is in fact a trivial bundle and hence has vanishing Chern class.

To define the notion of parabolic bundle, at each cusp pj we fix a flag Ep1 ⊂ E
p
2 ⊂ · · · ⊂ En

subject to the requirement that the subspace Epk is invariant under the action of ρ(γj) which
acts as the scalar e2πiαk on Ek/Ek−1. Let E ⊂ E?ρ be a holomorphic sub-bundle with fibre
dimension r. Define the integers a1 < a2 < · · · < ar as follows: a1 is the smallest integer
such that dim(Epj ∩ Ea1) = 1; and al is the smallest integer such that dim(Epj ∩ Eal) >
dim(Epj ∩ Eal−1

). Define the parabolic degree of E as

pardeg(E) = c(E) +
∑
s

l∑
k=1

αs,ak .

The parabolic slope µ(E) is

µ(E) =
pardeg(E)

rk(E)
.
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Given a holomorphic sub-bundle F ⊆ E of rank r, one obtains a parabolic structure on F as
follows. An ascending flag in the fiber Fp at marked (cusp) point p is obtained by removing
from

Fp ∩ Ep,1 ⊆ Fp ∩ Ep,2 ⊆ · · · ⊆ Fp ∩ Ep,n = Fp

those terms for which the inclusion is not strict (note that since the vector space Fp is
an r-dimensional vector space, exactly r inclusions of the above sequence of inclusions are
strict). The parabolic weights for F are βj = αkj , where kj is the minimal index such that
Fp,j ⊆ Ep,kj where Fp,j = Fp ∩ Ep,j .

A parabolic sub-bundle of E is a holomorphic sub-bundle F ⊂ E whose parabolic structure
is the one induced from the inclusion. We say the parabolic bundle E → X is parabolic semi-
stable (stable) if µ(F ) ≤ µ(E) (µ(F ) � µ(E)) for all parabolic sub-bundles F ⊂ E. Now we
introduce the necessary tools for dealing with parabolic vector bundle from the differential
geometric viewpoint.

3 Singular Gauss-Chern formula

In this section we relate the weights defined in the previous section for parabolic bundle more
intrinsically in a way that these numbers is corresponded to the geometry of the bundle.
Assume that the bundle E over the Riemann surface X is parabolic at the cusp point p and
equipped with a hermitian metric h smooth on X − {p} and degenerate at p and in some
sense which will be made precise later this metric is adaptive with the parabolic structure.

Let C be the space of holomorphic structures over E or more precisely the space of
operators

∂
E : C∞(E) −→ C∞

(
Ω0,1 ⊗ E

)
, ∂

E(fs) = f∂
E(s) + (∂f)s.

Let A be the space of h-unitary connections which the associated holomorphic structure
∂
E ∈ C. In other words, this is the space of h-unitary connections which is smooth on X−{p}

whose (0, 1) part is smooth on all of X. The corresponding gauge group for the parabolic
bundle E is

G = {g ∈ C∞(AutE); respects the flag F}.

Similarly the gauge group for hermitian bundle (E, h) is defined by

Gh =
{
g ∈ GC ; g|X−{p} is h-unitary

}
.

The following definitions explain in what sense a metric is adaptive with the parabolic
structure.

Definition 3.1. One says that the frame (ei), which is a basis for the bundle E at p, respects
the flag structure over p if it is a C∞ local basis in a neighborhood of p for the bundle E
and furthermore Ep,i is generated by (el−dim(Ep,i)+1(p), . . . , el(p)).

Definition 3.2. Suppose r > 1 and let (εi) be a local basis of C∞ sections in a neighborhood
of the point p. One says that the basis (εi) is
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(1) adaptive with the parabolic structure of E if

εi = g

(
fi
|z|αi

)
for g ∈ Dr

2 and (fi) is a basis for E at p respecting the flag;
(2) adaptive with (E, h) if it is adaptive with E and furthermore it is h-orthonormal.

Definition 3.3. The hermitian metric h on E|X−{P} is adaptive if (E, h) admits an adaptive
basis according to the previous definition.

Remark 3.4. By definition it is clear that the bundle E always posses an adaptive basis
and the same statement is valid for hermitian bundle (E, h).

Now we bring an example which is illuminating for the above definitions and we will refer
to the computation in this example in the next section.

Example 3.5 (construction of an adaptive metric). Let z be a local coordinate for X around
p and let (ei)1≤i≤l be a local basis of sections for E respecting the flag. One can locally define
a metric for E as follows:

h =

|z|
2α1 O

. . .
O |z|2αl

 .

In fact this metric can be extended smoothly on X − {p} and it is clear that the basis
( ei
|z|αi ) is adaptive for (E, h).

Furthermore, we assume that E is a holomorphic bundle having E as its underlying C∞

fiber bundle and also we assume that the sections (ei) are holomorphic sections of E.
The associated Chern connection of the metric h can be locally written as

dh = d+ h−1∂h = d+ α
dz
z
,

where α is the diagonal matrix with coefficients (α1, α2, . . . , αl). If we use the orthonormal
frame εi = fi

|z|αi instead of (ei) after some ordinary calculation, we obtain the formula

∂
E = ∂ − 1

2
α

dz
z
, dh = d+ iα dθ.

From the above computation it is clear that the curvature of the connection dh vanishes.
We say that the holomorphic parabolic bundle E is decomposable if it admits a holomorphic
decomposition E = F ⊕ G such that F and G are holomorphic sub-bundles and they are
equipped with the parabolic structure induced from the parabolic bundle E and furthermore
the union of weights of the induced parabolic structures on F and G is equal to the weights
of the parabolic bundle E .

Now we can describe the notion of parabolicity of a holomorphic bundle in terms of
geometry of the bundle itself as follows.

By a parabolic structure for a holomorphic bundle E over a point p we mean a choice of
an adaptive metric h degenerate at p and the type of degeneracy at p determines the weights
and the flag structure over cusp point p. So we can deal with the notion of parabolicity by
using the geometry of the space of singular connections of the bundle E.
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With this differential geometric viewpoint of parabolicity we bring a theorem which en-
lightens the relation between the notion of parabolic degree and the geometry of the holo-
morphic bundle E which plays the role of Gauss-Bonnet theorem in the context of parabolic
bundles (see [4]).

Theorem 3.6 (Gauss-Chern formula). Suppose h is an adaptive metric on the holomorphic
bundle E and consequently E equipped with a parabolic structure; then for every connection
A ∈ Ar we have

− 1
2πi

∫
X

tr
(
FA
)

= pardeg(E).

Proof. Since A ∈ Ap , in terms of the adaptive basis (εi) one has the local expression

A = D + a, a ∈ Dp
1.

Let A0 be a connection on E smooth on all of X; then by a similar computation as in the
example above one obtains

A0 = d− αdr
r

+ b, b ∈ Dp
1.

The differential 1 - form c = A−A0 which is defined on X − {p} and has values in End(E)
has the local expression

c = iαdθ + α
dr
r

+ a− b.

It is easy to see that tr(FA) − tr(F0) = d tr(c). Let Bε be a ball of radius ε around p with
boundary Cε by integration over X −Bε and using Stokes theorem we obtain

− 1
2π i

∫
X−Bε

(tr
(
FA
)
− tr

(
F0

))
=

1
2π i

∫
Cε

(
tr(i α dθ) + tr(a− b)

)
.

Since a− b ∈ Lp1, we have∫
Cε

tr(a− b) −→ 0,

when ε→ 0 hence by tending ε to zero we obtain

− 1
2π i

∫
X

tr
(
FA
)

= tr(α)− 1
2π i

∫
X

tr
(
F0

)
.

The right-hand side of the above formula is exactly the definition of the parabolic degree
and finally Gauss-Chern formula was proved.

Using this differential geometric viewpoint of parabolic bundle we are ready to pose
the main theorem in [4] which characterize the stable (semi-stable) parabolic bundles in a
differential geometric fashion. For differential geometric proof of a similar theorem concerning
ordinary stability, we refer to [5].

Theorem 3.7. Let E be an indecomposable parabolic bundle equipped with an adaptive her-
mitian metric h. The bundle E is parabolic stable if and only if there exists a connection
A ∈ A satisfying

∗FA = −2π i µ(E).

Moreover, this connection is unique up to the action of the gauge group.
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4 Support of the product of two conjugacy classes

Let Cα and Cβ be two conjugacy classes in the group SU(n) and suppose the conjugacy
class (Cγ)−1 occurs in the product of conjugacy classes Cα and Cβ. Equivalently the identity
matrix occurs in the product Cα ·Cβ ·Cγ ; we are attempting to characterize all such γ’s in the
Lie algebra of maximal torus. So in this case we have a representation ρ : π1(P1\{0, 1,∞}) =≺
a, b, c | abc = 1 �→ SU(n) such that ρ(a) ∈ Cα, ρ(b) ∈ Cβ and ρ(c) ∈ Cγ . Through this
section we choose the integer number N so that all the numbers Nαi, Nβi and Nγi are
integer numbers.

According to the construction in Section 2 we see that corresponding to this representation
ρ there is a special extended bundle over P1 which we named E∗ρ . Furthermore, this bundle
is a parabolic bundle with parabolic structure over the cusp points 0, 1,∞ by the definition
posed in Section 2. Now we are attempting to show that the parabolic bundle E∗ρ over P1 is
semi-stable. To this aim first we construct a special connection on E∗ρ as follows.

As we know from the Section 2 the bundle Eρ over M = P1 \ {0, 1,∞} is trivial, so it
admits a flat connection Ω on M . Although this connection is not defined on parabolic points
0, 1, and ∞ similar to the extension of the bundle Eρ, we can extend the flat connection
Ω to an appropriate singular connection Ω̃ on the extended bundle E∗ρ with singularities at
parabolic points 0, 1, and ∞. For this purpose we consider the singular connection ωα:

ωα =


α1
dz

z
O

. . .

O αn
dz

z


in the neighborhood Uα around 0 and similarly we define the singular connection ωβ in the
neighborhood Uβ around 1:

ωβ = P

(
β

dz
z

)
P−1

and we also consider the singular connection ωγ in the neighborhood Uγ around the parabolic
point ∞.

Now we show that the connections Ω, ωα, ωβ, and ωγ satisfy the compatibility conditions
and therefore we can define a global singular connection on the bundle E∗ρ with singularities
at parabolic points 0, 1, and ∞.

To check the compatibility conditions we begin to verify the condition for the two singular
connections ωα and ωβ; in fact we should verify that on Uα ∩ Uβ we have

ωβ = g−1
αβωαgαβ + g−1

αβ dgαβ.

In Section 2 we see that gαβ is the transition function with gαβ(z) = zα P z−β P−1 for the
diagonal matrices α and β:

α =

α1 O
. . .

O αn

 , β =

β1 O
. . .

O βn

 .
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For the right-hand side of the above relation, we have(
P zβ P−1z−α

)(
α

dz
z

)(
zαPz−β P−1

)
+ P zβ P−1z−α

(
d
(
zα
)
P z−βP−1 + zα P d

(
z−β

)
P−1

)
= PzβP−1

(
α

dz
z

)
P z−βP−1 − P zβ P−1

(
α

dz
z

)
P z−β P−1 + P

(
β

dz
z

)
P−1 = ωβ.

So the compatibility condition for two connections ωα and ωβ has been shown for the other
two connections ωα, ωγ and ωβ, ωγ ; the compatibility condition can be similarly verified.

Now we check the compatibility condition for the connection Ω with each connection ωα,
ωβ, and ωγ ; for example we show the compatibility condition between the connection Ω and
ωα (for the other two connections ωβ and ωγ , the argument of compatibility is exactly the
same).

According to a theorem (see [8]) since the bundle Eρ is trivial, it admits a flat structure
(ga, Ua) for which the flat connection Ω on the bundle Eρ has the representation ωa = 0. Let
U0 be an open set containing 0; according to the triviality of the bundle Eρ it is evident that
the transition function g0α : U0 ∩ Uα → GL(n,C) is equal to g0α(z) = zα.

Now we have to prove that the connection ω0 = 0 on U0 and ωα on Uα is compatible on
U0 ∩ Uα in fact we should verify

ωα = g−1
0αω0g0α + g−1

0α dg0α

by substituting ω0 = 0 and g0α(z) = zα; the validity of the above formula is trivial because
we have

ωα = z−α d(zα) = α
dz
z
,

which is the definition of the singular connection ωα; thus the compatibility of the connections
Ω and ωα was verified. Therefore, all the connections Ω, ωα, ωβ, and ωγ are compatible
over P1, so we can define a global singular connection Ω∗ on the parabolic bundle E∗ρ with
singularities at parabolic points 0, 1, and ∞ of the type α, β, and γ, respectively.

It can easily be seen that the curvature of the connection ωα vanishes and also the connec-
tion Ω has zero curvature, so the curvature of the global singular connection Ω∗ introduced
above vanishes; hence we have the following theorem.

Theorem 4.1. The parabolic degree of the parabolic bundle E∗ρ is zero.

Proof. According to Theorem 3.6, we have

− 1
2πi

∫
P1

tr
(
FΩ∗

)
= pardeg

(
E∗ρ
)

but we have FΩ∗ = 0 and consequently pardeg(E∗ρ) = 0.

Therefore, by the above argument to a triple (α, β, γ) of eigenvalues (in which γ occurs in
the product of two fixed conjugacy classes Cα and Cβ) we associate a flat singular connection
with singularity at 0, 1, and ∞ of residues α, β, and γ, respectively.

The singular flat connection described above induces a singular connection Ω∗S on every
sub-bundle S ⊂ E∗ρ with appropriate residues αS , βS , and γS which is not necessarily flat.
In the following we want to prove that for all such sub-bundles S we have pardeg(ωS) ≤ 0;
in other words, the bundle E∗ρ is semi-stable.
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Theorem 4.2. The parabolic bundle E∗ρ is semi-stable.

Proof. By the argument in this section we see that the bundle E∗ρ admits a singular con-
nection A = Ω∗ with appropriate singularities at cusp points 0, 1, ∞ and moreover by the
construction its curvature is identically zero. Let S ⊂ E be a holomorphic sub-bundle of the
parabolic bundle E = E∗ρ . So we have the exact sequence of holomorphic bundles

0 −→ F −→ E −→ Q −→ 0,

where Q is the quotient bundle. Using a well-known theorem in differential geometry for
example we refer to [8]; the unitary connection A on E described above has the following
shape:

A =

[
AS β

−β∗ AQ

]
.

With AF and AQ connections on F and Q and β in Ω0,1
2 . For the corresponding curvature

matrix we have

F (A) =

[
F
(
AS
)
− β ∧ β∗ dβ

−dβ∗ F
(
AQ
)
− β∗ ∧ β

]
,

where d : Ω1(Q∗ ⊗ S)→ Ω2(Q∗ ⊗ S) is built from AQ and AS and the quadratic terms have
a definite sign. For convenience normalize so that ∗ tr(β∗ ∧ β) = 2πi‖β‖2.

Furthermore, by the construction of this connection we know that the above curvature
matrix, F (A), is identically zero. Hence, for the curvature of the connection AS of the sub-
bundle S ⊂ E we have

FS = F (AS) = −β∗ ∧ β.

Now by Gauss-Chern formula proved in Section 3 we have

pardeg(S) =
1

2π i

∫
P1

tr
(
FS
)

= − 1
2π i

∫
P1

tr
(
β∗ ∧ β

)
= −

∫
P1

‖β‖2 < 0.

So we proved pardeg(S) ≤ 0 and consequently we have µ(S) ≤ 0 = µ(E). Hence, by the
above argument we showed that the bundle E∗ρ is semi-stable.

The direct consequence of this theorem is the following corollary.

Corollary 4.3. The support of the product of two conjugacy classes in SU(n) is contained
in the set of inequalities, of the form µ(S) ≤ 0 where S goes over the sub-bundles of the
parabolic bundle E∗ρ , concerning the semi-stability of the parabolic bundle E∗ρ .

Notice that the above inequality µ(S) ≤ 0 is equivalent to the inequality pardeg ≤ 0, so
for better understanding of the inequalities of this form we should be able to compute the
parabolic degree of the sub-bundle S ⊂ E∗ρ or equivalently we should know the parabolic
weights induced from the bundle E∗ρ to the sub-bundle S.

As we mentioned in the definition of semi-stability in the beginning of this paper the
induced weights on the sub-bundle S of rank r is as follows.

We follow our important case, the parabolic bundle E∗ρ on P1, in this case we know that α,
β, and γ are the parabolic weights on the cusp points 0, 1, and∞, respectively. For example
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we explain the induced weights on the cusp points 0 for the sub-bundle S and for the other
cusp points the argument is exactly the same. To do this let us assume that the flag structure
on the fiber over the point 0 in the bundle E∗ρ (recall the definition of parabolicity) is

E0 = F1E0 k F2E0 k · · · k FnE0.

An ascending flag in the fiber S0 at marked (cusp) point 0 for the sub-bundle S is obtained
by removing from

S0 ∩ E0,1 ⊆ S0 ∩ E0,2 ⊆ · · · ⊆ S0 ∩ E0,n = S0

those terms for which the inclusion is not strict (note that since the vector space S0 is an r-
dimensional vector space, exactly r inclusions of the above sequence of inclusions are strict).
The parabolic weights for S over 0 are numbers αkj , where kj is the minimal index such that
Sp,j ⊆ Ep,kj where S0,j = S0 ∩ E0,j .

So by this explanation the parabolic degree of the sub-bundle S is equal to

pardeg(S) = deg(S) +
∑
i∈IS

αi +
∑
j∈JS

βj +
∑
k∈KS

γk,

where

IS =
{
i | αi is a weight of the sub-bundle S

}
.

JS and KS are defined similarly.
Now we are ready to bring our result about the product of two conjugacy classes in terms

of an appropriate set of linear inequalities as a corollary of this section.

Corollary 4.4. The support of the product of two conjugacy classes α and β is the set of
all eigenvalues γ which is necessarily contained in the set of linear inequalities of the form

deg(S) +
∑
i∈IS

αi +
∑
j∈JS

βj +
∑
k∈KS

γk ≤ 0,

where S goes over the sub-bundles of the parabolic bundle E∗ρ and the subsets IS, JS, KS are
the corresponding indices of the induced parabolic weights for the sub-bundle S as explained
above.

To see that this set of linear inequalities are also sufficient to characterize the product of
two conjugacy classes we can make use of the convexity theorem for Hamiltonian action of
loop groups proved by Meinrenken and Woodward [10], which says that this support, as a
subset of maximal torus, is a convex polytope of maximal dimension. Notice that it can be
easily verified that all boundary hyperplanes defined by the above linear inequalities are in
the support and so by the above-mentioned convexity result we can deduce that the whole
convex set defined by the above (IJK)-inequalities are the exact support of the product of two
conjugacy classes Cα and Cβ. Note that some of the above inequalities may be redundant;
to see how one can choose an independent set of linear inequalities to describe the support,
we refer to [2, 3].

We can also prove the sufficiency of the (semi-stability) inequalities by using the corre-
spondence between the moduli of singular flat connections (up to the gauge group action)
and the product of conjugacy classes Cα and Cβ, which we bring in the following.
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Theorem 4.5. Assume that a holomorphic vector bundle E over P1 admits a singular flat
unitary connection (with respect to the degenerate metric) with singularity at 0, 1, and ∞
whose residues are α, β, and γ, respectively. Then γ occurs in the product of two conjugacy
classes Cα and Cβ.

Proof. According to Theorem 4.2 this bundle is automatically semi-stable. The monodor-
omy of the flat connection ω|M gives us a representation of the fundamental group of M ,
namely, ρ : π1(M) =≺ γ1, γ2, γ3 | γ1γ2γ3 = 1 �→ SU(n). One can easily show that the
condition of the residue around 0 to be α is equivalent to the condition ρ(γ1) ∈ Cα (because
locally the connection around 0 has the form d + iαdθ) and similar conditions are satisfied
for singularities 1 and ∞. So we have a representation ρ in which ρ(γ1) ∈ Cα, ρ(γ2) ∈ Cβ,
and ρ(γ3) ∈ Cγ and consequently γ occurs in the product of two conjugacy classes Cα and
Cβ.
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