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Abstract

It is proved that any left F-quasigroup is isomorphic to the direct product of a left
F-quasigroup with a unique idempotent element and isotope of a special form of a left
distributive quasigroup. The similar theorems are proved for right F-quasigroups, left and
right SM- and E-quasigroups. Information on simple quasigroups from these quasigroup
classes is given; for example, finite simple F-quasigroup is a simple group or a simple
medial quasigroup. It is proved that any left F-quasigroup is isotopic to the direct product
of a group and a left S-loop. Some properties of loop isotopes of F-quasigroups (including
M-loops) are pointed out. A left special loop is an isotope of a left F-quasigroup if and
only if this loop is isotopic to the direct product of a group and a left S-loop (this is
an answer to Belousov “1a” problem). Any left E-quasigroup is isotopic to the direct
product of an abelian group and a left S-loop (this is an answer to Kinyon-Phillips 2.8(1)
problem). As corollary it is obtained that any left FESM-quasigroup is isotopic to the
direct product of an abelian group and a left S-loop (this is an answer to Kinyon-Phillips
2.8(2) problem). New proofs of some known results on the structure of commutative
Moufang loops are presented.

2000 MSC: 20N05

Contents

1 Introduction 198
1.1 Quasigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
1.2 Autotopisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
1.3 Quasigroup classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
1.4 Congruences and homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . 205
1.5 Direct products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
1.6 Parastrophe invariants and isostrophisms . . . . . . . . . . . . . . . . . . . . 213
1.7 Group isotopes and identities . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

2 Direct decompositions 218
2.1 Left and right F-quasigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
2.2 Left and right SM- and E-quasigroups . . . . . . . . . . . . . . . . . . . . . . 222
2.3 CML as an SM-quasigroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

3 The structure 228
3.1 Simple left and right F-, E-, and SM-quasigroups . . . . . . . . . . . . . . . . 229
3.2 F-quasigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
3.3 E-quasigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
3.4 SM-quasigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
3.5 Simple left FESM-quasigroups . . . . . . . . . . . . . . . . . . . . . . . . . . 242



198 V. A. Shcherbacov

4 Loop isotopes 244
4.1 Left F-quasigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
4.2 F-quasigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
4.3 Left SM-quasigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
4.4 Left E-quasigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

1 Introduction

Murdoch introduced F-quasigroups in [77]. At this time, Sushkevich studied quasigroups with
the weak associative properties [116, 117]. Their name F-quasigroups obtained in an article
of Belousov [8]. Later Belousov and his pupils Golovko and Florja, Ursul, Kepka, Kinyon,
Phillips, Sabinin, Sbitneva, Sabinina, and many other mathematicians studied F-quasigroups
and left F-quasigroups [12, 15, 16, 28, 34, 35, 36, 41, 42, 53, 55, 86, 87]. In [55, 57, 58] it is
proved that any F-quasigroup is linear over a Moufang loop. The structure of F-quasigroups
also is described in [55, 57, 58].

Left and right SM-quasigroups (semimedial quasigroups) are defined by Kepka. In [49]
Kepka has called these quasigroups LWA-quasigroups and RWA-quasigroups, respectively.
SM-quasigroups are connected with trimedial quasigroups. These quasigroup classes are stud-
ied in [6, 49, 50, 52, 63, 64, 106, 107]. Kinyon and Phillips have defined and studied left and
right E-quasigroups [64].

Main idea of this paper is to use quasigroup endomorphisms by the study of structure
of quasigroups with some generalized distributive identities. This idea has been used by
the study of many loop and quasigroup classes, for example, by the study of commutative
Moufang loops, commutative diassociative loops, CC-loops (LK-loops), F-quasigroups, SM-
quasigroups, trimedial quasigroups, and so on [4, 7, 12, 23, 24, 25, 61, 62, 65, 83, 84]. This
idea is clearly expressed in Shchukin’s book [106].

Using language of identities of quasigroups with three operations in signature, i.e., of
quasigroups of the form (Q, ·, /, \), we can say that we study some quasigroups from the
following quasigroup classes: (i) (xy)\(xy) = (x\x) · (y\y); (ii) (xy)/(xy) = (x/x) · (y/y);
(iii) (xy) · (xy) = (xx) · (yy).

This paper is connected with the following problems.

Problem 1 (Belousov Problem 1a [12, 55, 98]). Find necessary and sufficient conditions
that a left special loop is isotopic to a left F-quasigroup.

Problem 1a has been solved partially by Florea and Ursul [34, 36]. They proved that a left
F-quasigroup with IP-property is isotopic to an A-loop.

Problem 2 (Problem 2.8 from [64]). (1) Characterize the loop isotopes of quasigroups
satisfying (El).

(2) Characterize the loop isotopes of quasigroups satisfying (El), (Sl), and (Fl).

Problem 3. It is easy to see that in loops 1 · ab = 1a · 1b. Describe quasigroups with the
property f(ab) = f(a)f(b) for all a, b ∈ Q, where f(a) is left local identity element of a (see
[99, p. 12]).

The results of this paper were presented at the conference LOOPS’07 (August 19–24,
2007, Prague). In order to make the reading of this paper more or less easy we give some
necessary preliminary results and quit detailed proofs.
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1.1 Quasigroups

Let (Q, ·) be a groupoid (be a magma in alternative terminology). As usual, the map La :
Q→ Q,Lax = a ·x for all x ∈ Q, is a left translation of the groupoid (Q, ·) relative to a fixed
element a ∈ Q; the map Ra : Q→ Q, Rax = x · a, is a right translation.

Definition 1.1. A groupoid (G, ·) is said to be a division groupoid if the mappings Lx and
Rx are surjective for every x ∈ G.

In a division groupoid (G, ·), any from equations a · x = b and y · a = b has at least
one solution for any fixed a, b ∈ Q, but we cannot guarantee that these solutions are unique
solutions.

Definition 1.2. A groupoid (G, ·) is said to be a cancellation groupoid if a ·b = a ·c⇒ b = c,
b · a = c · a⇒ b = c for all a, b, c ∈ G.

If any from equations a · x = b and y · a = b has a solution in a cancellation groupoid
(G, ·) for some fixed a, b ∈ Q, then this solution is unique. In other words, in a cancellation
groupoid, the mappings Lx and Rx are injective for every x ∈ G.

Definition 1.3. A groupoid (Q, ·) is called a quasigroup if, for all a, b ∈ Q, there exist unique
solutions x, y ∈ Q to the equations x · a = b and a · y = b, i.e., in this case any right and any
left translation of the groupoid (Q, ·) is a bijection of the set Q.

Remark 1.4. Any division cancellation groupoid is a quasigroup and vice versa.

A sub-object (H, ·) of a quasigroup (Q, ·) is closed relative to the operation ·, i.e., if
a, b ∈ H, then a · b ∈ H.

We denote by SQ the group of all bijections (permutations in finite case) of a set Q.

Definition 1.5. A groupoid (Q,A) is an isotope of a groupoid (Q,B) if there exist permu-
tations µ1, µ2, µ3 of the set Q such that A(x1, x2) = µ−1

3 B(µ1x1, µ2x2) for all x1, x2 ∈ Q.
We also can say that a groupoid (Q,A) is an isotopic image of a groupoid (Q,B). The triple
(µ1, µ2, µ3) is called an isotopy (isotopism).

We will write this fact also in the form (Q,A)=(Q,B)T , where T =(µ1, µ2, µ3) [12, 15, 83].
If only the fact will be important that binary groupoids (Q, ◦) and (Q, ·) are isotopic,

then we will use the record (Q, ·) ∼ (Q, ◦).

Definition 1.6. Isotopy of the form (µ1, µ2, ε) is called a principal isotopy.

Remark 1.7. Up to isomorphism any isotopy is a principal isotopy. Indeed, T =(µ1, µ2, µ3)=
(µ1µ

−1
3 , µ2µ

−1
3 , ε)(µ3, µ3, µ3).

We have the following definition of a quasigroup.

Definition 1.8 (see [14, 30, 76]). A binary groupoid (Q,A) such that in the equality
A(x1, x2) = x3 knowledge of any 2 elements of x1, x2, x3 uniquely specifies the remaining
one is called a binary quasigroup.

From Definition 1.8, it follows that with any quasigroup (Q,A) it is possible to associate
more (3!− 1) = 5 quasigroups, the so-called parastrophes of quasigroup (Q,A):

A
(
x1, x2

)
= x3 ⇐⇒ A(12)

(
x2, x1

)
= x3 ⇐⇒ A(13)

(
x3, x2

)
= x1

⇐⇒ A(23)
(
x1, x3

)
= x2 ⇐⇒ A(123)

(
x2, x3

)
= x1

⇐⇒ A(132)
(
x3, x1

)
= x2
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We will denote

• the operation of (12)-parastrophe of a quasigroup (Q, ·) by ∗;
• the operation of (13)-parastrophe of a quasigroup (Q, ·) by /;
• the operation of (23)-parastrophe of a quasigroup (Q, ·) by \;
• the operation of (123)-parastrophe of a quasigroup (Q, ·) by //;
• the operation of (132)-parastrophe of the quasigroup (Q, ·) by \\.

We have defined left and right translations of a groupoid and, therefore, of a quasigroup.
But for quasigroups it is possible to define the third kind of translations. If (Q, ·) is a quasi-
group, then the map Pa : Q → Q, x · Pax = a for all x ∈ Q, is called a middle translation
[13, 104].

In Table 1 connections between different kinds of translations in different parastrophes of
a quasigroup (Q, ·) are given. This table in fact is there in [13]; see also [31, 94].

Kinds ε = · (12) = ∗ (13) = / (23) = \ (123) = // (132) = \\
R R L R−1 P P−1 L−1

L L R P−1 L−1 R−1 P

P P P−1 L−1 R L R−1

R−1 R−1 L−1 R P−1 P L

L−1 L−1 R−1 P L R P−1

P−1 P−1 P L R−1 L−1 R

Table 1

In Table 1, for example, R(23) = R\ = P (·).
If T = (α1, α2, α3) is an isotopy, σ is a parastrophy, then we define T σ = (ασ−11, ασ−12,

ασ−13).

Lemma 1.9. In a quasigroup (Q,A): (AT )σ = AσT σ, (T1T2)σ = T σ1 T
σ
2 [12, 14].

Definition 1.10. An element f(b) of a quasigroup (Q, ·) is called left local identity element
of an element b ∈ Q, if f(b) · b = b, in other words, f(b) = b/b.

An element e(b) of a quasigroup (Q, ·) is called right local identity element of an element
b ∈ Q, if b · e(b) = b, in other words, e(b) = b\b.

An element s(b) of a quasigroup (Q, ·) is called middle local identity element of an element
b ∈ Q, if b · b = s(b) [93, 94].

An element e is a left (right) identity element for quasigroup (Q, ·) which means that
e = f(x) for all x ∈ Q (resp., e = e(x) for all x ∈ Q). A quasigroup with the left (right)
identity element will be called a left (right) loop.

The fact that an element e is an identity element of a quasigroup (Q, ·) means that e(x) =
f(x) = e for all x ∈ Q, i.e., all left and right local identity elements in the quasigroup (Q, ·)
coincide [12].

Connections between different kinds of local identity elements in different parastrophes
of a quasigroup (Q, ·) are given in Table 2 [93, 94].

In Table 2, for example, s(123) = e(·).

Remark 1.11. We notice that in [6, 106] the mapping s is denoted by β.
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ε (12) (13) (23) (123) (132)
f f e s f e s

e e f e s s f

s s s f e f e

Table 2

Definition 1.12. A quasigroup (Q, ·) with an identity element e ∈ Q is called a loop.

Quasigroup isotopy of the form (R−1
a , L−1

b , ε) is called an LP-isotopy. Any LP-isotopic
image of a quasigroup is a loop [12, 15].

Lemma 1.13 (see [15, Lemma 1.1]). Let (Q,+) be a loop and (Q, ·) a quasigroup. If (Q,+) =
(Q, ·)(α, β, ε), then (α, β, ε) = (R−1

a , L−1
b , ε) for some translations of (Q, ·).

Lemma 1.14. If (Q, ·) is a quasigroup, (H, ·) is its subquasigroup, a, b ∈ H, then (H, ·)T is
a subloop of the loop (Q, ·)T , where T is an isotopy of the form (R−1

a , L−1
b , ε).

Proof. We have that Ra|H , Lb|H are translations of (H, ·), since a, b ∈ H.

We define the following mappings of a quasigroup (Q, ·): f : x 7→ f(x), f(x) · x = x for
all x ∈ Q; e : x 7→ e(x), x · e(x) = x for all x ∈ Q; s : x 7→ s(x), s(x) = x · x for all x ∈ Q.

Definition 1.15 (see [12, 15, 21, 27, 32, 33, 83, 104]). An algebra (Q, ·, \, /) is called a quasi-
group, if on the set Q there exist operations “\” and “/” such that in (Q, ·, \, /) identities

x · (x\y) = y (1.1)

(y/x) · x = y (1.2)

x\(x · y) = y (1.3)

(y · x)/x = y (1.4)

are fulfilled.

Lemma 1.16. (1) Any sub-object of a quasigroup (Q, ·) is a cancellation groupoid.
(2) Any sub-object of a quasigroup (Q, ·, \, /) is a subquasigroup.
(3) Any subquasigroup of a quasigroup (Q, ·) is a subquasigroup in (Q, ·, \, /) and, vice

versa, any subquasigroup of a quasigroup (Q, ·, \, /) is a subquasigroup in (Q, ·).

Proof. (1) If a, b, c ∈ H, then from a · b = a · c follows b = c, since (H, ·) ⊆ (Q, ·). Similarly
from b · a = c · a follows b = c.

(2) and (3), see [12, 27, 71, 83].

Left, middle, and right nuclei of a loop (Q, ·) are defined in the following way:

Nl = {a ∈ Q | a · xy = ax · y, x, y ∈ Q}
Nm = {a ∈ Q | xa · y = x · ay, x, y ∈ Q}
Nr = {a ∈ Q | xy · a = x · ya, x, y ∈ Q}

Nucleus of a loop is defined in the following way: N = Nl ∩Nm ∩Nr [12, 24]. Bruck defined
a center of a loop (Q, ·) as C(Q, ·) = N ∩ Z, where

Z =
{
a ∈ Q | a · x = x · a ∀x ∈ Q

}
Information on quasigroup nuclei can be found in [99].
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1.2 Autotopisms

Definition 1.17. An autotopism (sometimes we will call autotopism an autotopy) is an iso-
topism of a quasigroup (Q, ·) into itself, i.e., a triple (α, β, γ) of permutations of the set Q is
an autotopy if the equality x · y = γ−1(αx · βy) is fulfilled for all x, y ∈ Q.

Definition 1.18. The third component of any autotopism is called a quasiautomorphism.

By Top(Q, ·) we will denote the group of all autotopies of a quasigroup (Q, ·).

Theorem 1.19 (see [12, 15, 14]). If quasigroups (Q, ·) and (Q, ◦) are isotopic with isotopy
T , i.e., (Q, ·) = (Q, ◦)T , then Top(Q, ·) = T−1 Top(Q, ◦)T .

Lemma 1.20 (see [12, 15]). If (Q, ·) is a loop, then any its autotopy has the form (R−1
a , L−1

b ,
ε)(γ, γ, γ).

Proof. Let T = (α, β, γ) be an autotopy of a loop (Q, ·), i.e., αx · βy = γ(x · y). If we put
x = 1, then we obtain α1 · βy = γy, γ = Lα1β, β = L−1

α1γ. If we put y = 1, then, by analogy,
we obtain, α = R−1

β1 γ. Then T = (R−1
β1 γ, L

−1
α1γ, γ) = (R−1

k , L−1
d , ε)(γ, γ, γ), where β1 = k,

α1 = d.

We can obtain more detailed information on autotopies of a group and, since autotopy
groups of isotopic quasigroups are isomorphic, on autotopies of quasigroups that are some
group isotopes.

Theorem 1.21 (see [15]). Any autotopy of a group (Q,+) has the form(
Laδ,Rbδ, LaRbδ

)
where La is a left translation of the group (Q,+), Rb is a right translation of this group, δ
is an automorphism of (Q,+).

Corollary 1.22. (1) If Laδ = LaRbδ, then Rb = ε. (2) If Rbδ = LaRbδ, then La = ε. (3) If
Laδ = Rbδ, then a ∈ C(Q,+).

Proof. (3) We have a+ δx+ a+ δy = a+ a+ δx+ δy, δx+ a = a+ δx for all x ∈ Q.

Corollary 1.23. Any group quasiautomorphism has the form Ldϕ, where ϕ∈Aut(Q,+) [96].

Proof. We have LaRb δx = a + δx + b = a + b − b + δx + b = La+bIb δx = Ld ϕ, where
d = a+ b, ϕ = Ibδ, Ib x = −b+ x+ b.

Lemma 1.24. (1) If x·y = αx∗y, where (Q, ∗) is an idempotent quasigroup, α is a permuta-
tion of the set Q, then Aut(Q, ·) = CAut(Q,∗)(α) = {τ ∈ Aut(Q, ∗) | τα = ατ}, in particular,
Aut(Q, ·) ⊆ Aut(Q, ∗).

(2) If x · y = x ∗ βy, where (Q, ∗) is an idempotent quasigroup, β is a permutation of
the set Q, then Aut(Q, ·) = CAut(Q,∗)(β) = {τ ∈ Aut(Q, ∗) | τβ = βτ}, in particular,
Aut(Q, ·) ⊆ Aut(Q, ∗) (see [72, Corollary 12]).

Proof. (1) We give a sketch of the proof. If ϕ ∈ Aut(Q, ·), then ϕ(x · y) = ϕ(αx ∗ y) =
ϕx · ϕy = αϕx ∗ ϕy. If y = αx, then ϕαx = αϕx ∗ ϕαx, ϕα = αϕ, ϕ(αx ∗ y) = ϕαx ∗ ϕy.

(2) The proof of Case (2) is similar to the proof of Case (1).
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1.3 Quasigroup classes

Definition 1.25. A quasigroup (Q, ·) is

• medial, if xy · uv = xu · yv for all x, y, u, v ∈ Q;
• left distributive, if x · uv = xu · xv for all x, u, v ∈ Q;
• right distributive, if xu · v = xv · uv for all x, u, v ∈ Q;
• distributive, if it is left and right distributive;
• idempotent, if x · x = x for all x ∈ Q;
• unipotent, if there exists an element a ∈ Q such that x · x = a for all x ∈ Q;
• left semi-symmetric, if x · xy = y for all x, y ∈ Q;
• TS-quasigroup, if x · xy = y, xy = yx for all x, y ∈ Q;
• left F-quasigroup, if x · yz = xy · e(x)z for all x, y, z ∈ Q;
• right F-quasigroup, if xy · z = xf(z) · yz for all x, y, z ∈ Q;
• left semimedial or middle F-quasigroup, if s(x) ·yz = xx ·yz = xy ·xz for all x, y, z ∈ Q;
• right semimedial, if zy · s(x) = zx · yx for all x, y, z ∈ Q;
• F-quasigroup, if it is left and right F-quasigroup;
• left E-quasigroup, if x · yz = f(x)y · xz for all x, y, z ∈ Q;
• right E-quasigroup, if zy · x = zx · ye(x) for all x, y, z ∈ Q;
• E-quasigroup, if it is left and right E-quasigroup;
• LIP-quasigroup, if there exists a permutation λ of the set Q such that λx · (x · y) = y

for all x, y ∈ Q;
• RIP-quasigroup, if there exists a permutation ρ of the set Q such that (x · y) · ρy = x

for all x, y ∈ Q;
• IP-quasigroup, if it is LIP- and RIP-quasigroup.

A quasigroup (Q, ·) of the form x·y = ϕx+βy+c, where (Q,+) is a group, ϕ ∈ Aut(Q,+),
β is a permutation of the set Q, is called a left linear quasigroup; a quasigroup (Q, ·) of the
form x · y = αx+ψy+ c, where (Q,+) is a group, ψ ∈ Aut(Q,+), α is a permutation of the
set Q, is called a right linear quasigroup [114, 118].

Definition 1.26. A loop (Q, ·) is

• Bol loop (left Bol loop), if x(y · xz) = (x · yx)z for all x, y, z ∈ Q;
• Moufang loop, if x(yz · x) = xy · zx for all x, y, z ∈ Q;
• commutative Moufang loop (CML), if xx · yz = xy · xz for all x, y, z ∈ Q;
• left M-loop, if x · (y ·z) = (x · (y · Iϕx)) · (ϕx ·z) for all x, y, z ∈ Q, where ϕ is a mapping

of the set Q, x · Ix = 1 for all x ∈ Q;
• right M-loop, if (y · z) · x = (y · ψx) · ((I−1ψx · z) · x) for all x, y, z ∈ Q, where ψ is

a mapping of the set Q;
• M-loop, if it is left M- and right M-loop;
• left special, if Sa,b=L−1

b L−1
a Lab is an automorphism of (Q, ·) for any pair a, b∈Q [110];

• right special, if Ta,b=R−1
b R−1

a Rba is an automorphism of (Q, ·) for any pair a, b∈Q [110].

In [12] the left special loop is called special. In [50, 106, 64] left semimedial quasigroups
are studied. A quasigroup is trimedial if and only if it is satisfies left and right E-quasigroup
equality [64]. Information on properties of trimedial quasigroups is there in [63].
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Every semimedial quasigroup is isotopic to a commutative Moufang loop [50]. In the
trimedial case the isotopy has a more restrictive form [50].

In a quasigroup (Q, ·, \, /) the equalities x · yz = xy · e(x)z, xy · z = xf(z) · yz, x · yz =
f(x)y · xz and zy · x = zx · ye(x) take the form x · yz = xy · (x\x)z, xy · z = x(z/z) · yz,
x ·yz = (x/x)y ·xz and zy ·x = zx ·y(x\x), respectively, and they are identities in (Q, ·, \, /).

Therefore any subquasigroup of a left F-quasigroup (Q, ·, \, /) is a left F-quasigroup; any
homomorphic image of a left F-quasigroup (Q, ·, \, /) is a left F-quasigroup [27, 71]. It is clear
that the situation is the same for right F-quasigroups, left and right E- and SM-quasigroups.

Lemma 1.27. Any medial quasigroup (Q, ·) is both a left and right F-, SM-, and E-quasigroup.

Proof. Equality x ·uv = xu ·e(x)v follows from medial identity xy ·uv = xu ·yv by y = e(x).
Respectively, by u = e(x) we have xy · e(x)v = x · yv, i.e., (Q, ·) is a left F-quasigroup in
these cases, and so on.

Lemma 1.28. (1) Any left distributive quasigroup (Q, ·) is a left F-, SM-, and E-quasigroup.
(2) Any right distributive quasigroup (Q, ·) is a right F-, SM-, and E-quasigroup.

Proof. (1) It is easy to see that (Q, ·) is idempotent quasigroup. Therefore x · x = x/x =
x\x = x. Then x ·yz = xy ·xz = ((x/x) ·y) ·xz = ((x\x) ·y) ·xz = xy · (x/x)z = xy · (x\x)z =
xx · yz.

(2) The proof of this case is similar to the proof of Case (1).

Lemma 1.29. A quasigroup (Q, ·) in which

(1) the equality x · yz = xy · δ(x)z is true for all x, y, z ∈ Q, where δ is a map of the set Q,
is a left F-quasigroup [15];

(2) the equality xy · z = xδ(z) · yz is true for all x, y, z ∈ Q, where δ is a map of the set Q,
is a right F-quasigroup;

(3) the equality δ(x) · yz = xy ·xz is true for all x, y, z ∈ Q, where δ is a map of the set Q,
is a left semimedial quasigroup;

(4) the equality zy · δ(x) = zx · yx is true for all x, y, z ∈ Q, where δ is a map of the set Q,
is a right semimedial quasigroup;

(5) the equality x · yz = δ(x)y ·xz is true for all x, y, z ∈ Q, where δ is a map of the set Q,
is a left E-quasigroup;

(6) the equality zy ·x = zx · yδ(x) is true for all x, y, z ∈ Q, where δ is a map of the set Q,
is a right E-quasigroup.

Proof. (1) If we take y = e(x), then we have x ·e(x)z = x · δ(x)z, e(x) = δ(x). Cases (2)–(6)
are proved similarly.

Theorem 1.30 (Toyoda Theorem [12, 15, 22, 78, 103, 119]). Any medial quasigroup (Q, ·)
can be presented in the form x · y = ϕx+ψy+ a, where (Q,+) is an Abelian group, ϕ,ψ are
automorphisms of (Q,+) such that ϕψ = ψϕ, a is some fixed element of the set Q and vice
versa.

Theorem 1.31 (Belousov Theorem [9, 12, 15]). Any distributive quasigroup (Q, ◦) can be
presented in the form x ◦ y = ϕx + ψy, where (Q,+) is a commutative Moufang loop,
ϕ,ψ ∈ Aut(Q,+), ϕ,ψ ∈ Aut(Q, ·), ϕψ = ψϕ.
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A left (right) F-quasigroup is isotopic to a left (right) M-loop [15, 42]. A left (right) F-
quasigroup is isotopic to a left (right) special loop [8, 16, 12, 41]. An F-quasigroup is isotopic
to a Moufang loop [55].

If a loop (Q, ◦) is isotopic to a left distributive quasigroup (Q, ·) with isotopy the form
x◦y = R−1

a x ·L−1
a y, then (Q, ◦) will be called a left S-loop. Loop (Q, ◦) and quasigroup (Q, ·)

are said to be related.
If a loop (Q, ◦) is isotopic to a right distributive quasigroup (Q, ·) with isotopy the form

x ◦ y = R−1
a x · L−1

a y, then (Q, ◦) will be called a right S-loop.

Definition 1.32. An automorphism ψ of a loop (Q, ◦) is called complete, if there exists
a permutation ϕ of the set Q such that ϕx ◦ ψx = x for all x ∈ Q. Permutation ϕ is called
a complement of automorphism ψ.

The following theorem is proved in [17].

Theorem 1.33. A loop (Q, ◦) is a left S-loop, if and only if there exists a complete auto-
morphism ψ of the loop (Q, ◦) such that at least one of the following conditions is fulfilled:

(a) ϕ(x ◦ ϕ−1y) ◦ (ψx ◦ z) = x ◦ (y ◦ z);
(b) L◦x,yψ = ψL◦x,y and ϕx ◦ (ψx ◦ y) = x ◦ y for all x, y ∈ Q, x, y ∈ Q, L◦x,y ∈ LI(Q, ◦).
Thus (Q, ·), where x · y = ϕx ◦ ψy, is a left distributive quasigroup which corresponds to

the loop (Q, ◦).

Remark 1.34. In [17, 81] a left S-loop is called an S-loop.

A left distributive quasigroup (Q, ·) with identity x · xy = y is isotopic to a left Bol loop
[12, 15, 16]. Last results of Nagy [79] let us hope on progress in researches of left distributive
quasigroups. Some properties of distributive and left distributive quasigroups are described
in [38, 39, 40, 115].

Theorem 1.35. Any loop which is isotopic to a left F-quasigroup is a left M-loop (see [15,
Theorem 3.17, p. 109]).

Theorem 1.36 (Generalized Albert Theorem). Any loop isotopic to a group is a group [2,
3, 12, 15, 68, 83, 99].

1.4 Congruences and homomorphisms

Results of this subsection are standard, well-known [12, 24, 83, 71, 27], and slightly adapted
for our aims.

A binary relation ϕ on a set Q is a subset of the cartesian product Q×Q [21, 71, 82].
If ϕ and ψ are binary relations on Q, then their product is defined in the following way:

(a, b) ∈ ϕ ◦ ψ, if there is an element c ∈ Q such that (a, c) ∈ ϕ and (c, b) ∈ ψ. The last
condition is written also in such form aϕ cψ b.

Theorem 1.37. Let S be a nonempty set and let ∼ be a relation between elements of S that
satisfies the following properties:

(1) (Reflexive) a ∼ a for all a ∈ S.
(2) (Symmetric) If a ∼ b, then b ∼ a.
(3) (Transitive) If a ∼ b and b ∼ c, then a ∼ c.
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Then ∼ yields a natural partition of S, where ā = {x ∈ S | x ∼ a} is the cell containing
a for all a ∈ S. Conversely, each partition of S gives rise to a natural relation ∼ satisfying
the reflexive, symmetric, and transitive properties if a ∼ b is defined to mean that a ∈ b̄ [44].

Definition 1.38. A relation ∼ on a set S satisfying the reflexive, symmetric, and transitive
properties is called an equivalence relation on S. Each cell ā in the natural partition given
by an equivalence relation is an equivalence class.

Definition 1.39. An equivalence θ is a congruence of a groupoid (Q, ·), if the following
implications are true for all x, y, z ∈ Q: xθy ⇒ (z · x)θ(z · y), xθy ⇒ (x · z)θ(y · z) [29].

In other words, equivalence θ is a congruence of (Q, ·) if and only if θ is a subalgebra of
(Q×Q, (·, ·)). Therefore we can formulate Definition 1.39 in the following form.

Definition 1.40 (see [29]). An equivalence θ is a congruence of a groupoid (Q, ·), if the
following implication is true for all x, y, w, z ∈ Q: xθy ∧ wθz ⇒ (x · w) θ (y · z).

Definition 1.41 (see [12, 15]). A congruence θ of a quasigroup (Q, ·) is normal, if the
following implications are true for all x, y, z ∈ Q: (z · x)θ(z · y)⇒ xθy, (x · z)θ(y · z)⇒ xθy.

Definition 1.42. An equivalence θ is a congruence of a quasigroup (Q, ·, /, \), if the following
implications are true for all x, y, z ∈ Q:

xθy =⇒ (z · x)θ(z · y), xθy =⇒ (x · z)θ(y · z)
xθy =⇒ (z/x)θ(z/y), xθy =⇒ (x/z)θ(y/z)
xθy =⇒ (z\x)θ(z\y), xθy =⇒ (x\z)θ(y\z)

One from the most important properties of e-quasigroup (Q, ·, \, /) is the following prop-
erty.

Lemma 1.43 (see [12, 15, 21, 71]). Any congruence of a quasigroup (Q, ·, \, /) is a normal
congruence of quasigroup (Q, ·); any normal congruence of a quasigroup (Q, ·) is a congruence
of quasigroup (Q, ·, \, /).

Definition 1.44. If θ is a binary relation on a set Q, α is a permutation of the set Q
and from xθy it follows αxθαy and α−1xθα−1y for all (x, y) ∈ θ, then we will say that the
permutation α is an admissible permutation relative to the binary relation θ [12, 100].

Moreover, we will say that a binary relation θ admits a permutation α.

Lemma 1.45 (see [13]). Any normal quasigroup congruence is admissible relative to any
left, right, and middle quasigroup translation.

Proof. The fact that any normal quasigroup congruence is admissible relative to any left
and right quasigroup translation follows from Definitions 1.39 and 1.41.

Let θ be a normal congruence of a quasigroup (Q, ·). Prove the following implication:

aθb −→ Pca θ Pcb (1.5)

If Pca = k, then a · k = c, k = a\c, k = R
\
ca. Similarly if Pcb = m, then b ·m = c, m = b\c,

m = R
\
cb. Since θ is a congruence of quasigroup (Q, ·, \, /) (Lemma 1.43), then implication

(1.5) is true.
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Implication

aθb −→ P−1
c a θ P−1

c b (1.6)

is proved in a similar way. If P−1
c a = k, then k · a = c, k = c/a, k = L

/
ca. Similarly if

P−1
c b = m, then m · b = c, m = c/b, m = L

/
cb. Since θ is a congruence of quasigroup

(Q, ·, \, /) (Lemma 1.43), then implication (1.6) is true.

Corollary 1.46. If θ is a normal quasigroup congruence of a quasigroup Q, then θ is a nor-
mal congruence of any parastrophe of Q [13].

Proof. The proof follows from Lemma 1.45 and Table 1.

In Lemma 1.48 we will use the following fact about quasigroup translations and normal
quasigroup congruences.

Lemma 1.47. If aθb, cθd, then R−1
a c θ R−1

b d.

Proof. If ac θ bd and cθd, then aθb. Indeed, if cθd, then acθad. If ac θ bd and acθad, then
bdθad, and, finally, aθb. In other words, if Rca θ Rdb and cθd, then aθb.

Since aθb and θ is a normal quasigroup congruence, we have c θ d⇔ RaR
−1
a c θ RbR

−1
b d⇔

R−1
a c θ R−1

b d.

We give a sketched proof of the following well-known fact [27, 70, 108]. We follow [108].

Lemma 1.48. Normal quasigroup congruences commute in pairs.

Proof. Let θ1 and θ2 be normal congruences of a quasigroup (Q, ·). Then a(θ1 ◦ θ2)b means
that there exists an element c ∈ Q such that aθ1c and cθ2b.

Further, we have

aθ2a, aθ2a

cθ2b, L−1
c cθ2L

−1
c b

bθ2b, L−1
c bθ2L

−1
c b

Then

R−1

L−1
c c
a · L−1

c b θ2R
−1

L−1
c b
a · L−1

c b = a

From relations

aθ1a, aθ1a

aθ1c, L−1
c aθ1L

−1
c c

bθ1b, L−1
c bθ1L

−1
c b

we obtain

b = R−1

L−1
c a

a · L−1
c b θ1R

−1

L−1
c c
a · L−1

c b

Therefore, a(θ2 ◦ θ1)b.

See [37] for additional information on permutability of quasigroup congruences.
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Definition 1.49 (see [83]). If (Q, ·) and (H, ◦) are binary quasigroups, h is a single-valued
mapping of Q into H such that h(x1 · x2) = hx1 ◦ hx2, then h is called a homomorphism
(a multiplicative homomorphism) of (Q, ·) into (H, ◦) and the set {hx | x ∈ Q} is called
homomorphic image of (Q, ·) under h.

In case (Q, ·) = (H, ◦) a homomorphism is also called an endomorphism, and an isomor-
phism is referred to as an automorphism.

Lemma 1.50. (1) Any homomorphic image of a quasigroup (Q, ·) is a division groupoid
[5, 24].

(2) Any homomorphic image of a quasigroup (Q, ·, \, /) is a quasigroup [27, 71].

Proof. (1) Let h(a), h(b) ∈ h(Q). We demonstrate that solution of equation h(a) ◦ x = h(b)
lies in h(Q). Consider the equation a · y = b. Denote solution of this equation by c. Then
h(c) is solution to the equation h(a) ◦ x = h(b). Indeed, h(a) ◦ h(c) = h(a · c) = h(b). For
equation x · h(a) = h(b), the proof is similar.

(2) see [12, 15, 27, 71, 83].

Let h be a homomorphism of a quasigroup (Q, ·) onto a groupoid (H, ◦). Then h induces
a congruence Kerh = θ (the kernel of h) in the following way, x θ y if and only if h(x) = h(y)
[15, 83].

If θ is a normal congruence of a quasigroup (Q, ·), then θ determines natural homomor-
phism h (h(a) = θ(a)) of (Q, ·) onto some quasigroup (Q′, ◦) by the rule θ(x)◦θ(y) = θ(x ·y),
where θ(x), θ(y), θ(x · y) ∈ Q/θ [15, 83].

Theorem 1.51 (see [15],[83, Theorem I.7.2]). If h is a homomorphism of a quasigroup (Q, ·)
onto a quasigroup (H, ◦), then h determines a normal congruence θ on (Q, ·) such that Q/
θ ∼= (H, ◦), and vice versa, a normal congruence θ induces a homomorphism from (Q, ·) onto
(H, ◦) ∼= Q/θ.

A subquasigroup (H, ·) of a quasigroup (Q, ·) is normal ((H, ·) P (Q, ·)), if (H, ·) is
an equivalence class (in other words, a coset class) of a normal congruence.

Lemma 1.52. An equivalence class θ(h) = H of a congruence θ of a quasigroup (Q, ·) is
a sub-object of (Q, ·) if and only if (h · h) θ h.

Proof. We recall by Lemma 1.16 any quasigroup sub-object is a cancellation groupoid. The
proof is similar to the proof of Lemma 1.9 from [15]. If a θ h and b θ h, then ab θ h2; moreover
h2 θ h, since ab ∈ H. Conversely, let h2 θ h. If a, b ∈ H, then a θ h and b θ h, ab θ h2θ h. Then
ab ∈ H.

Lemma 1.53 (see [12], [15, Lemma 1.9]). An equivalence class θ(h) of a normal congruence
θ of a quasigroup (Q, ·) is a subquasigroup of (Q, ·) if and only if (h · h) θ h.

Lemma 1.54. If h is an endomorphism of a quasigroup (Q, ·), then (hQ, ·) is a subquasigroup
of (Q, ·).

Proof. We rewrite the proof from [15, p. 33] for slightly more general case. Prove that
(hQ, ·) is a subquasigroup of quasigroup (Q, ·). Let h(a), h(b) ∈ h(Q). We demonstrate that
solution of equation h(a) · x = h(b) lies in h(Q). Consider the equation a · y = b. Denote
solution of this equation by c. Then h(c) is solution of equation h(a) · x = h(b). Indeed,
h(a) · h(c) = h(a · c) = h(b).
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It is easy to see that this is a unique solution. Indeed, if h(a) · c1 = h(b), then h(a) ·h(c) =
h(a) · c1. Since h(a), h(c), c1 are elements of quasigroup (Q, ·), then h(c) = c1.

For equation x · h(a) = h(b), the proof is similar.

Remark 1.55. It is possible to give the following proof of Lemma 1.54. The (hQ, ·) is
a cancellation groupoid, since it is a sub-object of the quasigroup (Q, ·) (Lemma 1.16).
From the other side (hQ, ·) is a division groupoid, since it is a homomorphic image of (Q, ·)
(Lemma 1.50). Therefore by Remark 1.4 (hQ, ·) is a subquasigroup of the quasigroup (Q, ·).

Corollary 1.56. (1) Any subquasigroup (H, ·) of a left F-quasigroup (Q, ·) is a left F-
quasigroup.

(2) Any endomorphic image of a left F-quasigroup (Q, ·) is a left F-quasigroup.

Proof. (1) If a ∈ H, then the solution of equation a · x = a, x = e(a) also is in H.
(2) From Case (1) and Lemma 1.54 it follows that any endomorphic image of a left

F-quasigroup (Q, ·) is a left F-quasigroup.

Remark 1.57. The same situation is for right F-quasigroups, left and right E-, and SM-
quasigroups and all combinations of these properties.

Corollary 1.58. If h is an endomorphism of a quasigroup (Q, ·), then h is an endomorphism
of the quasigroups (Q, ∗), (Q, /), (Q, \), (Q, //), (Q, \\), i.e., from h(x · y) = h(x) · h(y) we
obtain that

(1) h(x ∗ y) = h(x) ∗ h(y);
(2) h(x/y) = h(x)/h(y);
(3) h(x\y) = h(x)\h(y);
(4) h(x//y) = h(x)//h(y);
(5) h(x\\y) = h(x)\\h(y).

Proof. From Lemma 1.54 we have that (hQ, ·) is a subquasigroup of (Q, ·).
(1) If we pass from the quasigroup (Q, ·) to quasigroup (Q, ∗), then subquasigroup (hQ, ∗)

of the quasigroup (Q, ∗) will correspond to the subquasigroup (hQ, ·). Indeed, any subquasi-
group of the quasigroup (Q, ·) is closed relative to parastrophe operations ∗, /, \, //, \\ of the
quasigroup (Q, ·). Further we have h(x ∗ y) = h(y · x) = h(y) · h(x) = h(x) ∗ h(y).

(2) If we pass from the quasigroup (Q, ·) to quasigroup (Q, /), then subquasigroup (hQ, /)
of the quasigroup (Q, /) will correspond to the subquasigroup (hQ, ·).

Let z = x/y, where x, y ∈ Q. Then from definition of the operation / it follows that
x = zy. Then h(x) = h(z)h(y), h(x/y) = h(z) = h(x)/h(y) (see [71, p. 96, Theorem 1]).

The remaining cases are proved in the similar way.

Lemma 1.59 (see [12, 102]). If (Q, ·) is a finite quasigroup, then any of its congruences is
normal, any of its homomorphic images is a quasigroup.

Lemma 1.60. Let (Q, ·) be a quasigroup.

• If f is an endomorphism of (Q, ·), then f(e(x)) = e(f(x)), f(s(x)) = s(f(x)) for all
x ∈ Q;
• If e is an endomorphism of (Q, ·), then e(f(x)) = f(e(x)), e(s(x)) = s(e(x)) for all
x ∈ Q;
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• If s is an endomorphism of (Q, ·), then s(f(x)) = f(s(x)), s(e(x)) = e(s(x)) for all
x ∈ Q ([64, Lemma 2.4.]).

Proof. We will use Corollary 1.58.

• If f is an endomorphism, then f(e(x)) = f(x\x) = f(x)\f(x) = e(f(x)), f(s(x)) =
f(x) · f(x) = s(f(x)).
• If e is an endomorphism, then e(f(x)) = e(x)/e(x) = f(e(x)), e(s(x)) = e(x) · e(x) =
s(e(x)).
• If s is an endomorphism, then s(f(x)) = s(x)/s(x) = f(s(x)), s(e(x)) = s(x)\s(x) =
s(e(x)).

This proves the lemma.

The group M(Q, ·) = 〈La, Rb | a, b ∈ Q〉, where (Q, ·) is a quasigroup, is called multipli-
cation group of quasigroup.

The group Ih = {α ∈ M(Q, ·) | αh = h} is called inner mapping group of a quasigroup
(Q, ·) relative to an element h ∈ Q. Group Ih is stabilizer of a fixed element h by action
(α : x 7−→ α(x) for all α ∈ M(Q, ·), x ∈ Q) of group M(Q, ·) on the set Q. In loop case
usually it is studied the group I1(Q, ·) = I(Q, ·), where 1 is the identity element of a loop
(Q, ·).

Theorem 1.61. A subquasigroup H of a quasigroup Q is normal if and only if IkH ⊆ H
for a fixed element k ∈ H [12].

In [12, p. 59] the following key lemma is proved.

Lemma 1.62. Let θ be a normal congruence of a quasigroup (Q, ·). If a quasigroup (Q, ◦)
is isotopic to (Q, ·) and the isotopy (α, β, γ) is admissible relative to θ, then θ is a normal
congruence also in (Q, ◦).

For our aims we will use the following theorem.

Theorem 1.63 (see [80, 60, 94, 96]). Let (Q,+) be an IP-loop, x · y = (ϕx+ψy) + c, where
ϕ,ψ ∈ Aut(Q,+), a ∈ C(Q,+), θ be a normal congruence of (Q,+). Then θ is normal
congruence of (Q, ·) if and only if ϕ |Ker θ, ψ |Ker θ are automorphisms of Ker θ.

We denote by nCon(Q, ·) the set of all normal congruences of a quasigroup (Q, ·).

Corollary 1.64. If (Q, ·) is a quasigroup, (Q,+) is a loop of the form x+ y = R−1
a x ·L−1

b y
for all x, y ∈ Q, then nCon(Q, ·) ⊆ nCon(Q,+).

Proof. If θ is a normal congruence of a quasigroup (Q, ·), then, since θ is admissible relative
to the isotopy T = (R−1

a , L−1
b , ε), θ is also a normal congruence of a loop (Q,+).

In loop case situation with normality of subloops is well known and more near to the group
case [24, 83, 12, 15]. As usual a subloop (H,+) of a loop (Q,+) is normal, if H = θ(0) = Ker θ,
where θ(0) is an equivalence class of a normal congruence θ that contains identity element
of (Q,+) [12, 83]. We will name congruence θ and subloop (H,+) by corresponding.

Example 1.65. In the group S3 (S3 = 〈a, b | a3 = b2 = 1, bab = a−1〉, S3
∼= Z3 h Z2) there

exists endomorphism h (h(a) = 1, h(b) = b) such that h(S3) = 〈b〉 ∼= Z2, Kerh = 〈a〉 ∼= Z3

and Z2 5 S3.
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Example 1.66. In the cyclic group (Z4,+), Z4 = {0, 1, 2, 3}, there exists endomorphism
h (h(x) = x + x) such that h(Z4) = Kerh = {0, 2}. The endomorphism h defines normal
congruence θ with the following coset classes: θ(0) = {0, 2} and θ(1) = {1, 3}. It is clear that
Z4/θ ∼= Z2.

Definition 1.67. A normal subloop (H,+) of a loop (Q,+) is admissible relative to a
permutation α of the set Q if and only if the corresponding to (H,+) normal congruence θ
is admissible relative to α.

Definition 1.68. A quasigroup (Q, ·) is simple if its only normal congruences are the diag-
onal Q̂ = {(q, q) | q ∈ Q} and universal Q×Q.

Definition 1.69. We will name a subloop (H,+) of a loop (Q,+)α-invariant relative to
a permutation α of the set Q, if αH = H.

We will name a loop (Q,+)α-simple if only identity subloop and the loop (Q,+) are
invariant relative to the permutation α of the set Q.

We will name a quasigroup (Q, ·)α-simple relative to the permutation α of the set Q, if
only the diagonal and universal congruences are admissible relative to α.

Corollary 1.70. Let (Q, ·) = (Q,+)(α, β, ε), where (Q,+) is a loop, α, β ∈ SQ. If (Q,+)
does not contain normal subloops admissible relative to permutations α, β, then quasigroup
(Q, ·) is simple.

Proof. The proof follows from Lemmas 1.62 and 1.13 and Corollary 1.64.

1.5 Direct products

Definition 1.71. If (Q1, ·), (Q2, ◦) are binary quasigroups, then their (external) direct prod-
uct (Q, ∗) = (Q1, ·)×(Q2, ◦) is the set of all ordered pairs (a′, a′′) where a′ ∈ Q1, a′′ ∈ Q2, and
where the operation in (Q, ∗) is defined componentwise, that is, (a1 ∗ a2) = (a′1 · a′2, a′′1 ◦ a′′2).

Direct product of quasigroups is studied in many articles and books; see, for example,
[18, 19, 29, 45, 108, 80]. The concept of direct product of quasigroups was used already in
[78]. In group case it is possible to find these definitions, for example, in [44].

In [27, 108, 109] there is a definition of the (internal) direct product of Ω-algebras. We
recall that any quasigroup is an Ω-algebra.

Let U and W be equivalence relations on a set A, let U ∨ W = {(x, y) ∈ A2 | ∃n ∈
N, ∃t0, t1, . . . , t2n ∈ A, x = t0Ut1Wt2U · · ·Ut2n−1Wt2n = y}. U ∨ W is an equivalence
relation on A called the join of U and W . If U and W are equivalence relations on A for
which U ◦W = W ◦ U , then U ◦W = U ∨W , U and W are said to commute [108].

If A is an Ω-algebra and U , W are congruences on A, then U ∨W , and U ∩W are also
congruences on A.

Definition 1.72 (see [108, 109]). If U and W are congruences on the algebra A which
commute and for which U ∩W = Â = {(a, a) | ∀a ∈ A}, then the join U ◦W = U ∨W of U
and W is called direct product U uW of U and W .

The following theorem establishes the connection between concepts of internal and exter-
nal direct products of Ω-algebras.

Theorem 1.73 (see [108, p. 16], [109]). An Ω-algebra A is isomorphic to a direct product
of Ω-algebras B and C with isomorphism ϕ, i.e., ϕ : A → B × C, if and only if there exist
such congruences U and W of A that A2 = U uW .
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We will use the following easy proved fact.

Lemma 1.74. If a loop Q is isomorphic to the direct product of the loops A and B, then
C(Q) ∼= C(A)× C(B).

Lemma 1.75. If a left F-quasigroup Q is isomorphic to the direct product of a left F-
quasigroup A and a quasigroup B, then B also is a left F-quasigroup.

Proof. Indeed, if q = (a, b), where q ∈ Q, a ∈ A, b ∈ B, then e(q) = (e(a), e(b)).

Remark 1.76. An analog of Lemma 1.75 is true for right F-quasigroups, left and right SM-
and E-quasigroups.

There exist various approaches to the concept of semidirect product of quasigroups [89,
88, 26, 120]. By an analogy with group case [47] we give the following definition of the
semidirect product of quasigroups. Main principe is that a semidirect product is a cartesian
product as a set [120].

Definition 1.77 (see [121]). Let Q be a quasigroup, A a normal subquasigroup of Q (i.e.,
AEQ) and B a subquasigroup of Q. A quasigroup Q is the semidirect product of quasigroups
A and B, if there exists a homomorphism h : Q→ B which is the identity on B and whose
kernel is A, i.e., A is a coset class of the normal congruence Kerh. We will denote this fact
as follows: Q ∼= AhB.

Remark 1.78. From results of Mal’tsev [70], see, also, [100], it follows that normal sub-
quasigroup A is a coset class of only one normal congruence of the quasigroup Q.

Lemma 1.79. If a quasigroup Q is the semidirect product of quasigroups A and B, AEQ,
then there exists an isotopy T of Q such that QT is a loop and QT ∼= AT hBT .

Proof. If we take isotopy of the form (R−1
a , L−1

a , ε), where a ∈ A, then we have that QT is
a loop, AT is its normal subloop (Lemma 1.62, Remark 1.45). Further we have that BT is
a loop since BT ∼= QT/AT . Therefore BT is a subloop of the loop QT , since the set B is
a subset of the set Q.

Corollary 1.80. If a quasigroup Q is the direct product of quasigroups A and B, then there
exists an isotopy T = (T1, T2) of Q such that QT ∼= AT1 ×BT2 is a loop.

Proof. The proof follows from Lemma 1.79.

Lemma 1.81. (1) If a linear left loop (Q, ·) with the form x · y = x + ψy, where (Q,+) is
a group, ψ ∈ Aut(Q,+), is the semidirect product of a normal subgroup (H, ·) P (Q, ·) and
a subgroup (K, ·) ⊆ (Q, ·), H ∩K = 0, then (Q, ·) = (Q,+).

(2) If a linear right loop (Q, ·) with the form x · y = ϕx + y, where (Q,+) is a group,
ϕ ∈ Aut(Q,+), is the semidirect product of a normal subgroup (H, ·) P (Q, ·) and a subgroup
(K, ·) ⊆ (Q, ·), H ∩K = 0, then (Q, ·) = (Q,+).

Proof. (1) Since (Q, ·) is the semidirect product of a normal subgroup (H, ·) and a subgroup
(K, ·), then we can write any element a of the loop (Q, ·) in a unique way as a pair a =
(k, 0) · (0, h), where (k, 0) ∈ (K, ·), (0, h) ∈ (H, ·). We notice ψ(k, 0) = (k, 0), ψ(0, h) = (0, h),
since (K, ·), (H, ·) are subgroups of the left loop (Q, ·). Indeed, from (k1 ·k2) ·k3 = k1 ·(k2 ·k3)
for all k1, k2, k3 ∈ K we have k1 + ψk2 + ψk3 = k1 + ψk2 + ψ2k3, k3 = ψk3 for all k3 ∈ K.

Further we have ψa = ψ((k, 0) · (0, h)) = ψ((k, 0) + ψ(0, h)) = ψ(k, 0) + ψ2(0, h) =
(k, 0) + ψ(0, h) = ((k, 0) · (0, h)) = a, ψ = ε, (Q, ·) = (Q,+).

(2) This case is proved similarly to Case (1).
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Example 1.82. Medial quasigroup (Z9, ◦), x ◦ y = x + 4 · y, where (Z9,+) is the cyclic
group, Z9 = {0, 1, 2, 3, 4, 5, 6, 7, 8}, demonstrates that some restrictions in Lemma 1.81
are essential.

1.6 Parastrophe invariants and isostrophisms

Parastrophe invariants and isostrophisms are studied in [13].

Lemma 1.83. If a quasigroup Q is the direct product of a quasigroup A and a quasigroup
B, then Qσ = Aσ ×B σ, where σ is a parastrophy.

Proof. From Theorem 1.73 it follows that the direct product A × B defines two quasi-
group congruences. From Theorem 1.51 it follows that these congruences are normal. By
Corollary 1.46 these congruences are invariant relative to any parastrophy of the quasigroup
Q.

Lemma 1.84. If Q is a quasigroup and α ∈ Aut(Q), then α ∈ Aut(Qσ), where σ is a paras-
trophy.

Proof. It is easy to check [93, 94].

Lemma 1.85. (1) A quasigroup (Q, ·) is a left F-quasigroup if and only if its (12)-parastro-
phe is a right F-quasigroup.

(2) A quasigroup (Q, ·) is a left E-quasigroup if and only if its (12)-parastrophe is a right
E-quasigroup.

(3) A quasigroup (Q, ·) is a left SM-quasigroup if and only if its (12)-parastrophe is a right
SM-quasigroup.

(4) A quasigroup (Q, ·) is a left distributive quasigroup if and only if its (12)-parastrophe
is a right distributive quasigroup.

(5) A quasigroup (Q, ·) is a left distributive quasigroup if and only if its (23)-parastrophe
is a left distributive quasigroup.

(6) A quasigroup (Q, ·) is a left SM-quasigroup if and only if (Q, \) is a left F-quasigroup.
(7) A quasigroup (Q, ·) is a right SM-quasigroup if and only if (Q, /) is a right F-

quasigroup.
(8) A quasigroup (Q, ·) is a left E-quasigroup if and only if (Q, \) is a left E-quasigroup

(see [64, Lemma 2.2]).
(9) A quasigroup (Q, ·) is a right E-quasigroup if and only if (Q, /) is a right E-quasigroup

(see [64, Lemma 2.2]).

Proof. It is easy to check Cases (1)–(4).
(5) The fulfilment in a quasigroup (Q, ·) of the left distributive identity is equivalent to the

fact that in this quasigroup any left translation Lx is an automorphism of this quasigroup.
Indeed, we can rewrite left distributive identity in such manner Lxyz = Lxy · Lxz. Using
Table 1 we have that L\x = L−1

x . Thus by Lemma 1.84 L\x ∈ Aut(Q, \). Therefore, if (Q, ·)
is a left distributive quasigroup, then (Q, \) also is a left distributive quasigroup and vice
versa.

(6) Let (Q, \) be a left F-quasigroup. Then

x\(y\z) = (x\y)\(e(\)(x)\z) = v
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If x\(y\z) = v, then x · v = (y\z), y · (x · v) = z. We notice, if x\e(\)(x) = x, then
e(\)(x) = x · x def= s(x). See Table 2.

We can rewrite equality (x\y)\(e(\)(x)\z) = v in the form (x\y) ·v = s(x)\z, s(x) ·((x\y) ·
v) = z. Now we have the equality s(x) · ((x\y) · v) = y · (x · v). If we denote (x\y) by u, then
x · u = y.

Therefore we can rewrite equality s(x) · ((x\y) · v) = y · (x · v) in the form s(x) · (u · v) =
(x · u) · (x · v), i.e., in the form (x · x) · (u · v) = (x · u) · (x · v).

In a similar way it is possible to check the converse: if (Q, \) is a left SM-quasigroup, then
(Q, ·) is a left F-quasigroup.

Cases (7)–(9) are proved in a similar way.

Corollary 1.86. If (Q, ·) is a group, then

(1) (Q, \) is a left SM-quasigroup;
(2) (Q, /) is a right SM-quasigroup.

Proof. (1) Any group is a left F-quasigroup since in this case e(x) = 1 for all x ∈ Q.
Therefore we can use Lemma 1.85(6).

(2) We can use Lemma 1.85(7).

Definition 1.87 (see [14]). A quasigroup (Q,B) is an isostrophic image of a quasigroup
(Q,A) if there exists a collection of permutations (σ, (α1, α2, α3)) = (σ, T ), where σ ∈ S3,
T = (α1, α2, α3) and α1, α2, α3 are permutations of the set Q such that

B
(
x1, x2

)
= A

(
x1, x2

)
(σ, T ) = Aσ

(
x1, x2

)
T = α−1

3 A
(
α1xσ−11, α2xσ−12

)
for all x1, x2 ∈ Q.

A collection of permutations (σ, (α1, α2, α3)) = (σ, T ) will be called an isostrophism or an
isostrophy of a quasigroup (Q,A). We can rewrite equality from Definition 1.87 in the form
(Aσ)T = B.

Lemma 1.88 (see [14]). An isostrophic image of a quasigroup is a quasigroup.

Proof. The proof follows from the fact that any parastrophic image of a quasigroup is
a quasigroup and any isotopic image of a quasigroup is a quasigroup.

From Lemma 1.88 it follows that it is possible to define the multiplication of isostrophies
of a quasigroup operation defined on a set Q.

Definition 1.89. If (σ, S) and (τ, T ) are isostrophisms of a quasigroup (Q,A), then

(σ, S)(τ, T ) =
(
στ, SτT

)
where Aστ = (Aσ)τ and (x1, x2, x3)(SτT ) = ((x1, x2, x3)Sτ )T for any quasigroup triplet
(x1, x2, x3) [105].

Slightly other operation on the set of all isostrophies (multiplication of quasigroup isostro-
phies) is defined in [14]. Definition from [69] is very close to Definition 1.89. See, also, [13, 48].

Corollary 1.90. One has (ε, S)(τ, ε) = (τ, Sτ ) = (τ, ε)(ε, Sτ ).

Lemma 1.91. One has (σ, S)−1 = (σ−1, (S−1)σ
−1

).
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Proof. Let S = (α1, α2, α3) be an isotopy of a quasigroup A, S−1 = (α−1
1 , α−1

2 , α−1
3 ), Sσ =

(ασ−11, ασ−12, ασ−13). Then

(σ, S)
(
σ−1,

(
S−1

)σ−1
)

=
(
ε′, Sσ

−1(
S−1

)σ−1
)

(Lemma 1.9)
=

(
ε′,
(
SS−1

)σ−1
)

=
(
ε′, (ε, ε, ε)

)

1.7 Group isotopes and identities

Information for this subsection has been taken from [1, 10, 11, 14, 67, 114, 118]. We formulate
famous Four quasigroups theorem [1, 10, 14, 114] as follows.

Theorem 1.92. A quadruple (f1, f2, f3, f4) of binary quasigroup operation defined on a non-
empty set Q is the general solution of the generalized associativity equation

A1

(
A2(x, y), z

)
= A3

(
x,A4(y, z)

)
if and only if there exists a group (Q,+) and permutations α, β, γ, µ, ν of the set Q such that
f1(t, z) = µt+ γz, f2(x, y) = µ−1(αx+ βy), f3(x, u) = αx+ νu, f4(y, z) = ν−1(βy + γz).

Lemma 1.93 (see Belousov criteria [11]). If in a group (Q,+) the equality αx+βy = γy+δx
holds for all x, y ∈ Q, where α, β, γ, δ are some fixed permutations of Q, then (Q,+) is
an Abelian group.

There exists also the following corollary adapted for our aims from results of Sokhatskii
(see [114, Theorem 6.7.2]).

Corollary 1.94. If in a principal group isotope (Q, ·) of a group (Q,+) the equality αx·βy =
γy · δx holds for all x, y ∈ Q, where α, β, γ, δ are some fixed permutations of Q, then (Q,+)
is an Abelian group.

Proof. If x · y = ξx + χy, then we can rewrite the equality αx · βy = γy · δx in the form
ξαx+ χβy = ξγy + χδx. Now we can apply the Belousov criteria (Lemma 1.93).

Lemma 1.95. (1) For any principal group isotope (Q, ·) there exists its form x ·y = αx+βy
such that α 0 = 0 [111].

(2) For any principal group isotope (Q, ·) there exists its form x · y = αx+ βy such that
β 0 = 0.

(3) For any right linear quasigroup (Q, ·) there exists its form x · y = αx + ψy + c such
that α0 = 0.

(4) For any left linear quasigroup (Q, ·) there exists its form x · y = ϕx+βy+ c such that
β0 = 0.

(5) For any left linear quasigroup (Q, ·) with idempotent element 0 there exists its form
x · y = ϕx+ βy such that β0 = 0.

(6) For any right linear quasigroup (Q, ·) with idempotent element 0 there exists its form
x · y = αx+ ψy such that α0 = 0.

Proof. (1) We have x · y = αx+ βy = R−α0αx+ Lα0βy = α′x+ β′y, α′0 = 0.
(2) We have x · y = αx+ βy = Rβ0αx+ L−β0βy = α′x+ β′y, β′0 = 0.
(3) We have x · y = αx + ψy + c = R−α0αx + Iα0ψy + α0 + c = α′x + ψ′y + c′, where

Iα0ψy = α0 +ψy−α0, α′0 = 0. Since Iα0 is an inner automorphism of the group (Q,+), we
obtain Iα0ψ ∈ Aut(Q,+).
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(4) We have x·y = ϕx+βy+c = ϕx+βy−β0+β0+c = ϕx+R−β0βy+β0+c = ϕx+β′y+c′,
where β′ = R−β0β, c′ = β0 + c.

(5) If x · y = ϕx + βy + c, then 0 = 0 · 0 = ϕ 0 + β 0 + c = β 0 + c, β 0 = −c. Therefore
x · y = ϕx+Rcβy = ϕx+ β′y and β′0 = Rcβ0 = −c+ c = 0.

(6) If x · y = αx + ψy + c, then 0 = 0 · 0 = α 0 + ψ 0 + c = α 0 + c, α 0 = −c. Therefore
x · y = αx+ c− c+ ψy + c = Rcαx+ I−cψy = Rcα

′x+ ψ′y and α′0 = Rcα0 = −c+ c = 0.
Moreover, ψ′ is an automorphism of (Q,+) as the product of two automorphisms of the
group (Q,+).

Lemma 1.96. For any left linear quasigroup (Q, ·) there exists its form such that x · y =
ϕx+ βy.

For any right linear quasigroup (Q, ·) there exists its form such that x · y = αx+ ψy.

Proof. We can rewrite the form x · y = ϕx + βy + c of a left linear quasigroup (Q, ·) as
follows: x · y = ϕx+Rcβy = ϕx+ β′y, where β′ = Rcβ.

We can rewrite the form x · y = αx+ψy+ c of a right linear quasigroup (Q, ·) as follows:
x · y = αx+ c− c+ ψy + c = Rcαx+ Icψy = α′x+ ψ′y, where I−cψy = −c+ ψy + c.

Classical criteria of a linearity of a quasigroup are given by Belousov in [11]. We give
a partial case of Sokhatskii result (see [112], [113, Theorem 3], [114, Theorem 6.8.6]).

We recall that up to isomorphism every isotope is principal (Remark 1.7).

Theorem 1.97. Let (Q, ·) be a principal isotope of a group (Q,+), x · y = αx+ βy.
If (α1x ·α2y) · a = α3x ·α4y is true for all x, y ∈ Q, where α1, α2, α3, α4 are permutations

of the set Q, a is a fixed element of the set Q, then (Q, ·) is a left linear quasigroup.
If a · (α1x ·α2y) = α3x ·α4y is true for all x, y ∈ Q, where α1, α2, α3, α4 are permutations

of the set Q, a is a fixed element of the set Q, then (Q, ·) is a right linear quasigroup.

Proof. We follow [114]. By Lemma 1.95 quasigroup (Q, ·) can have the form x ·y = αx+βy
over a group (Q,+) such that α 0 = 0. If we pass in the equality (α1x · α2y) · a = α3x · α4y
to the operation “+”, then we obtain α(αα1x + βα2y) + βa = αα3x + βα4y, α(x + y) =
αα3α

−1
1 α−1x+ βα4α

−1
2 β−1y − βa.

Then the permutation α is a group quasiautomorphism. It is known that any group
quasiautomorphism has the form Laϕ, where ϕ ∈ Aut(Q,+). See [15, 12] or Corollary 1.23.
Therefore α ∈ Aut(Q,+), since α0 = 0.

By Lemma 1.95 there exists the form x · y = αx + βy of quasigroup (Q, ·) such that
β 0 = 0. If we pass in the equality a · (α1x · α2y) = α3x · α4y to the operation “+”, then we
obtain αa+β(αα1x+βα2y) = αα3x+βα4y, β(x+y) = −αa+αα3α

−1
1 α−1x+βα4α

−1
2 β−1y.

Then the permutation β is a group quasiautomorphism. Therefore β ∈ Aut(Q,+), since
β0 = 0.

Corollary 1.98. (1) If a left F-quasigroup (E-quasigroup, SM-quasigroup) is a group isotope,
then this quasigroup is right linear.

(2) If a right F-quasigroup (E-quasigroup, SM-quasigroup) is a group isotope, then this
quasigroup is left linear [113].

Proof. The proof follows from Theorem 1.97.

Lemma 1.99. (1) If in a right linear quasigroup (Q, ·) over a group (Q,+) the equality
k · yx = xy · b holds for all x, y ∈ Q and fixed k, b ∈ Q, then (Q,+) is an Abelian group.

(2) If in a left linear quasigroup (Q, ·) over a group (Q,+) the equality k ·yx = xy ·b holds
for all x, y ∈ Q and fixed k, b ∈ Q, then (Q,+) is an Abelian group.
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Proof. (1) By Lemma 1.96 we can take the following form of (Q, ·): x · y = αx + ψy.
Thus we have αk + ψ(αy + ψx) = α(αx + ψy) + ψb, αk + ψαy + ψ2x − ψb = α(αx + ψy),
α(x+ y) = αk + ψαψ−1y + ψ2α−1x− ψb. Therefore α is a quasiautomorphism of the group
(Q,+). Let α = Ldϕ, where ϕ ∈ Aut(Q,+).

Further we have d+ϕx+ϕy = αk+ψαψ−1y+ψ2α−1x−ψb, Ldϕx+ϕy = Lαkψαψ
−1y+

R−ψbψ
2α−1x. Finally, we can apply Lemma 1.93.

Case (2) is proved in a similar way.

Quasigroup (Q, ·) with equality xy · z = x · (y ◦ z) for all x, y, z ∈ Q is called “quasigroup
which fulfills Sushkevich postulate A”.

Quasigroup (Q, ·) with equality x · yz = (x ◦ y) · z for all x, y, z ∈ Q will be called
“quasigroup which fulfills Sushkevich postulate A∗”.

Theorem 1.100. (1) If quasigroup (Q, ·) fulfills Sushkevich postulate A, then (Q, ·) is iso-
topic to the group (Q, ◦), (Q, ·) = (Q, ◦)(ϕ, ε, ϕ) (see [15, Theorem 1.7]).

(2) If quasigroup (Q, ·) fulfills Sushkevich postulate A∗, then (Q, ·) is isotopic to the group
(Q, ◦), (Q, ·) = (Q, ◦)(ε, ψ, ψ).

Proof. Case (1) is proved in [15].
The proof of Case (2) is similar to the proof of Case (1). It is easy to see that (Q, ◦) is

quasigroup. Indeed, if z = c, then we have x ·R·cy = R·c(x◦y), (Q, ◦) is isotope of quasigroup
(Q, ·). Therefore (Q, ◦) is a quasigroup. Moreover, x·y = Rc(x◦R−1

c y), (Q, ·) = (Q, ◦)(ε, ψ, ψ),
where ψ = R−1

c .
Quasigroup (Q, ◦) is a group. It is possible to use Theorem 1.92 but we give direct proof

similar to the proof from [15]. We have (x ◦ (y ◦ z)) · w = x · ((y ◦ z) · w) = x · (y · (z · w)) =
(x ◦ y) · (z · w) = ((x ◦ y) ◦ z) · w, x ◦ (y ◦ z) = (x ◦ y) ◦ z.

Quasigroup (Q, ·) with generalized identity xy ·z = x·yδ(z), where δ is a fixed permutation
of the set Q, is called “quasigroup which fulfills Sushkevich postulate B”.

Quasigroup (Q, ·) with generalized identity x · yz = (δ(x) · y) · z, where δ is a fixed
permutation of the set Q, will be called “quasigroup which fulfills Sushkevich postulate B∗”.

It is easy to see that any quasigroup with postulate B (B∗) is a quasigroup with postulate
A (A∗).

Theorem 1.101. (1) If quasigroup (Q, ·) fulfills Sushkevich postulate B, then (Q, ·) is iso-
topic to the group (Q, ◦), (Q, ·) = (Q, ◦)(ε, ψ, ε), where ψ ∈ Aut(Q, ◦), ψ ∈ Aut(Q, ·) (see
[15, Theorem 1.8]).

(2) If quasigroup (Q, ·) fulfills Sushkevich postulate B ∗, then (Q, ·) is isotopic to the group
(Q, ◦), (Q, ·) = (Q, ◦)(ϕ, ε, ε), where ϕ ∈ Aut(Q, ◦), ϕ ∈ Aut(Q, ·).

Proof. Case (1) is proved in [15]. It is easy to see that quasigroup (Q, ·) has the right identity
element, i.e., (Q, ·) is right loop. Indeed, x · 0 = x ◦ ψ 0 = x for all x ∈ Q, where 0 is zero of
group (Q, ◦).

(2) The proof of Case (2) is similar to the proof of Case (1). Here we give the direct proof
because the book [15] is rare. Since the quasigroup (Q, ·) fulfills postulates A ∗ and B ∗, then
by Theorem 1.100(2), groupoid (magma) (Q, ◦), x ◦ y = δ(x) · y, is a group and (Q, ·) =
(Q, ◦)(δ−1, ε, ε). By the same theorem (Q, ·) = (Q, ◦)(ε, ψ, ψ). Therefore (δ, ψ, ψ) is an auto-
topy of the group (Q, ◦). By Corollary 1.22 δ ∈ Aut(Q, ◦). Therefore ϕ = δ−1 ∈ Aut(Q, ◦).
It is easy to see that (Q, ·) is left loop.
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2 Direct decompositions

2.1 Left and right F-quasigroups

In order to study the structure of left F-quasigroups we will use approach from [78, 102]. As
usual e(e(x)) = e2(x), and so on.

Lemma 2.1 (see [77, 15]). (1) In a left F-quasigroup (Q, ·) the map ei is an endomorphism
of (Q, ·), ei(Q, ·) is a subquasigroup of quasigroup (Q, ·) for all suitable values of the index i.

(2) In a right F-quasigroup (Q, ·) the map f i is an endomorphism of (Q, ·), f i(Q, ·) is
a subquasigroup of quasigroup (Q, ·) for all suitable values of the index i

Proof. (1) From identity x · yz = xy · e(x)z by z = e(y) we have xy = xy · e(x)e(y), i.e.,
e(x · y) = e(x) · e(y). Further we have e2(x · y) = e(e(x · y)) = e(e(x) · e(y)) = e2(x) · e2(y)
and so on. Therefore em is an endomorphism of the quasigroup (Q, ·). The fact that em(Q, ·)
is a subquasigroup of quasigroup (Q, ·) follows from Lemma 1.54.

(2) The proof is similar.

The proof of the following lemma has taken from [15, p. 33].

Lemma 2.2. (1) Endomorphism e of a left F-quasigroup (Q, ·) is zero endomorphism, i.e.,
e(x) = k for all x ∈ Q, if and only if left F-quasigroup (Q, ·) is a right loop, isotope of a group
(Q,+) of the form (Q, ·) = (Q,+)(ε, ψ, ε), where ψ ∈ Aut(Q,+), k = 0.

(2) Endomorphism f of a right F-quasigroup (Q, ·) is zero endomorphism, i.e., f(x) = k
for all x ∈ Q, if and only if right F-quasigroup (Q, ·) is a left loop, isotope of a group (Q,+)
of the form (Q, ·) = (Q,+)(ϕ, ε, ε), where ϕ ∈ Aut(Q,+), k = 0.

Proof. (1) We can rewrite equality x ·yz = xy ·Lkz in the form xy ·z = x(yL−1
k z) = x(y ·δz),

where δ = L−1
k . Therefore Sushkevich postulate B is fulfilled in (Q, ·) and we can apply

Theorem 1.101. Further we have x · 0 = x+ψ 0 = x. From the other side x ·k = x. Therefore,
k = 0. It is easy to see that the converse also is true.

(2) We can use the “mirror” principles.

Lemma 2.3 (see [15]). (1) The endomorphism e of a left F-quasigroup (Q, ·) is a permutation
of the set Q if and only if quasigroup (Q, ◦) of the form x ◦ y = x · e(y) is a left distributive
quasigroup and e ∈ Aut(Q, ◦).

(2) The endomorphism f of a right F-quasigroup (Q, ·) is a permutation of the set Q if
and only if quasigroup (Q, ◦) of the form x ◦ y = f(x) · y is a right distributive quasigroup
and f ∈ Aut(Q, ◦).

Proof. (1) Prove that (Q, ◦) is left distributive. We have

x ◦ (y ◦ z) = x · e
(
y · e(z)

)
= x ·

(
e(y) · e2(z)

)
=
(
x · e(y)

)
·
(
e(x) · e2(z)

)
=
(
x · e(y)

)
· e
(
x · e(z)

)
= (x ◦ y) ◦ (x ◦ z)

(2.1)

Prove that e ∈ Aut(Q, ◦). We have e(x ◦ y) = e(x · e(y)) = e(x) · e2(y) = e(x) ◦ e(y) [72].
Conversely, let (Q, ·) be an isotope of the form x · y = x ◦ ψ(y), where ψ ∈ Aut(Q, ◦), of

a left distributive quasigroup (Q, ◦). The fact that ψ ∈ Aut(Q, ·) follows from Lemma 1.24.
We can use equalities (2.1) by the proving that (Q, ·) is a left F-quasigroup. The fact that

ψ = e−1 follows from Lemma 1.29.
(2) The proof is similar.
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In a left F-quasigroup (Q, ·) define the following (maybe infinite) chain:

Q ⊃ e(Q) ⊃ e2(Q) ⊃ · · · ⊃ em(Q) ⊃ · · · (2.2)

Definition 2.4. Chain (2.2) becomes stable means that there exists a number m (finite or
infinite) such that em(Q) = em+1(Q) = em+2(Q) . . . . We notice, in other words

em(Q) =
∞⋂
i=1

ei(Q) = lim
i→∞

ei(Q)

In this case we will say that endomorphism e has the order m.

Lemma 2.5. In any left F-quasigroup Q chain (2.2) becomes stable, i.e., the map e|em(Q) is
an automorphism of quasigroup em(Q).

Proof. We have two cases. (1) Chain (2.2) becomes stable on a finite step m. It is clear that
in this case e|em(Q) is an automorphism of em(Q, ·).

(2) Prove that chain (2.2) will be stabilized on the step m =∞, if it is not stabilized on
a finite step m. Denote

⋂∞
i=1 e

i(Q) by C.
Notice, if A ⊆ Q, B ⊆ Q, then e(A ∩ B) ⊆ e(A) ∩ e(B). Indeed, if x ∈ A ∩ B, then

e(x) ∈ e(A ∩ B). If x ∈ A ∩ B, then x ∈ A and x ∈ B. Therefore e(x) ∈ e(A) and
e(x) ∈ e(B), e(x) ∈ e(A) ∩ e(B), e(A ∩B) ⊆ e(A) ∩ e(B). Then

e(C) = e

( ∞⋂
i=1

ei(Q)

)
⊆
∞⋂
i=1

ei+1(Q) = C

Prove that e(C) = C. Any element c ∈ C has the form c = limi→∞ e
i(a), where a ∈ Q.

Then e(c) = e(limi→∞ e
i(a)) = limi→∞ e

i+1(a) ∈ C for any c ∈ C. Therefore there does not
exist element x of the set C such that e(x) /∈ e(C).

Therefore for any m (finite or infinite) e|em(Q) is an automorphism of em(Q, ·).

Example 2.6. Quasigroup (Z, ·), where x · y = −x + y, (Z,+) is infinite cyclic group,
is medial, unipotent, left F-quasigroup such that e(x) = x + x = 2x. Notice in this case
Ker e = {0}. In [71, p. 59] a mapping similar to the mapping e is called isomorphism and
the embedding of an algebra in its subalgebra.

Theorem 2.7. (1) Any left F-quasigroup (Q, ·) has the following structure:

(Q, ·) ∼= (A, ◦)× (B, ·)

where (A, ◦) is a quasigroup with a unique idempotent element; (B, ·) is isotope of a left
distributive quasigroup (B, ?), x · y = x ? ψy for all x, y ∈ B, ψ ∈ Aut(B, ·), ψ ∈ Aut(B, ?).

(2) Any right F-quasigroup (Q, ·) has the following structure:

(Q, ·) ∼= (A, ◦)× (B, ·)

where (A, ◦) is a quasigroup with a unique idempotent element; (B, ·) is isotope of a right
distributive quasigroup (B, ?), x · y = ϕx ? y for all x, y ∈ B, ϕ ∈ Aut(B, ·), ϕ ∈ Aut(B, ?).
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Proof. The proof of this theorem mainly repeats the proof of Theorem 6 from [102].
If the map e is a permutation of the set Q, then by Lemma 2.3 (Q, ·) is isotope of left

distributive quasigroup.
If e(Q) = k, where k is a fixed element of the set Q, then the quasigroup (Q, ·) is a quasi-

group with right identity element k, i.e., it is a right loop, which is isotopic to a group (Q,+)
(Lemma 2.2).

Let us suppose that em = em+1, where m > 1.
From Lemma 2.5 it follows that em(Q, ·) = (B, ·) is a subquasigroup of quasigroup (Q, ·).

It is clear that (B, ·) is a left F-quasigroup in which the map e = e|em(Q) is a permutation of
the set B ⊂ Q. In other words, e(B, ·) = (B, ·).

Define binary relation δ on quasigroup (Q, ·) by the following rule: xδy if and only if
em(x) = em(y). Define binary relation ρ on quasigroup (Q, ·) by the rule xρy if and only
if B · x = B · y, i.e., for any b1 ∈ B there exists exactly one element b2 ∈ B such that
b1 · x = b2 · y and, vice versa, for any b2 ∈ B there exists exactly one element b1 ∈ B such
that b1 · x = b2 · y.

From Theorem 1.51 and Lemma 1.54 it follows that δ is a normal congruence.
It is easy to check that binary relation ρ is equivalence relation (see Theorem 1.37).
We prove that binary relation ρ is a congruence, i.e., that the following implication is

true: x1ρy1, x2ρy2,⇒ (x1 · x2)ρ(y1 · y2).
Using the definition of relation ρ we can rewrite the last implication in the following

equivalent form: if

B · x1 = B · y1, B · x2 = B · y2 (2.3)

then B · (x1 · x2) = B · (y1 · y2).
If we multiply both sides of equalities (2.3), respectively, then we obtain the following

equality:( x
B ·

y
x1

)
·
( e(x)
B · zx2

)
=
(
B · y1

)
·
(
B · y2

)
Using left F-quasigroup equality (x ·yz = xy · e(x)z) from the right to the left and, taking

into consideration that if x ∈ B, then e(x) ∈ B, i.e., eB = B, we can rewrite the last equality
in the following form:

B ·
(
x1 · x2

)
= B ·

(
y1 · y2

)
since (B, ·) is a subquasigroup and, therefore, B · B = B. Thus the binary relation ρ is
a congruence.

Prove that δ ∩ ρ = Q̂ = {(x, x) | ∀x ∈ Q}. From reflexivity of relations δ, ρ it follows that
δ ∩ ρ ⊇ Q̂.

Let (x, y) ∈ δ ∩ ρ, i.e., let x δ y and x ρ y where x, y ∈ Q. Using the definitions of
relations δ, ρ we have em(x) = em(y) and (B, ·) · x = (B, ·) · y. Then there exist a, b ∈ B
such that a · x = b · y. Applying to both sides of last equality the map em we obtain
em(a) · em(x) = em(b) · em(y), em(a) = em(b), a = b, since the map em|B is a permutation of
the set B. If a = b, then from equality a · x = b · y we obtain x = y.

Prove that δ ◦ ρ = Q × Q. Let a, c be any fixed elements of the set Q. We prove the
equality if it will be shown that there exists element y ∈ Q such that aδy and yρc.

From definition of congruence δ we have that condition aδy is equivalent to equality
em(a) = em(y). From definition of congruence ρ it follows that condition yρc is equivalent to
the following condition: y ∈ ρ(c) = B · c.
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We prove the equality if it will be shown that there exists element y ∈ B · c such that
em(a) = em(y). Such element y there exists since em(B · c) = em(B) · em(c) = B = em(Q).

Prove that ρ ◦ δ = Q × Q. Let a, c be any fixed elements of the set Q. We prove the
equality if it will be shown that there exists element y ∈ Q such that aρy and yδc.

From definition of congruence δ we have that condition yδc is equivalent to equality
em(c) = em(y). From definition of congruence ρ it follows that condition aρy is equivalent to
the following condition: y ∈ ρ(a) = B · a.

We prove the equality if it will be shown that there exists element y ∈ B · a such that
em(c) = em(y). Such element y there exists since em(B · a) = em(B) · em(a) = B = em(Q).

Therefore ρ ◦ δ = Q×Q = δ ◦ ρ, δ∩ ρ = Q̂ and we can use Theorem 1.73. Now we can say
that quasigroup (Q, ·) is isomorphic to the direct product of a quasigroup (Q, ·)/δ ∼= (B, ·)
(Theorem 1.51) and a division groupoid (Q, ·)/ρ ∼= (A, ◦) [5, 24].

From Definition 1.71 it follows, if (Q, ·) ∼= (B, ·) × (A, ◦), where (Q, ·), (B, ·) are quasi-
groups, then (A, ◦) also is a quasigroup. Then by Theorem 1.51 the congruence ρ is normal,
(B, ·) P (Q, ·).

Left F-quasigroup equality holds in quasigroup (B, ·) since (B, ·) ⊆ (Q, ·).
If the quasigroups (Q, ·) and (B, ·) are left F-quasigroups, (Q, ·) ∼= (A, ◦) × (B, ·), then

(A, ◦) also is a left F-quasigroup (Lemma 1.75).
Prove that the quasigroup (A, ◦) ∼= (Q, ·)/(B, ·), where em(Q, ·) = (B, ·), has a unique

idempotent element.
We can identify elements of quasigroup (Q, ·)/(B, ·) with cosets of the form B · c, where

c ∈ Q.
From properties of quasigroup (A, ◦) we have that em(A) = a, where the element a

is a fixed element of the set A that corresponds to the coset class B. Further, taking into
consideration the properties of endomorphism e of the quasigroup (A, ◦), we obtain em+1A =
e(emA) = e(a) = a. Therefore e(a) = a, i.e., the element a is an idempotent element of
quasigroup (A, ◦).

Prove that there exists exactly one idempotent element in quasigroup (A, ◦). Suppose
that there exists an element c of the set A such that c ◦ c = c, i.e., such that e(c) = c. Then
we have em(c) = c = a, since em(A) = a.

The fact that (B, ·) is isotope of a left distributive quasigroup (B, ?) follows from Lemma
2.3.

Properties of right F-quasigroups coincide with the “mirror” properties of left F-quasi-
groups.

We notice, in finite case all congruences are normal and permutable (Lemmas 1.59 and
1.48). Therefore for finite case Theorem 2.7 can be proved in more short way.

We add some details on the structure of left F-quasigroup (Q, ·). By ej(Q, ·) we denote
endomorphic image of the quasigroup (Q, ·) relative to the endomorphism ej .

Corollary 2.8. If (Q, ·) is a left F-quasigroup, then em(Q, ·) P (Q, ·).

Proof. This follows from the fact that the binary relation ρ from Theorem 2.7 is a normal
congruence in (Q, ·) and subquasigroup em(Q, ·) = (B, ·) is an equivalence class of ρ.

Remark 2.9. For brevity we will denote the endomorphism e| ej(Q,·) such that

e| ej(Q,·) : ej(Q, ·) −→ ej+1(Q, ·)

by ej , the endomorphism f | fj(Q,·) by fj , the endomorphism s| sj(Q,·) by sj .
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Corollary 2.10. If (Q, ·) is a left F-quasigroup with an idempotent element, then equivalence
class (cell) ā of the normal congruence Ker ej containing an idempotent element a ∈ Q forms
linear right loop (ā, ·) for all suitable values of j.

Proof. By Lemma 1.53 (ā, ·) is a quasigroup. From properties of the endomorphism e we
have that in (ā, ·) endomorphism e is zero endomorphism. Therefore in this case we can
apply Lemma 2.2. Then (ā, ·) is isotopic to a group with isotopy of the form (ε, ψ, ε), where
ψ ∈ Aut(ā, ·).

Corollary 2.11. If (Q, ·) is a right F-quasigroup, then fm(Q, ·) P (Q, ·).

Proof. The proof is similar to the proof of Corollary 2.8.

Corollary 2.12. If (Q, ·) is a right F-quasigroup with an idempotent element, then equiv-
alence class ā of the normal congruence Ker fj containing an idempotent element a ∈ Q
forms linear left loop (ā, ·) for all suitable values of j.

Proof. The proof is similar to the proof of Corollary 2.10.

2.2 Left and right SM- and E-quasigroups

We can formulate theorem on the structure of left semimedial quasigroup using connections
between a quasigroup and its (23)-parastrophe (Lemma 1.85), but in order to have more
information about left semimedial quasigroup we prefer to give direct formulations some
results from Section 2.1.

Lemma 2.13. (1) In a left semimedial quasigroup (Q, ·) the map si is an endomorphism
of (Q, ·), si(Q, ·) is a subquasigroup of quasigroup (Q, ·) for all suitable values of the index i
[77, 15].

(2) In a right semimedial quasigroup (Q, ·) the map si is an endomorphism of (Q, ·),
si(Q, ·) is a subquasigroup of quasigroup (Q, ·) for all suitable values of the index i.

(3) In a left E-quasigroup (Q, ·) the map f i is an endomorphism of (Q, ·), f i(Q, ·) is a
subquasigroup of quasigroup (Q, ·) for all suitable values of the index m [64].

(4) In a right E-quasigroup (Q, ·) the map ei is an endomorphism of (Q, ·), ei(Q, ·) is
a subquasigroup of quasigroup (Q, ·) for all suitable values of the index m [64].

Proof. (1) From identity xx · yz = xy · xz by z = y we have xx · yy = xy · xy, i.e.,
s(x) · (y) = s(x · y). Therefore si is an endomorphism of the quasigroup (Q, ·).

The fact that si(Q, ·) is a subquasigroup of quasigroup (Q, ·) follows from Lemma 1.54.
(2) The proof of Case (2) is similar to the proof of Case (1), thus we omit it.
(3) From identity x · yz = f(x)y · xz by y = f(y), z = y we have xy = f(x)f(y) · xy. But

f(xy) · xy = xy. Therefore f(x) · f(y) = f(x · y) [64].
(4) From identity zy · x = zx · ye(x) by y = e(y), z = y we have yx = yx · e(y)e(x).

Theorem 2.14. (1) If the endomorphism s of a left semimedial quasigroup (Q, ·) is zero
endomorphism, i.e., s(x) = 0 for all x ∈ Q, then (Q, ·) is an unipotent quasigroup, (Q, ·) ∼=
(Q, ◦), where x ◦ y = −ϕx+ ϕy, (Q,+) is a group, ϕ ∈ Aut(Q,+).

(2) If the endomorphism s of a right semimedial quasigroup (Q, ·) is zero endomorphism,
i.e., s(x) = 0 for all x ∈ Q, then (Q, ·) is an unipotent quasigroup, (Q, ·) ∼= (Q, ◦), where
x ◦ y = ϕx− ϕy, (Q,+) is a group, ϕ ∈ Aut(Q,+).
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(3) If the endomorphism f of a left E-quasigroup (Q, ·) is zero endomorphism, i.e., f(x) =
0 for all x ∈ Q, then up to isomorphism (Q, ·) is a left loop, x·y = αx+y, (Q,+) is an Abelian
group, α0 = 0.

(4) If the endomorphism e of a right E-quasigroup (Q, ·) is zero endomorphism, i.e.,
e(x) = 0 for all x ∈ Q, then up to isomorphism (Q, ·) is a right loop, x · y = x+ βy, (Q,+)
is an Abelian group, β0 = 0.

Proof. (1) We can rewrite equality xx · yz = xy · xz in the form k · yz = xy · xz, where
s(x) = k for all x ∈ Q. If we denote xz by v, then z = x\v and equality k · yz = xy ·xz takes
the form k · (y · (x\v)) = xy · v, k · (y · (x\v)) = (y ∗ x) · v.

Then the last equality has the form A1(y,A2(x, v)) = A3(A4(y, x), v), where A1, A2, A3,
A4 are quasigroup operations, namely, A1(y, t) = Lk(y·t), t = A2(x, v) = x\v, A3(u, v) = u·v,
u = A4(y, x) = x · y.

From Four quasigroups theorem (Theorem 1.92) it follows that quasigroup (Q, ·) is an iso-
tope of a group (Q,+).

If in the equality k · yz = xy · xz we fix the variable x = b, then we obtain the equality
k · yz = by · bz, k · yz = Lby · Lbz. From Theorem 1.97 it follows that (Q, ·) is a right linear
quasigroup.

If in k · yz = xy · xz we put x = z, then we obtain k · yx = xy · k. From Lemma 1.99 it
follows that (Q,+) is a commutative group.

From Lemma 1.95 we have that there exists a group (Q,+) such that x · y = αx+ψy+ c,
where α is a permutation of the set Q, α0 = 0, ψ ∈ Aut(Q,+).

Further we have s(0) = k = 0 · 0 = c, k = c. Then s(x) = k = x · x = αx + ψx + k.
Therefore αx + ψx = 0 for all x ∈ Q. Then α = Iψ, where x + I(x) = 0 for all x ∈ Q.
Therefore α is an antiautomorphism of the group (Q,+), x · y = Iψx+ ψy + k.

Finally L−1
k (Lkx · Lky) = L−1

k (Iψx + Iψk + ψk + ψy + k) = L−1
k (Iψx + ψy + k) =

−k+ Iψx+k−k+ψy+k = IkIψx+ Ikψy = IIkψx+ Ikψy = x ◦ y, where Ikx = −k+x+k
is an inner automorphism of (Q,+). It is easy to see that s◦(x) = 0 for all x ∈ Q.

Below we will suppose that any left semimedial quasigroup (Q, ·) with zero endomorphism
s is an unipotent quasigroup with the form x · y = −ϕx + ϕy, where (Q,+) is a group,
ϕ ∈ Aut(Q,+).

(2) We can rewrite equality zy ·s(x) = zx·yx in the form zy ·k = zx·yx, where s(x) = k. If
we denote zx by v, then z = v/x and the equality zy ·k = zx ·yx takes the form ((v/x)y)k =
v · yx = v · (x ∗ y).

We rewrite the last equality in the form A1(A2(v, x), y) = A3(v,A4(x, y)), where A1,
A2, A3, A4 are quasigroup operations, namely, A1(t, y) = Rk(t · y), t = A2(v, x) = v/x,
A3(v, u) = v · u, u = A4(x, y) = x ∗ y.

From Four quasigroups theorem it follows that quasigroup (Q, ·) is an isotope of a group
(Q,+).

If in the equality zy · k = zx · yx we fix the variable x = b, then we obtain the equality
zy · k = zb · yb, zy · k = Rbz · Rby. From Theorem 1.97 it follows that (Q, ·) is a left linear
quasigroup.

If in the equality zy · k = zx · yx we put x = z, then we obtain xy · k = k · yx. Thus from
Lemma 1.99 it follows that (Q,+) is a commutative group.

From Lemma 1.95 we have that there exists a group (Q,+) such that x · y = ϕx+βy+ c,
where β is a permutation of the set Q, β0 = 0, ϕ ∈ Aut(Q,+).

Further we have s(0) = k = 0 · 0 = c, k = c. Then s(x) = k = x · x = ϕx + βx + k.
Therefore ϕx+ βx = 0 for all x ∈ Q. Then β = Iϕ, where Ix+ x = 0 for all x ∈ Q.
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Therefore β = Iϕ ∈ Aut(Q,+), x · y = ϕx− ϕy + k.
We have R−1

k (Rkx·Rky) = R−1
k (ϕx+ϕk−ϕk−ϕy+k) = ϕx−ϕy+k−k = ϕx−ϕy = x◦y.

It is easy to see that s◦(x) = 0 for all x ∈ Q.
Below we will suppose that any right semimedial quasigroup (Q, ·) with zero endomor-

phism s is an unipotent quasigroup with the form x · y = ϕx− ϕy, where (Q,+) is a group,
ϕ ∈ Aut(Q,+).

(3) We can rewrite the equality x · yz = f(x)y · xz in the form x · yz = ky · xz = y · xz,
x · (z ∗ y) = xz ∗ y, where f(x) = k for all x ∈ Q.

Then A1(x,A2(z, y)) = A3(A4(x, z), y), where A1, A2, A3, A4 are quasigroup operations,
namely, A1(x, t) = x · t, t = A2(z, y) = z ∗ y, A3(u, y) = u ∗ y, u = A4(x, z) = x · z. From
Four quasigroups theorem it follows that quasigroup (Q, ·) is a group isotope.

If in the equality x · yz = y · xz we fix variable z, i.e., if we take z = a, then we have
x ·Ray = y ·Rax. From Corollary 1.94 it follows that the group (Q,+) is commutative.

If in the equality x · yz = y · xz we fix variable x, i.e., if we take x = a, then we have
a · yz = y · az, a · (yz) = y · Laz. The application of Theorem 1.97 to the last equality gives
us that (Q, ·) is a right linear quasigroup, i.e., x · y = αx+ ψy + c.

Then f(x) · x = k · x = αk + ψx + c = x. By x = 0 we have αk + ψ0 + c = 0, αk = −c.
Therefore, k · x = x = ψx for all x ∈ Q. Then ψ = ε, x · y = αx + y + c = Lcαx + y for all
x, y ∈ Q. In other words, x · y = αx+ y for all x, y ∈ Q.

Further let a + α0 = 0. Then L−1
a (Laαx + Lay) = −a + a + αx + a + y = a + αx + y =

α′x+ y = x ◦ y, where α′ = Laα and α′0 = 0.
(4) Case (4) is a “mirror” case of Case (3), but we give the direct proof. We can rewrite

equality zy · x = zx · ye(x) in the form zy · x = zx · yk = zx · y, (y ∗ z) · x = y ∗ zx, where
e(x) = k.

Then A1(A2(y, z), x) = A3(y,A4(z, x)), where A1, A2, A3, A4 are quasigroup operations,
namely, A1(t, x) = t · x, t = A2(y, z) = y ∗ z, A3(y, v) = y ∗ v, v = A4(z, x) = z · x.

From Four quasigroups theorem it follows that quasigroup (Q, ·) is an isotope of a group
(Q,+).

If in the equality zy · x = zx · y we fix variable z, i.e., if we take z = a, then we have
Lay · x = Lax · y. From Corollary 1.94 it follows that the group (Q,+) is commutative.

If in the equality zy · x = zx · y we fix variable x, i.e., if we take x = a, then we have
zy · a = za · y, zy · a = Raz · y. The application of Theorem 1.97 to the last equality gives us
that (Q, ·) is a left linear quasigroup, i.e., x · y = ϕx+ βy + c.

Then x · e(x) = x · k = ϕx + βk + c = x. By x = 0 we have ϕ0 + βk + c = 0, βk = −c.
Therefore x · k = x = ϕx for all x ∈ Q. Then ϕ = ε, x · y = x + βy + c = x + Rcβy for all
x, y ∈ Q. In other words, x · y = x+ βy for all x, y ∈ Q.

Further let a + β0 = 0. Then L−1
a (Lax + Laβy) = −a + a + x + a + βy = x + a + βy =

x+ β′y = x ◦ y, where β′ = Laβ and β′0 = 0.

In proof of the following lemma we use ideas from [15].

Lemma 2.15. (1) If the endomorphism s of a left semimedial quasigroup (Q, ·) is a permu-
tation of the set Q, then quasigroup (Q, ◦) of the form x ◦ y = s−1(x · y) is a left distributive
quasigroup and s ∈ Aut(Q, ◦).

(2) If the endomorphism s of a right semimedial quasigroup (Q, ·) is a permutation of the
set Q, then quasigroup (Q, ◦) of the form x ◦ y = s−1(x · y) is a right distributive quasigroup
and s ∈ Aut(Q, ◦).
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(3) If the endomorphism f of a left E-quasigroup (Q, ·) is a permutation of the set Q,
then quasigroup (Q, ◦) of the form x ◦ y = f(x) · y is a left distributive quasigroup and
f ∈ Aut(Q, ◦).

(4) If the endomorphism e of a right E-quasigroup (Q, ·) is a permutation of the set Q,
then quasigroup (Q, ◦) of the form x ◦ y = x · e(y) is a right distributive quasigroup and
e ∈ Aut(Q, ◦).

Proof. (1) We prove that (Q, ◦) is left distributive. It is clear that s−1 ∈ Aut(Q, ·). We have

x ◦ (y ◦ z) = s−1
(
x · s−1(y · z)

)
(x ◦ y) ◦ (x ◦ z) = s−2

(
(x · y) · (x · z)

)
= s−2

(
s(x) · (y · z)

)
= s−1

(
x · s−1(y · z)

)
Prove that s ∈ Aut(Q, ◦). We have s(x ◦ y) = x · y, s(x) ◦ s(y) = s−1(s(x) · s(y)) = x · y. See
also [72].

(2) We prove that (Q, ◦) is right distributive. It is clear that s−1∈Aut(Q, ·). We have

(x ◦ y) ◦ z = s−1
(
s−1(x · y) · z

)
(x ◦ z) ◦ (y ◦ z) = s−2

(
(x · z) · (y · z)

)
= s−2

(
(x · y) · s(z)

)
= s−1

(
s−1(x · y) · z

)
Prove that s ∈ Aut(Q, ◦). We have s(x ◦ y) = x · y, s(x) ◦ s(y) = s−1(s(x) · s(y)) = x · y.

(3) If the endomorphism f is a permutation of the set Q, then f, f−1∈Aut(Q, ·). We have

x ◦ (y ◦ z) = f(x) ·
(
f(y) · z

)
(x ◦ y) ◦ (x ◦ z)=f

(
f(x) · y

)
·
(
f(x) · z

)
=
(
f2(x) · f(y)

)
·
(
f(x) · z

)
=f(x) ·

(
f(y) · z

)
Prove that f ∈ Aut(Q, ◦). We have f(x ◦ y) = f(f(x) · y) = f2(x) · f(y) = f(x) ◦ f(y).

(4) If the endomorphism e is a permutation of the set Q, then e, e−1 ∈ Aut(Q, ·). We have

(x ◦ y) ◦ z =
(
x · e(y)

)
· e(z)

(x ◦ z) ◦ (y ◦ z) =
(
x · e(z)

)
· e
(
y · e(z)

)
=
(
x · e(z)

)
·
(
e(y) · e2(z)

)
=
(
x · e(y)

)
· e(z)

Prove that e ∈ Aut(Q, ◦). We have e(x ◦ y) = e(x · e(y)) = e(x) · e2(y) = e(x) ◦ e(y).

Remark 2.16. By the proof of Lemma 2.15 it is possible to use Lemma 2.3 and parastrophe
invariant arguments.

Theorem 2.17. (1) Every left SM-quasigroup (Q, ·) has the following structure:

(Q, ·) ∼= (A, ◦)× (B, ·)

where (A, ◦) is a quasigroup with a unique idempotent element and there exists a number
m such that |sm(A, ◦)| = 1; (B, ·) is an isotope of a left distributive quasigroup (B, ?),
x · y = s(x ? y) for all x, y ∈ B, s ∈ Aut(B, ·), s ∈ Aut(B, ?).

(2) Every right SM-quasigroup (Q, ·) has the following structure:

(Q, ·) ∼= (A, ◦)× (B, ·)

where (A, ◦) is a quasigroup with a unique idempotent element and there exists an ordinal
number m such that |sm(A, ◦)| = 1; (B, ·) is an isotope of a right distributive quasigroup
(B, ?), x · y = s(x ? y) for all x, y ∈ B, s ∈ Aut(B, ·), s ∈ Aut(B, ?).
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(3) Every left E-quasigroup (Q, ·) has the following structure:

(Q, ·) ∼= (A, ◦)× (B, ·)

where (A, ◦) is a quasigroup with a unique idempotent element and there exists a number
m such that |fm(A, ◦)| = 1; (B, ·) is an isotope of a left distributive quasigroup (B, ?),
x · y = f−1(x) ? y for all x, y ∈ B, f ∈ Aut(B, ·), f ∈ Aut(B, ?).

(4) Every right E-quasigroup (Q, ·) has the following structure:

(Q, ·) ∼= (A, ◦)× (B, ·)

where (A, ◦) is a quasigroup with a unique idempotent element and there exists a number
m such that |em(A, ◦)| = 1; (B, ·) is an isotope of a right distributive quasigroup (B, ?),
x · y = x ? e−1(y) for all x, y ∈ B, e ∈ Aut(B, ·), e ∈ Aut(B, ?).

Proof. The proof is similar to the proof of Theorem 2.7. It is possible also to use parastrophe
invariance ideas.

Corollary 2.18. If (Q, ·) is a left SM-quasigroup, then sm(Q, ·) P (Q, ·); if (Q, ·) is a right
SM-quasigroup, then sm(Q, ·) P (Q, ·); if (Q, ·) is a left E-quasigroup, then fm(Q, ·) P (Q, ·);
if (Q, ·) is a right E-quasigroup, then em(Q, ·) P (Q, ·).

Corollary 2.19. If (Q, ·) is a left SM-quasigroup with an idempotent element, then equiv-
alence class ā of the normal congruence Ker sj containing an idempotent element a ∈ Q
forms an unipotent quasigroup (ā, ·) isotopic to a group with isotopy of the form (−ψ,ψ, ε),
where ψ ∈ Aut(ā, ·) for all suitable values of j.

If (Q, ·) is a right SM-quasigroup with an idempotent element, then equivalence class ā of
the normal congruence Ker sj containing an idempotent element a ∈ Q forms an unipotent
quasigroup (ā, ·) isotopic to a group with isotopy of the form (ϕ,−ϕ, ε), where ϕ ∈ Aut(ā, ·)
for all suitable values of j.

If (Q, ·) is a left E-quasigroup with an idempotent element, then equivalence class ā of the
normal congruence Ker fj containing an idempotent element a ∈ Q forms a left loop isotopic
to an Abelian group with isotopy of the form (α, ε, ε) for all suitable values of j.

If (Q, ·) is a right E-quasigroup with an idempotent element, then equivalence class ā of
the normal congruence Ker ej containing an idempotent element a ∈ Q forms a right loop
isotopic to an Abelian group with isotopy of the form (ε, β, ε) for all suitable values of j.

Proof. Mainly the proof repeats the proof of Corollary 2.10. It is possible to use Theo-
rem 2.14.

2.3 CML as an SM-quasigroup

In this subsection we give information (mainly well known) about commutative Moufang
loops (CML) which is possible to obtain from the fact that a loop (Q, ·) is left semimedial if
and only if it is a commutative Moufang loop. Novelty of information from this subsection
is in the fact that some well-known theorems about CML are obtained quit easy using
quasigroup approach.

Lemma 2.20. (1) A left F-loop is a group. (2) A right F-loop is a group. (3) A loop (Q, ·)
is left semimedial if and only if it is a commutative Moufang loop. (4) A loop (Q, ·) is
right semimedial if and only if it is a commutative Moufang loop. (5) A left E-loop (Q, ·) is
a commutative group. (6) A right E-loop (Q, ·) is a commutative group.
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Proof. (1) From x · yz = xy · e(x)z we have x · yz = x · yz.
(2) From xy · z = xf(z) · yz we have xy · z = x · yz.
(3) We use the proof from [12, p. 99]. Let (Q, ·) be a left semimedial loop. If y = 1, then

we have x2 · z = x · xz. If z = 1, then x2y = xy · x. Then x · xy = xy · x. If we denote xy by
y, then we obtain that xy = yx, i.e., the loop (Q, ·) is commutative.

It is clear that a commutative Moufang loop is left semimedial.
(4) For the proof of Case (3) it is possible to use “mirror” principles. We give the direct

proof. Let (Q, ·) be a right semimedial loop, i.e., zy · x2 = zx · yx for all x, y, z ∈ Q. If y = 1,
the we have z · x2 = zx · x.

If z = 1, then yx2 = x · yx. Then zx · x = x · zx. If we denote zx by z, then we obtain
that zx = xz, i.e., the loop (Q, ·) is commutative. Moreover, we have x2 · yz = zy · x2,
xy · zx = xz · yx.

It is clear that a commutative Moufang loop is right semimedial.
(5) From x · yz = f(x)y · xz we have x · yz = y · xz. From the last identity by z = 1 we

obtain x ·y = y ·x. Therefore we can rewrite identity x ·yz = y ·xz in the form yz ·x = y ·zx.
Case (6) is proved in the similar way to Case (5).

Commutative Moufang loop in which any element has the order 3 is called 3-CML.

Remark 2.21. Center C(Q,+) of a CML (Q,+) is a normal Abelian subgroup of (Q,+)
and it coincides with the left nucleus of (Q,+) [12, 24].

Lemma 2.22. In a commutative Moufang loop the map δ : x 7→ 3x is central endomorphism
[12, 24].

Proof. In a CML (Q,+) we have n(x + y) = nx + ny for any natural number n since by
Moufang theorem [12, 24, 76] CML is diassociative (any two elements generate an asso-
ciative subgroup). Therefore the map δ is an endomorphism. See [65] for many details on
commutative diassociative loops.

The proof of centrality of the endomorphism δ is standard [83, 12, 24, 56] and we omit
it.

A quasigroup (Q, ·) with identities xy = yx, x · xy = y, x · yz = xy · xz is called a
distributive Steiner quasigroup [12, 15].

Theorem 2.23. (1) Every commutative Moufang loop (Q,+) has the following structure:

(Q,+) ∼= (A,⊕)× (B,+)

where (A,⊕) is an Abelian group and there exists a number m such that |sm(A,⊕)| = 1;
(B,+) is an isotope of a distributive quasigroup (B, ?), x + y = s(x ? y) for all x, y ∈ B,
s ∈ Aut(B,+), s ∈ Aut(B, ?).

(2) C(Q,+) ∼= (A,⊕)× C(B,+).
(3) (Q,+)/C(Q,+) ∼= (B,+)/C(B,+) ∼= (D,+) is 3-CML in which the endomorphism s

is permutation I such that Ix = −x.
(4) Quasigroup (D, ?), x ? y = −x− y, x, y ∈ (D,+), is a distributive Steiner quasigroup.

Proof. (1) The existence of decomposition of (Q,+) into two factors follows from Theo-
rem 2.17.

From Corollary 2.19 it follows that any equivalence class ā ≡ Hj of the normal congruence
Ker sj containing an idempotent element 0 ∈ Q is an unipotent loop (Hj , ·) isotopic to
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an Abelian group with isotopy of the form (ϕ,−ϕ, ε), where ϕ ∈ Aut(Hj , ·) for all suitable
values of j.

Since (Hj , ·) is a commutative loop, we have that x · 0 = ϕx − ϕ 0 = ϕx = x, ϕ = ε,
0 · x = ϕ 0− ϕx = −ϕx = x, −ϕ = ε. Thus x · y = x+ y for all x, y ∈ (Hj , ·).

We notice in a commutative Moufang loop (Q,+) the map s i takes the form 2 i, i.e.,
si(x) = 2 i(x). Then in the loop (A,⊕) any nonzero element has the order 2 i or infinite
order.

If an element x of the loop (A,⊕) has a finite order, then x ∈ C(A,⊕), where C(A,⊕) is
a center of (A,⊕) since G.C.D.(2 i, 3) = 1.

If an element x of the loop (A,⊕) has infinite order, then by Lemma 2.22 3x ∈ C(A,⊕),
〈x〉 ∼= 〈3x〉.

Therefore (A,⊕) ∼= 3(A,⊕) ⊆ C(A,⊕), (A,⊕) is an Abelian group.
From Theorem 2.17(1), (2) it follows that (B,+) is an isotope of left and right distributive

quasigroup. Therefore, (B,+) is an isotope of distributive quasigroup.
(2) From Lemma 1.74 it follows that C(Q,+) ∼= C(A,⊕)×C(B,+). Therefore C(Q,+) ∼=

(A,⊕)× C(B,+) since C(A,⊕) = (A,⊕).
(3) The fact that (Q,+)/C(Q,+) is 3-CML is well known and it follows from Lemma 2.22.

Isomorphism (Q,+)/C(Q,+) ∼= ((A,⊕)× (B,+))/((A,⊕)×C(B,+)) follows from Cases (1)
and (2).

Isomorphism(
(A,⊕)× (B,+)

)
/
(
(A,⊕)× C(B,+)

) ∼= (B,+)/C(B,+)

follows from the Second Isomorphism Theorem (see [27, p. 51], for group case see [47]) and
the fact that (A,⊕) ∩ C(B,+) = {(0, 0)}, i.e., |(A,⊕) ∩ C(B,+)| = 1.

(4) It is clear that in 3-CML (D,+) the map s takes the form s(x) = 2x = −x = Ix.
Moreover, I−1 = I. It is easy to see that the quasigroup (D, ?) is a distributive Steiner
quasigroup.

Corollary 2.24. If in CML (Q,+) the endomorphism s has finite order m, then (i) any
nonzero element of the group (A,⊕) has the order 2 i, 1 6 i 6 m; (ii) Aut(Q,+) ∼=
Aut(A,⊕)×Aut(B,+).

Proof. (i). It is easy to see.
(ii). Let (Q,+) be a commutative Moufang loop, α ∈ Aut(Q,+). Then the order of

an element x coincides with the order of element α(x). Indeed, if nx = 0, then n(αx) =
α(nx)=0.

The loops (A,⊕) and (B,+) have elements of different orders. Indeed, the orders of
elements of the loop (A,⊕) are powers of the number 2 and orders of the elements of the
loop (B,+) are some odd numbers or, possibly, ∞.

Therefore loops (A,⊕) and (B,+) are invariant relative to any automorphism of the loop
(Q,+). Then Aut(Q,+) ∼= Aut(A,⊕)×Aut(B,+).

3 The structure

Theorems 2.7 and 2.17 give us a possibility to receive some information on left and right F-,
SM-, E-quasigroups and some combinations of these classes.
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3.1 Simple left and right F-, E-, and SM-quasigroups

Simple quasigroups of some classes of finite left distributive quasigroups are described in
[39]. The structure and properties of F-quasigroups are described in [55, 56].

We give Jez̆ek-Kepka Theorem [46] in the following form [101, 103].

Theorem 3.1. If a medial quasigroup (Q, ·) of the form x ·y = αx+βy+a over an Abelian
group (Q,+) is simple, then

(1) the group (Q,+) is the additive group of a finite Galois field GF(pk);
(2) the group 〈α, β〉 is the multiplicative group of the field GF(pk) in the case k > 1, the

group 〈α, β〉 is any subgroup of the group Aut(Zp,+) in the case k = 1;
(3) the quasigroup (Q, ·) in the case |Q| > 1 can be quasigroup from one of the following

disjoint quasigroup classes:

(a) α+ β = ε, a = 0; in this case the quasigroup (Q, ·) is an idempotent quasigroup;
(b) α + β = ε and a 6= 0; in this case the quasigroup (Q, ·) does not have any idem-

potent element, the quasigroup (Q, ·) is isomorphic to the quasigroup (Q, ∗) with
the form x ∗ y = αx+ βy + 1 over the same Abelian group (Q,+);

(c) α+β 6= ε; in this case the quasigroup (Q, ·) has exactly one idempotent element, the
quasigroup (Q, ·) is isomorphic to the quasigroup (Q, ◦) of the form x◦y = αx+βy
over the group (Q,+).

Theorem 3.2. If a simple distributive quasigroup (Q, ◦) is isotopic to finitely generated
commutative Moufang loop (Q,+), then (Q, ◦) is a finite medial distributive quasigroup [94,
95, 96].

Proof. It is known [24] that any finitely generated CML (Q,+) has a nonidentity center
C(Q,+) (for short C).

We check that center of CML (Q,+) is invariant (is a characteristic subloop) relative to
any automorphism of the loop (Q,+) and the quasigroup (Q, ◦).

Indeed, if ϕ ∈ Aut(Q,+), a ∈ C(Q,+) (see Remark 2.21), then we have ϕ(a+ (x+ y)) =
ϕ((a+x)+y) = ϕa+(ϕx+ϕy) = (ϕa+ϕx)+ϕy. Thus ϕa ∈ C(Q,+), ϕC(Q,+) ⊆ C(Q,+).

For any distributive quasigroup (Q, ◦) of the form x ◦ y = ϕx+ ψy we have

Aut(Q, ◦) ∼= M(Q,+) h (C/I),

where I is the group of inner permutations of commutative Moufang loop (Q,+),

C = {ω ∈ Aut(Q,+) | ωϕ = ϕω}

Therefore any automorphism of (Q, ◦) has the form L+
a α, where α ∈ Aut(Q,+) [97].

The center C defines normal congruence θ of the loop (Q,+) in the following way: xθy ⇔
x + C = y + C. We give a little part of this standard proof: (x + a) + C = (y + a) + C ⇔
(x + C) + a = (y + C) + a ⇔ x + C = y + C. In fact C is coset class of θ containing zero
element of (Q,+).

The congruence θ is admissible relative to any permutation of the form L+
a α, where

α ∈ Aut(Q,+), since θ is central congruence. Therefore, θ is congruence in the quasigroup
(Q, ◦).

Since (Q, ◦) is simple quasigroup and θ cannot be diagonal congruence, then θ = Q×Q,
C(Q,+) = (Q,+), (Q, ◦) is medial. From Theorem 3.1 it follows that (Q, ◦) is finite.
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We notice it is possible to prove Theorem 3.2 using Theorem 1.63 [96].

Lemma 3.3. If simple quasigroup (Q, ·) is isotope either of the form (f, ε, ε), or of the form
(ε, e, ε), or of the form (ε, ε, s) of a distributive quasigroup (Q, ◦), where f, e, s ∈ Aut(Q, ◦)
and (Q, ◦) is isotopic to finitely generated commutative Moufang loop (Q,+), then (Q, ·) is
finite medial quasigroup.

Proof. Since (Q,+) is finitely generated, then |C(Q,+) | > 1 [24]. From the proof of The-
orem 3.2 it follows that C(Q,+) is invariant relative to any automorphism of (Q, ◦).

Therefore necessary condition of simplicity of (Q, ·) is the fact that C(Q,+) = (Q,+).
Then (Q, ◦) is medial.

Prove that (Q, ·) is medial, if x · y = fx ◦ y. We have xy · uv = f(fx ◦ y) ◦ (fu ◦ v) =
(f2x ◦ fu) ◦ (fy ◦ v) = (xu) · (yv) [78].

Prove that (Q, ·) is medial, if x · y = x ◦ ey. We have xy · uv = (x ◦ ey) ◦ (eu ◦ e2v) =
(x ◦ eu) ◦ (ey ◦ e2v) = (xu) · (yv) [78].

Prove that (Q, ·) is medial, if x · y = s(x ◦ y). We have xy ·uv = (s2x ◦ s2y) ◦ (s2u ◦ s2v) =
(s2x ◦ s2u) ◦ (s2y ◦ s2v) = (xu) · (yv) [78].

We can obtain some information on simple left and right F-, E-, and SM-quasigroups.

Theorem 3.4. (1) Left F-quasigroup (Q, ·) is simple if and only if it lies in one from the
following quasigroup classes:

(i) (Q, ·) is a right loop of the form x · y = x + ψy, where ψ ∈ Aut(Q,+) and the group
(Q,+) is ψ-simple;

(ii) (Q, ·) has the form x · y = x ◦ ψy, where ψ ∈ Aut(Q, ◦) and (Q, ◦) is ψ-simple left
distributive quasigroup.

(2) Right F-quasigroup (Q, ·) is simple if and only if it lies in one from the following
quasigroup classes:

(i) (Q, ·) is a left loop of the form x · y = ϕx + y, where ϕ ∈ Aut(Q,+) and the group
(Q,+) is ϕ-simple;

(ii) (Q, ·) has the form x · y = ϕx ◦ y, where ϕ ∈ Aut(Q, ◦) and (Q, ◦) is ϕ-simple left
distributive quasigroup.

(3) Left SM-quasigroup (Q, ·) is simple if and only if it lies in one from the following
quasigroup classes:

(i) (Q, ·) is a unipotent quasigroup of the form x ◦ y = −ϕx + ϕy, (Q,+) is a group,
ϕ ∈ Aut(Q,+) and the group (Q,+) is ϕ-simple;

(ii) (Q, ·) has the form x · y = ϕ(x ◦ y), where ϕ ∈ Aut(Q, ◦) and (Q, ◦) is ϕ-simple left
distributive quasigroup.

(4) Right SM-quasigroup (Q, ·) is simple if and only if it lies in one from the following
quasigroup classes:

(i) (Q, ·) is a unipotent quasigroup of the form x ◦ y = ϕx − ϕy, (Q,+) is a group,
ϕ ∈ Aut(Q,+) and the group (Q,+) is ϕ-simple;

(ii) (Q, ·) has the form x · y = ϕ(x ◦ y), where ϕ ∈ Aut(Q, ◦) and (Q, ◦) is ϕ-simple right
distributive quasigroup.
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(5) Left E-quasigroup (Q, ·) is simple if and only if it lies in one from the following
quasigroup classes:

(i) (Q, ·) is a left loop of the form x · y = αx+ y, α0 = 0, and (Q,+) is α-simple Abelian
group;

(ii) (Q, ·) has the form x · y = ϕx ◦ y, where ϕ ∈ Aut(Q, ◦) and (Q, ◦) is ϕ-simple left
distributive quasigroup.

(6) Right E-quasigroup (Q, ·) is simple if and only if it lies in one from the following
quasigroup classes:

(i) (Q, ·) is a right loop of the form x · y = x+βy, β0 = 0, and (Q,+) is β-simple Abelian
group;

(ii) (Q, ·) has the form x · y = x ◦ ψy, where ψ ∈ Aut(Q, ◦) and (Q, ◦) is ψ-simple right
distributive quasigroup.

Proof. (1) Suppose that (Q, ·) is simple left F-quasigroup. From Theorem 2.7 it follows
that (Q, ·) can be a quasigroup with a unique idempotent element or an isotope of a left
distributive quasigroup.

By Theorem 1.51 the endomorphism e defines the corresponding normal congruence Ker e.
Since (Q, ·) is simple, then this congruence is the diagonal Q̂ = {(q, q) |q ∈ Q} or the universal
congruence Q×Q.

From Theorem 2.7 it follows that in simple left F-quasigroup the map e is zero endomor-
phism or a permutation.

Structure of left F-quasigroups in the case when e is zero endomorphism follows from
Lemma 2.2.

Structure of left F-quasigroups in the case when e is an automorphism follows from
Lemma 2.3. Additional properties of quasigroup (Q, ◦) follow from Lemma 1.62.

Conversely, using Corollary 1.70 we can say that left F-quasigroups from these quasigroup
classes are simple.

Cases (2)–(6) are proved in a similar way.

Remark 3.5. Left F-quasigroup (Z, ·), where x · y = −x + y, (Z,+) is the infinite cyclic
group, (Example 2.6) is not simple. Indeed, in this quasigroup the endomorphism e is not
a permutation (a bijection) of the set Z or a zero endomorphism.

We can also apply Theorem 3.4(3), since (Z, ·) is a left SM-quasigroup, and so on.

3.2 F-quasigroups

Simple F-quasigroups isotopic to groups (FG-quasigroups) are described in [56]. The authors
prove that any simple FG-quasigroup is a simple group or a simple medial quasigroups. We
notice that simple medial quasigroups are described in [46]. See also [101, 103]. Conditions
when a group isotope is a left (right) F-quasigroup are there in [66, 113].

The following examples demonstrate that in an F-, E-, SM-quasigroup the order of map e
does not coincide with the order of map f , i.e., there exists some independence of the orders
of maps e, f , and s.

Example 3.6. By (Z3,+) we denote the cyclic group of order 3 and we take Z3 = {0, 1, 2}.
Groupoid (Z3, ·), where x·y = x−y, is a medial E-, F-, SM-quasigroup and e·(Z3) = s·(Z3) =
{0}, f ·(Z3) = Z3.
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Example 3.7. By (Z6,+) we denote the cyclic group of order 6 and we take Z6 = {0, 1, 2, 3,
4, 5}. Groupoid (Z6, ·), where x · y = x− y, is a medial E-, F-, SM-quasigroup and e·(Z6) =
s·(Z6) = {0}, f ·(Z6) = {0, 2, 4}.

The following lemmas give connections between the maps e and f in F-quasigroups.

Lemma 3.8. (1) Endomorphism e of an F-quasigroup (Q, ·) is zero endomorphism, i.e.,
e(x) = 0 for all x ∈ Q if and only if x · y = x+ψy, (Q,+) is a group, ψ ∈ Aut(Q,+), (Q, ·)
contains unique idempotent element 0, x+ fy = fy + x for all x, y ∈ Q.

(2) Endomorphism f of an F-quasigroup (Q, ·) is zero endomorphism, i.e., f(x) = 0 for
all x ∈ Q if and only if x · y = ϕx + y, (Q,+) is a group, ϕ ∈ Aut(Q,+), (Q, ·) contains
unique idempotent element 0, x+ ey = ey + x for all x, y ∈ Q.

Proof. (1) From Lemma 2.2(1) it follows that (Q, ·) is a right loop, isotope of a group (Q,+)
of the form x · y = x+ ψy, where ψ ∈ Aut(Q,+).

If a · a = a, then a+ ψa = a, ψa = 0, a = 0.
If we rewrite right F-quasigroup equality in terms of the operation +, then we obtain

x + ψy + ψz = x + ψf(z) + ψy + ψ2z, ψy + ψz = ψf(z) + ψy + ψ2z. If we take y = 0 in
the last equality, then ψz = ψf(z) + ψ2z. Therefore ψy + ψf(z) + ψ2z = ψf(z) + ψy + ψ2z,
ψy + ψf(z) = ψf(z) + ψy, y + f(z) = f(z) + y.

Conversely, from x · y = x+ ψy we have x · e(x) = x+ ψe(x) = x, e(x) = 0 for all x ∈ Q.
(2) This case is proved in a similar way to Case (1).

Lemma 3.9. (1) If endomorphism e of an F-quasigroup (Q, ·) is zero endomorphism, i.e.,
e(x) = 0 for all x ∈ Q, then

(i) f(x) = x− ψx, f ∈ End(Q,+);
(ii) f(Q,+) ⊆ C(Q,+);

(iii) (H,+) E (Q,+), f(Q,+) E (Q,+), (Q,+)/(H,+) ∼= f(Q,+), where (H,+) is equiva-
lence class of the congruence Ker f containing identity element of (Q,+);

(iv) f(Q, ·) is a medial F-quasigroup; (H, ·) = (H,+) is a group; (ā, ·), where ā is equiva-
lence class of the normal congruence Ker fj containing an idempotent element a ∈ Q,
i > 1, is an Abelian group.

(2) If endomorphism f of an F-quasigroup (Q, ·) is zero endomorphism, i.e., f(x) = 0 for
all x ∈ Q, then

(i) e(x) = −ϕx+ x, e ∈ End(Q,+);
(ii) e(Q,+) ⊆ C(Q,+);

(iii) (H,+)E(Q,+), e(Q,+)E(Q,+), (Q,+)/(H,+) ∼= e(Q,+), where (H,+) is equivalence
class of the congruence Ker e containing identity element of (Q,+);

(iv) e(Q, ·) is a medial F-quasigroup; (H, ·) = (H,+) is a group; (ā, ·), where ā is equiva-
lence class of the normal congruence Ker ej containing an idempotent element a ∈ Q,
i > 1, is an Abelian group.

Proof. (1) (i) From Lemma 3.8(1) we have f(x) ·x = f(x)+ψx = x, f(x) = x−ψx. We can
rewrite equality f(x · y) = f(x) · f(y) in the form f(x + ψy) = f(x) + ψf(y). If x = y = 0,
then we have f(0) = 0. If x = 0, then fψ(y) = ψf(y). Therefore

f(x+ ψy) = f(x) + fψ(y) (3.1)
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(ii) If we apply to equality (3.1) the equality f(z) = z − ψz, then we obtain x + ψy −
ψ(x+ψy) = x−ψx+ψy−ψ2y, x+ψy−ψ2y−ψx = x−ψx+ψy−ψ2y, ψy−ψ2y−ψx =
−ψx + ψy − ψ2y, y − ψy − x = −x + y − ψy, fy − x = −x + fy, x + fy = fy + x, i.e.,
f(Q,+) ⊆ C(Q,+).

(iii) From definitions and Case (ii) it follows that (H,+) E (Q,+), f(Q,+) E (Q,+). The
last follows from definition of (H,+).

(iv) f(Q, ·) is a medial F-quasigroup since from Case (ii) it follows that f(Q,+) is
an Abelian group. Quasigroup (H, ·) is a group since in this quasigroup the maps e and
f are zero endomorphisms and we can use Case (i).

(ā, ·) ∼= f i(Q, ·)/f i+1(Q, ·) is an Abelian group since in this quasigroup the maps e and
f are zero endomorphisms and f i(Q, ·) is a medial quasigroup for any suitable value of the
index i. Moreover, it is well known that a medial quasigroup any its subquasigroup is normal
[60]. Then f i+1(Q, ·) E f i(Q, ·).

(2) This case is proved in a similar way to Case (1).

Corollary 3.10. Both endomorphisms e and f of an F-quasigroup (Q, ·) are zero endomor-
phisms if and only if (Q, ·) is a group.

Proof. By Lemma 3.8(1) x ·y = x+ψy. By Lemma 3.9(1)(i), f(x) = x−ψx. Since f(x) = 0
for all x ∈ Q, further we have ψ = ε.

Conversely, it is clear that in any group e(x) = f(x) = 0 for all x ∈ Q.

Example 3.11. By (Z4,+) we denote the cyclic group of order 4 and we take Z4 =
{0, 1, 2, 3}. Groupoid (Z4, ·), where x · y = x + 3y, is a medial E-, F-, SM-quasigroup,
e·(Z4) = s·(Z4) = {0} and f ·(Z4) = {0, 2} = H.

Corollary 3.12. (1) If in F-quasigroup (Q, ·) endomorphism e is zero endomorphism and
the group (Q,+) has identity center, then (Q, ·) = (Q,+).

(2) If in F-quasigroup (Q, ·) endomorphism f is zero endomorphism and the group (Q,+)
has identity center, then (Q, ·) = (Q,+).

Proof. The proof follows from Lemma 3.9(ii), (iii).

Corollary 3.13. (1) If endomorphism e of an F-quasigroup (Q, ·) is zero endomorphism,
i.e., e(x) = 0 for all x ∈ Q, endomorphism f is a permutation of the set Q, then x·y = x+ψy,
(Q,+) is an Abelian group, ψ ∈ Aut(Q,+) and (Q, ◦), x◦y = fx+ψy, is a medial distributive
quasigroup.

(2) If endomorphism f of an F-quasigroup (Q, ·) is zero endomorphism, i.e., f(x) = 0
for all x ∈ Q, endomorphism e is a permutation of the set Q, then x · y = ϕx + y, (Q,+)
is an Abelian group, ϕ ∈ Aut(Q,+) and (Q, ◦), x ◦ y = ϕx + ey, is a medial distributive
quasigroup.

Proof. The proof follows from Lemma 3.9. It is a quasigroup folklore that idempotent medial
quasigroup is distributive [91, 92].

Remark 3.14. It is easy to see that condition “(D, ·) is a medial F-quasigroup of the form
x · y = x + ψy such that (D, ◦), x ◦ y = fx + ψy, is a medial distributive quasigroup” in
Corollary 3.13 is equivalent to the condition that the automorphism ψ of the group (D,+)
is complete (Definition 1.32).
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Lemma 3.15. (1) If endomorphism e of an F-quasigroup (Q, ·) is a permutation of the set
Q, i.e., e is an automorphism of (Q, ·), then (Q, ◦), x ◦ y = x · e(y), is a left distributive
quasigroup which satisfies the equality (x ◦ y) ◦ z = (x ◦ fz) ◦ (y ◦ e−1z), for all x, y, z ∈ Q.

(2) If endomorphism f of an F-quasigroup (Q, ·) is a permutation of the set Q, i.e., f is
an automorphism of (Q, ·), then (Q, ◦), x ◦ y = f(x) · y, is a right distributive quasigroup
which satisfies the equality x ◦ (y ◦ z) = (f−1x ◦ y) ◦ (ex ◦ z), for all x, y, z ∈ Q.

Proof. (1) The fact that (Q, ◦), x ◦ y = x · e(y), is a left distributive quasigroup follows
from Lemma 2.3. If we rewrite right F-quasigroup equality in terms of the operation ◦, then
(x◦e−1y)◦e−1z = (x◦e−1fz)◦(e−1y◦e−2z). If we replace e−1y by y, e−1z by z and take into
consideration that e−1f = fe−1, then we obtain the equality (x◦y)◦z = (x◦fz)◦ (y ◦e−1z).

(2) The proof is similar to Case (1).

Corollary 3.16. (1) If endomorphism e of an F-quasigroup (Q, ·) is identity permutation
of the set Q, then (Q, ·) is a distributive quasigroup.

(2) If endomorphism f of an F-quasigroup (Q, ·) is identity permutation of the set Q,
then (Q, ·) is a distributive quasigroup.

Proof. (1) If fx ·x = x, then fx◦e−1x = x. Further proof follows from Lemma 3.15. Indeed
from fx ◦ e−1x = x it follows fx ◦ x = x, fx = x, since (Q, ◦) is idempotent quasigroup.
Then f = ε.

(2) The proof is similar to Case (1).

The following proof belongs to the OTTER 3.3 [73]. We also have used much of Phillips’
article [85]. Here we give the adopted (humanized) form of this proof.

Theorem 3.17. If in a left distributive quasigroup (Q, ◦) the equality

(x ◦ y) ◦ z = (x ◦ fz) ◦ (y ◦ ez) (3.2)

is fulfilled for all x, y, z ∈ Q, where f, e are the maps of Q, then the following equality is
fulfilled in (Q, ◦): (x ◦ y) ◦ fz = (x ◦ fz) ◦ (y ◦ fz).

Proof. If we pass in equality (3.2) to operation /, then we obtain(
(x ◦ y) ◦ z

)
/
(
y ◦ e(z)

)
= x ◦ fz (3.3)

From equality (3.2) by x = y we obtain x◦z = (x◦fz)◦(x◦ez) and using left distributivity
we have x ◦ z = x ◦ (fz ◦ e(z)),

z = fz ◦ e(z), e(z) = fz \ z (3.4)

If we change in equality (3.3) the expression e(z) using equality (3.4), then we obtain(
(x ◦ y) ◦ z

)
/
(
y ◦ (fz \ z)

)
= x ◦ fz (3.5)

We make the following replacements in (3.5): x → x/z, y → z, z → y. Then we obtain
(x ◦ y) ◦ z → ((x/z) ◦ z) ◦ y = x ◦ y and the following equality is fulfilled:

(x ◦ y)/
(
z ◦
(
f(y)\y

))
= (x/z) ◦ f(y) (3.6)

Using the operation / we can rewrite left distributive identity in the following form:(
x ◦ (y ◦ z)

)
/(x ◦ z) = x ◦ y (3.7)
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If we change in identity (3.7) (y◦z) by y, then variable y passes in y/z. Indeed, if y◦z = t,
then y = t/z. Therefore, we have

(x ◦ y)/(x ◦ z) = x ◦ (y/z) (3.8)

From equality (3.2) using left distributivity to the right-hand side of this equality we
obtain (x ◦ y) ◦ z = ((x ◦ fz) ◦ y) ◦ ((x ◦ fz) ◦ ez). After applying of the operation / to the
last equality we obtain(

(x ◦ y) ◦ z
)
/
((
x ◦ f(z)

)
◦ e(z)

)
=
(
x ◦ f(z)

)
◦ y (3.9)

After substitution of (3.4) in (3.9) we obtain(
(x ◦ y) ◦ z

)
/
((
x ◦ f(z)

)
◦ (fz \ z)

)
=
(
x ◦ f(z)

)
◦ y (3.10)

Now we show the most unexpected OTTER’s step. We apply the left-hand side of equality
(3.6) to the left-hand side equality (3.10). In this case expression ((x ◦ y) ◦ z) from (3.10)
plays the role of (x ◦ y), (x ◦ f(z)) the role of z, and (fz \ z) the role of (f(y)\y).

Therefore we obtain(
(x ◦ y)/

(
x ◦ f(z)

))
◦ f(z) = (x ◦ fz) ◦ y (3.11)

After application to the left-hand side of equality (3.11) equality (3.8) we have(
x ◦ (y/fz)

)
◦ f(z) = (x ◦ fz) ◦ y (3.12)

If we change in equality (3.12) (y/fz) by y, then variable y passes in y ◦ fz. Therefore
(x ◦ y) ◦ fz = (x ◦ fz) ◦ (y ◦ fz).

Corollary 3.18. If in a left distributive quasigroup (Q, ◦) the equality

(x ◦ y) ◦ z = (x ◦ fz) ◦ (y ◦ ez)

is fulfilled for all x, y, z ∈ Q, where e is a map, f is a permutation of the set Q, then (Q, ◦)
is a distributive quasigroup.

Proof. The proof follows from Theorem 3.17.

Theorem 3.19. If in F-quasigroup (Q, ·) endomorphisms e and f are permutations of the
set Q, then (Q, ·) is isotope of the form x · y = x ◦ e−1y of a distributive quasigroup (Q, ◦).

Proof. Quasigroup (Q, ◦) of the form x ◦ y = x · e(y) is a left distributive quasigroup
(Lemma 2.3) in which the equality (x ◦ y) ◦ z = (x ◦ fz) ◦ (y ◦ e−1z), is true (Lemma 3.15).
By Corollary 3.18 (Q, ◦) is distributive.

Theorem 3.20. An F-quasigroup (Q, ·) is simple if and only if (Q, ·) lies in one from the
following quasigroup classes:

(i) (Q, ·) is a simple group in the case when the maps e and f are zero endomorphisms;
(ii) (Q, ·) has the form x · y = x + ψy, where (Q,+) is a ψ-simple Abelian group,

ψ ∈ Aut(Q,+), in the case when the map e is a zero endomorphism and the map f is
a permutation; in this case e = −ψ, fx+ ψx = x for all x ∈ Q;

(iii) (Q, ·) has the form x · y = ϕx + y, where (Q,+) is a ϕ-simple Abelian group,
ϕ ∈ Aut(Q,+), in the case when the map f is a zero endomorphism and the map e is
a permutation; in this case f = −ϕ,ϕx+ ex = x for all x ∈ Q;

(iv) (Q, ·) has the form x · y = x ◦ ψy, where (Q, ◦) is a ψ-simple distributive quasigroup
ψ ∈ Aut(Q, ◦), in the case when the maps e and f are permutations; in this case e = ψ−1,
fx ◦ ψx = x for all x ∈ Q.
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Proof. (⇒) (i) It is clear that in this case left and right F-quasigroup equalities are trans-
formed in the identity of associativity.

(ii) From Lemma 3.9 (iii) and the fact that the map f is a permutation of the set Q it
follows that (Q,+) is an Abelian group.

(iii) This case is similar to Case (ii).
(iv) By Belousov result [15] (see Lemma 2.3 of this paper) if the endomorphism e of

a left F-quasigroup (Q, ·) is a permutation of the set Q, then quasigroup (Q, ·) has the form
x ·y = x◦ψy, where (Q, ◦) is a left distributive quasigroup and ψ ∈ Aut(Q, ◦), ψ ∈ Aut(Q, ·).
The right distributivity of (Q, ◦) follows from Theorem 3.19.

(⇐) Using Corollary 1.70 we can say that F-quasigroups from these quasigroup classes
are simple.

Remark 3.21. There exists a possibility to formulate Theorem 3.20(iv) in the following
form.

(iv)∗ (Q, ·) has the form x · y = ϕx ◦ y, where (Q, ◦) is a ϕ-simple distributive quasigroup,
in the case when the maps e and f are permutations; in this case f = ϕ−1, ϕx ◦ ex = x for
all x ∈ Q.

Corollary 3.22. Finite simple F-quasigroup (Q, ·) is a simple group or a simple medial
quasigroup.

Proof. Theorem 3.20(i) demonstrates that simple F-quasigroup can be a simple group.
Taking into consideration Toyoda Theorem (Theorem 1.30) we see that Theorem 3.20(ii),

(iii) provide that simple F-quasigroups can be simple medial quasigroups.
We will prove that in Theorem 3.20(iv) we also obtain medial quasigroups.
The quasigroup (Q, ·) is isotopic to distributive quasigroup (Q, ◦), quasigroup (Q, ◦) is

isotopic to CML (Q,+). Therefore (Q, ·) is isotopic to the (Q,+) and we can apply Lemma
3.3.

Taking into consideration Lemma 1.27 we can say that some properties of finite simple
medial F-quasigroups are described in Theorem 3.1.

Using the results obtained in this section we can add information on the structure of
F-quasigroups [56].

Theorem 3.23. Any finite F-quasigroup (Q, ·) has the following structure:

(Q, ·) ∼= (A, ◦)× (B, ·)

where (A, ◦) is a quasigroup with a unique idempotent element; (B, ·) is isotope of a left
distributive quasigroup (B, ?), x·y = x?ψy, ψ ∈ Aut(B, ·), ψ ∈ Aut(B, ?). In the quasigroups
(A, ◦) and (B, ·) there exist the following chains:

A ⊃ e(A) ⊃ · · · ⊃ em−1(A) ⊃ em(A) = 0, B ⊃ f(B) ⊃ · · · ⊃ f r(B) = f r+1(B)

where

(1) Let Di be an equivalence class of the normal congruence Ker ei containing an idempo-
tent element a ∈ A, i > 0. Then

(a) (Di, ◦) is linear right loop of the form x ◦ y = x+ ψy, where ψ ∈ Aut(Di,+);

(b) Ker(f |(Di,◦)) is a group;
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(c) if j > 1, then Ker(fj |(Di,◦)) is an Abelian group;

(d) if f is a permutation of f l(Di, ◦), then f l(Di, ◦) is a medial right loop of the form
x ◦ y = x+ ψy, where ψ is a complete automorphism of the group f l(Di,+);

(e) (Di, ◦) ∼= (Ei,+)× f l(Di, ◦), where (Ei,+) is a linear right loop, an extension of
an Abelian group by Abelian groups and by a group.

(2) Let Hj be an equivalence class of the normal congruence Ker fj containing an idempo-
tent element b ∈ B, j > 0. Then

(a) (H0, ·) is a linear left loop of the form x · y = ϕx+ y;

(b) f(B, ·) is isotope of a distributive quasigroup f(B, ?) of the form x · y = x ? e−1y;

(c) if 0 < j < r, then (Hj , ·) is medial left loop of the form x · y = ϕx + y, where
(Hj ,+) is an Abelian group, ϕ ∈ Aut(Hj ,+) and (Hj , ?), x ? y = ϕx + ey, is
a medial distributive quasigroup;

(d) (B, ·) ∼= (G,+) × f r(B, ·), where (G,+) has a unique idempotent element, is an
extension of an Abelian group by Abelian groups and by a linear left loop (H0, ·),
f r(B, ·) is a distributive quasigroup.

Proof. From Theorem 2.7(1) it follows that F-quasigroup (Q, ·) is isomorphic to the direct
product of quasigroups (A, ◦) and (B, ·).

In F-quasigroup (A, ◦) the chain

A ⊃ e(A) ⊃ e2(A) ⊃ · · · ⊃ em−1(A) ⊃ em(A) = em+1(A) = 0

becomes stable on a number m, where 0 is idempotent element.
Case (1)(a). If 0 6 j < m, then by Lemma 3.8 any quasigroup (Dj , ◦) is a right loop,

isotope of a group (Dj ,+) of the form (Dj , ◦) = (Dj ,+)(ε, ψ, ε), where ψ ∈ Aut(Dj ,+).
Case (1)(b). “Behaviour” of the map f in the right loop (Dj , ◦) is described by Lemma 3.9.

If f is zero endomorphism, then (Dj , ◦) is a group in case j = 0 (Lemma 3.9(i)) and it is an
Abelian group in the case j > 0 (Lemma 3.9(ii)).

If f is a nonzero endomorphism of (Dj , ◦), then information on the structure of (Dj , ◦)
follows from Lemma 3.9 and Corollary 3.13.

Case (1)(c). The proof follows from Lemma 3.9(ii)–(iv) and the fact that in the quasigroup
Ker(fj |(Dj ,◦)) the maps e and f are zero endomorphisms.

Case (1)(d). The proof follows from Corollary 3.13(1).
Case (1)(e). The proof follows from results of the previous cases of this theorem and

Theorem 2.7(2).
Using Lemma 3.15 we can state that F-quasigroup (B, ·) is isotopic to left distributive

quasigroup (B, ?), where x ? y = x · e(y).
In order to have more detailed information on the structure of the quasigroup em(Q, ·)

we study the following chain:

B ⊃ f(B) ⊃ · · · ⊃ f r(B) = f r+1(B)

which becomes stable on a number r.
Case (2)(a). The proof follows from Corollary 3.13(2).
Case (2)(b). The proof follows from Theorem 3.17.
Case (2)(c). Since f is zero endomorphism of quasigroup (Hj , ·), ej |Hj is a permutation

of the set Hj , then by Corollary 3.13 quasigroup (Hj , ·) has the form x · y = ϕx+ y, where
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(Hj ,+) is an Abelian group, ϕ ∈ Aut(Hj ,+) and (Hj , ◦), x ◦ y = ϕx + ey, is a medial
distributive quasigroup.

Case (2)(d). The existence of direct decomposition follows from Theorem 2.7(2).

We notice that information on the structure of finite medial quasigroups is there in [103].

3.3 E-quasigroups

We recall a quasigroup (Q, ·) is trimedial if and only if (Q, ·) is an E-quasigroup [64]. Any
trimedial quasigroup is isotopic to CML [50]. The structure of trimedial quasigroups has been
studied in [20, 54, 107, 59]. Here slightly other point of view on the structure of trimedial
quasigroups is presented.

Lemma 3.24. (1) If endomorphism f of an E-quasigroup (Q, ·) is zero endomorphism, i.e.,
f(x) = 0 for all x ∈ Q, then x · y = ϕx+ y, (Q,+) is an Abelian group, ϕ ∈ Aut(Q,+).

(2) If endomorphism e of an E-quasigroup (Q, ·) is zero endomorphism, i.e., e(x) = 0 for
all x ∈ Q, then x · y = x+ ψy, (Q,+) is an Abelian group, ψ ∈ Aut(Q,+).

Proof. (1) From Theorem 2.14(3) it follows that (Q, ·) is a left loop, x · y = αx+ y, (Q,+)
is an Abelian group, α ∈ SQ, α 0 = 0.

Further we have x · e(x) = αx + e(x) = x, αx = x − e(x) = (ε − e)x. Therefore α
is an endomorphism of (Q,+), moreover, it is an automorphism of (Q,+), since α is a
permutation of the set Q.

(2) The proof of Case (2) is similar to the proof of Case (1).

Corollary 3.25. If endomorphisms f and e of an E-quasigroup (Q, ·) are zero endomor-
phisms, i.e., f(x)=e(x)=0 for all x ∈ Q, then x · y=x+ y, (Q,+) is an Abelian group.

Proof. From equality αx+ e(x) = x of Lemma 3.24 we have αx = x, α = ε.

Corollary 3.26. (1) If endomorphism f of an E-quasigroup (Q, ·) is zero endomorphism
and endomorphism e is a permutation of the set Q, then x · y = ϕx+ y, (Q,+) is an Abelian
group, ϕ ∈ Aut(Q,+) and (Q, ◦), x ◦ y = ϕx+ ey, is a medial distributive quasigroup.

(2) If endomorphism e of an E-quasigroup (Q, ·) is zero endomorphism and endomorphism
f is a permutation of the set Q, then x·y = x+ψy, (Q,+) is an Abelian group, ψ ∈ Aut(Q,+)
and (Q, ◦), x ◦ y = fx+ ψy, is a medial distributive quasigroup.

Proof. (1) From Lemma 3.24 it follows that in this case (Q, ·) has the form x · y = ϕx+ y
over Abelian group (Q,+). Then x · e(x) = ϕx+ e(x) = x, e(x) = x− ϕx, e(0) = 0. We can
rewrite equality e(x · y) = e(x) · e(y) in the form e(ϕx + y) = ϕe(x) + e(y). By y = 0 we
have eϕ(x) = ϕe(x). Then e(ϕx+ y) = eϕx+ ey, the map e is an endomorphism of (Q,+).
Moreover, the map e is an automorphism of (Q,+).

From Toyoda Theorem and equality e(x) = x − ϕx it follows that quasigroup (Q, ◦) is
medial idempotent. It is well known that a medial idempotent quasigroup is distributive.

Case (2) is proved in a similar way to Case (1).

Theorem 3.27. If the endomorphisms f and e of an E-quasigroup (Q, ·) are permutations
of the set Q, then quasigroup (Q, ◦) of the form x ◦ y = f(x) · y is a distributive quasigroup
and f, e ∈ Aut(Q, ◦).
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Proof. The proof of this theorem is similar to the proof of Theorem 3.19.
By Lemma 2.15 (Q, ·) is isotope of the form x·y = f−1x◦y of a left distributive quasigroup

(Q, ◦) and f ∈ Aut(Q, ◦).
Moreover, by Lemma 2.15 (Q, ·) is isotope of the form x·y = x�e−1y of a right distributive

quasigroup and e ∈ Aut(Q, �). Therefore f−1x ◦ y = x � e−1y, x ◦ y = fx � e−1y.
Automorphisms e, f of the quasigroup (Q, ·) lie in Aut(Q, ◦) (Lemma 1.24 or [72, Corol-

lary 12]). We recall, ef = fe (Lemma 1.60).
Now we need to rewrite right distributive identity in terms of operation ◦. We have

f
(
fx ◦ e−1y

)
◦ e−1z = f

(
fx ◦ e−1z

)
◦ e−1

(
fy ◦ e−1z

)(
f2x ◦ fe−1y

)
◦ e−1z =

(
f2x ◦ fe−1z

)
◦
(
e−1fy ◦ e−2z

)
If in the last equality we change element f2x by element x, element fe−1y = e−1fy by

element y, element e−1z by element z, then we obtain

(x ◦ y) ◦ z = (x ◦ fz) ◦
(
y ◦ e−1z

)
In order to finish this proof we will apply Corollary 3.18.

Corollary 3.28. An E-quasigroup (Q, ·) is simple if and only if this quasigroup lies in one
from the following quasigroup classes:

(i) (Q, ·) is a simple Abelian group in the case when the maps e and f are zero endomor-
phisms;

(ii) (Q, ·) is a simple medial quasigroup of the form x · y = ϕx + y in the case when the
map f is a zero endomorphism and the map e is a permutation;

(iii) (Q, ·) is a simple medial quasigroup of the form x · y = x + ψy in the case when the
map e is a zero endomorphism and the map f is a permutation;

(iv) (Q, ·) has the form x · y = x ◦ ψy, where (Q, ◦) is a ψ-simple distributive quasigroup,
ψ ∈ Aut(Q, ◦), in the case when the maps e and f are permutations.

Proof. (⇒) (i) The proof follows from Corollary 3.25. (ii) The proof follows from Lemma
3.24(1). (iii) The proof follows from Lemma 3.24(2). (iv) The proof is similar to the proof of
Theorem 3.20(iv).

(⇐) It is clear that any quasigroup from these quasigroup classes is simple E-quasigroup.

Corollary 3.29. Finite simple E-quasigroup (Q, ·) is a simple medial quasigroup.

Proof. The proof follows from Corollary 3.28 and is similar to the proof of Corollary 3.22.
We can use Lemma 3.3.

Taking into consideration Corollary 3.29 we can say that properties of finite simple E-
quasigroups are described by Theorem 3.1.

Lemma 3.30. (1) If endomorphism f of an E-quasigroup (Q, ·) is zero endomorphism, then
(Q, ·) ∼= (A, ◦) × (B, ·), where (A, ◦) a medial E-quasigroup of the form x · y = ϕx + y and
there exists a number m such that |em(A, ◦)| = 1, (B, ·) is a medial E-quasigroup of the form
x · y = ϕx+ y such that (B, ?), x ? y = ϕx+ ey, is a medial distributive quasigroup.

(2) If endomorphism e of an E-quasigroup (Q, ·) is zero endomorphism, then (Q, ·) ∼=
(A,+) × (B, ·), where (A, ◦) is a medial E-quasigroup of the form x · y = x + ψy and there
exists a number m such that |fm(A, ◦)| = 1, (B, ·) is a medial E-quasigroup of the form
x · y = x+ ψy such that (B, ?), x ? y = fx+ ψy, is a medial distributive quasigroup.
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Proof. (1) By Theorem 2.17(4) any right E-quasigroup (Q, ·) has the structure (Q, ·) ∼=
(A, ◦) × (B, ·), where (A, ◦) is a quasigroup with a unique idempotent element and there
exists a number m such that |em(A, ◦)| = 1; (B, ·) is an isotope of a right distributive
quasigroup (B, ?), x · y = x ? e−1(y) for all x, y ∈ B, e ∈ Aut(B, ·), e ∈ Aut(B, ?).

From Lemma 3.24 it follows that (Q, ·) has the form x · y = ϕx+ y over an Abelian group
(Q,+).

We recall that e = ε − ϕ, eϕ = ϕe (Corollary 3.26). From equalities x · y = ϕx + y and
x · y = x ? e−1(y) we have x ? y = ϕx+ ey. Then (B, ?) is medial, idempotent, therefore it is
distributive.

(2) The proof is similar to Case (1).

Remark 3.31. If m = 1, then (A, ◦) is an Abelian group (Corollary 3.25).
If m = 2, then (A, ◦) is an extension of an Abelian group by an Abelian group. If, in

addition, the conditions of Lemma 1.81 are fulfilled, then (A, ◦) is an Abelian group.
If the number m is finite and the conditions of Lemma 1.81 are fulfilled, then after

application of Lemma 1.81 (m− 1) times we obtain that (A, ◦) is an Abelian group.

Now we have a possibility to give in more details information on the structure of finite
E-quasigroups. The proof of the following theorem in many details is similar to the proof of
Theorem 3.23.

Let Di be an equivalence class of the normal congruence Ker ei containing an idempotent
element a ∈ A, i > 0. Let Hj be an equivalence class of the normal congruence Ker fj
containing an idempotent element, j > 0.

Theorem 3.32. In any finite E-quasigroup (Q, ·) there exist the following finite chains:

Q ⊃ e(Q) ⊃ · · · ⊃ em−1(Q) ⊃ em(Q) = em+1(Q)

em(Q) ⊃ fem(Q) ⊃ · · · ⊃ f rem(Q) = f r+1em(Q)

where

(1) if i < m, then (Di, ·) ∼= (Hi,+) × (Gi, ·), where right loop (Hi,+) is an extension
of an Abelian group by Abelian groups, (Gi, ·) is a medial E-quasigroup of the form
x · y = x+ ψy such that ψ is complete automorphism of the group (Gi,+);

(2) if i = m, then (emQ, ·) is isotope of right distributive quasigroup (emQ, ◦), where x◦y =
x · ey;

(a) if j < r, then (Hj , ·) is medial left loop, (Hj , ·) has the form x · y = ϕx+ y, where
(Hj ,+) is an Abelian group, ϕ ∈ Aut(Hj ,+) and (Hj , ◦), x ◦ y = ϕx + ey, is
a medial distributive quasigroup;

(b) if j = r, then (f remQ, ·) is isotope of the form x ◦ y = f(x) · y of a distributive
quasigroup (f remQ, ◦).

Proof. It is clear that in E-quasigroup (Q, ·) chain (2.2)

Q ⊃ e(Q) ⊃ e2(Q) ⊃ · · · ⊃ em−1(Q) ⊃ em(Q) = em+1(Q)

becomes stable.
(1) (i < m). By Lemma 3.24(2) any quasigroup (Di, ·) is a medial right loop, isotope

of an Abelian group (Di,+) of the form (Di, ·) = (Di,+)(ε, ψ, ε), where ψ ∈ Aut(Di,+),
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for all suitable values of index i, since in the quasigroup (Di, ·) endomorphism e is zero
endomorphism.

If f is zero endomorphism, then in this case (Di, ·) is an Abelian group (Corollary 3.25).
If f is a nonzero endomorphism of (Di, ·), then we can use Lemma 3.30(2).
Case (1) (i = m). From Lemma 2.15(4) it follows that E-quasigroup (emQ, ·) is isotopic

to right distributive quasigroup (emQ, ◦), where x ◦ y = x · e(y).
In order to have more detailed information on the structure of the quasigroup em(Q, ·)

we study the following chain:

em(Q) ⊃ fem(Q) ⊃ f 2em(Q) · · · ⊃ f rem(Q) = f r+1em(Q)

Case (2)(a) (j < r). From Lemma 2.15(4) it follows that E-quasigroup (Hj , ·) is isotopic
to right distributive quasigroup (Hj , ◦), x ◦ y = x · e(y).

From Lemma 3.24(1) it follows that (Hj , ·) has the form x · y = ϕx+ y, where (Hj ,+) is
an Abelian group, ϕ ∈ Aut(Hj ,+).

From equalities x◦e−1y = x·y and x·y = ϕx+y, we have x◦e−1y = ϕx+y, x◦y = ϕx+ey.
Then right distributive quasigroup (Hj , ◦) is isotopic to Abelian group (Hj ,+).

If we rewrite identity (x ◦ y) ◦ z = (x ◦ z) ◦ (y ◦ z) in terms of the operation +, then
ϕ2x + ϕey + ez = ϕ2x + ϕez + eϕy + e2z, ϕey + ez = ϕez + eϕy + e2z. By z = 0 from
the last equality it follows that ϕe = eϕ. Then (Hj , ◦) is a medial quasigroup. Moreover,
(Hj , ◦) is a medial distributive quasigroup, since any medial right distributive quasigroup is
distributive.

Case (2)(b) (j = r). If e and f are permutations of the set f remQ, then by Theorem 3.27
(f remQ, ·) is isotope of the form x ◦ y = f(x) · y of a distributive quasigroup (f remQ, ◦).

3.4 SM-quasigroups

We recall that left and right SM-quasigroup is called an SM-quasigroup. The structure theory
of SM-quasigroups mainly has been developed by Kepka and Shchukin [52, 51, 106, 6].

If an SM-quasigroup (Q, ·) is simple, then the endomorphism s is zero endomorphism or
a permutation of the set Q.

If s(x) = 0, then from Theorem 2.14 we have the following.

Corollary 3.33. If the endomorphism s of a semimedial quasigroup (Q, ·) is zero endomor-
phism, i.e., s(x) = 0 for all x ∈ Q, then (Q, ·) is a medial unipotent quasigroup, (Q, ·) ∼=
(Q, ◦), where x ◦ y = ϕx− ϕy, (Q,+) is an Abelian group, ϕ ∈ Aut(Q,+).

Remark 3.34. By Corollary 3.33 equivalence class Di of the congruence Ker si containing
an idempotent element is a medial unipotent quasigroup (Di, ·) of the form x ◦ y = ϕx−ϕy,
where (Di,+) is an Abelian group, ϕ ∈ Aut(Di,+) for all suitable values of index i.

Information on the structure of medial unipotent quasigroups is there in [103].
If s(x) is a permutation of the set Q, then from Lemma 2.15 we have the following.

Lemma 3.35. If the endomorphism s of a semimedial quasigroup (Q, ·) is a permutation of
the set Q, then quasigroup (Q, ◦) of the form x ◦ y = s−1(x · y) is a distributive quasigroup
and s ∈ Aut(Q, ◦).

Corollary 3.36. Any semimedial quasigroup (Q, ·) has the structure (Q, ·) ∼= (A, ◦)× (B, ·),
where (A, ◦) is a quasigroup with a unique idempotent element and there exists a number m
such that |sm(A, ◦)| = 1; (B, ·) is an isotope of a distributive quasigroup (B, ?), x·y = s(x?y)
for all x, y ∈ B, s ∈ Aut(B, ·), s ∈ Aut(B, ?).
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Proof. The proof follows from Theorem 2.17(3), (4).

Corollary 3.37. An SM-quasigroup (Q, ·) is simple if and only if it lies in one from the
following quasigroup classes:

(i) (Q, ·) is a medial unipotent quasigroup of the form x ◦ y = ϕx− ϕy, (Q,+) is Abelian
group, ϕ ∈ Aut(Q,+) and the group (Q,+) is ϕ-simple;

(ii) (Q, ·) has the form x · y = ϕ(x ◦ y), where ϕ ∈ Aut(Q, ◦) and (Q, ◦) is ϕ-simple
distributive quasigroup.

Proof. The proof follows from Theorem 3.4(3), (4).

The similar result on properties of simple SM-quasigroups is there in [106, Corollary 4.13].

Corollary 3.38. Any finite simple semimedial quasigroup (Q, ·) is a simple medial quasi-
group [106].

Proof. Conditions of Lemma 3.3 are fulfilled and we can apply it.

3.5 Simple left FESM-quasigroups

Kinyon and Phillips have defined left FESM-quasigroups in [64].

Definition 3.39. A quasigroup (Q, ·) which simultaneously is left F-, E-, and SM-quasigroup
we will name left FESM-quasigroup.

From Definition 3.39 it follows that in FESM-quasigroup the maps e, f , s are its endo-
morphisms.

Lemma 3.40. (1) If endomorphism e of a left FESM-quasigroup (Q, ·) is zero endomor-
phism, then (Q, ·) is a medial right loop, x · y = x + ψy, (Q,+) is an Abelian group, ψ ∈
Aut(Q,+), ψ2 = ε, ψs = s, ψf = fψ = −f .

(2) If endomorphism f of an FESM-quasigroup (Q, ·) is zero endomorphism, then (Q, ·)
is a medial left loop, i.e., x · y = ϕx+ y, (Q,+) is an Abelian group, ϕ ∈ Aut(Q,+), ϕ2 = ε,
ϕs = s, ϕe = eϕ = −e.

(3) If endomorphism s of a left FESM-quasigroup (Q, ·) is zero endomorphism, then (Q, ·)
is medial unipotent quasigroup of the form x ·y = ϕx−ϕy, where (Q,+) is an Abelian group,
ϕ ∈ Aut(Q,+), ϕf = fϕ, ϕe = eϕ.

Proof. (1) From Lemma 2.2 it follows that (Q, ·) has the form x · y = x+ψy, where (Q,+)
is a group, ψ ∈ Aut(Q,+).

Then s(x) = x · x = x + ψx. Since s is an endomorphism of (Q, ·), further we have
s(x · y) = x+ y+ψx+ψy, sx · sy = sx+ψsy = x+ψx+ψy+ψ2y. Then x+ y+ψx+ψy =
x+ ψx+ ψy + ψ2y, y + ψx+ ψy = ψx+ ψy + ψ2y. By x = 0 we have y + ψy = ψ(y + ψy),
sy = ψsy. Then y + ψx + ψy = ψx + ψy + ψ2y = ψx + ψsy = ψx + sy = ψx + y + ψy.
Therefore y + ψx+ ψy = ψx+ y + ψy, y + ψx = ψx+ y, the group (Q,+) is commutative.
From equality y + ψx+ ψy = ψx+ ψy + ψ2y we obtain y = ψ2y, ψ2 = ε.

Further we have f(x)·x = fx+ψx = x, fx = x−ψx, ψfx = ψx−x = −fx, fψx = ψx−x.
(2) From Theorem 2.14(3) it follows that (Q, ·) is a left loop, x · y = ϕx + y, (Q,+) is

an Abelian group, ϕ ∈ SQ, ϕ0 = 0.
Further we have x · e(x) = ϕx+ e(x) = x, ϕx = x− e(x) = (ε− e)x. Therefore ϕ is an en-

domorphism of (Q,+), moreover, it is an automorphism of (Q,+), since ϕ is a permutation
of the set Q.
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Then sx = x·x = ϕx+x, s(x·y) = ϕx+ϕy+x+y = sx·sy = ϕsx+sy = ϕ2x+ϕx+ϕy+y.
From equality ϕx+ϕy+x+y = ϕ2x+ϕx+ϕy+y we obtain ϕ2 = ε. Then ϕsx = ϕ(ϕx+x) =
sx.

Further, x · ex = ϕx+ ex = x. Then ex = x− ϕx, ϕex = ϕx− x = −ex, eϕx = ϕx− x.
(3) From Theorem 2.14(1) it follows that (Q, ·) is unipotent quasigroup of the form x ·y =

−ϕx+ ϕy, where (Q,+) is a group, ϕ ∈ Aut(Q,+).
Since f is an endomorphism of quasigroup (Q, ·), we have f(x · y) = e(x) · f(y), f(−ϕx+

ϕy) = −ϕf(x) + ϕf(y). If y = 0, then f(−ϕ) = −ϕf . If x = 0, then fϕ = ϕf . Then f is
an endomorphism of the group (Q,+). Similarly, e(−ϕ) = −ϕe, eϕ = ϕe, e is an endomor-
phism of the group (Q,+).

From x · ex = x we have −ϕx+ eϕx = x, eϕx = ϕx+ x, ex = x+ ϕ−1x. Then

e(x · y) = x · y + ϕ−1(x · y) = −ϕx+ ϕy − x+ y

ex · ey = −ϕ(x+ ϕ−1x) + ϕ(y + ϕ−1y) = −ϕx− x+ ϕy + y
(3.13)

Comparing the right sides of equalities (3.13) we obtain that (Q,+) is a commutative group.

Lemma 3.41. If endomorphisms e, f , and s of a left FESM-quasigroup (Q, ·) are permu-
tations of the set Q, then quasigroup (Q, ◦) of the form x ◦ y = x · e(y) is a left distributive
quasigroup and e, f, s ∈ Aut(Q, ◦).

Proof. By Lemma 2.3 endomorphism e of a left F-quasigroup (Q, ·) is a permutation of the
set Q if and only if quasigroup (Q, ◦) of the form x◦y = x·e(y) is a left distributive quasigroup
and e ∈ Aut(Q, ◦) [15]. Then x · y = x ◦ e−1y, s(x) = x ◦ e−1x, f(x) · x = fx ◦ e−1x = x.

The fact that e, f, s ∈ Aut(Q, ◦) follows from Lemma 1.24(2).

Theorem 3.42. If (Q, ·) is a simple left FESM-quasigroup, then

(i) (Q, ·) is simple medial quasigroup in the case when at least one from the maps e, f ,
and s is zero endomorphism;

(ii) (Q, ·) has the form x ·y = x◦ψy, where (Q, ◦) is a ψ-simple left distributive quasigroup,
ψ ∈ Aut(Q, ◦), in the case when the maps e, f and s are permutations; in this case
e = ψ−1, fx ◦ ψx = x, s(x) = x ◦ ψx for all x ∈ Q.

Proof. It is possible to use Lemma 3.40 for the proof of Case (i) and Lemma 3.41 for the
proof of Case (ii).

Example 3.43. By (Z7,+) we denote cyclic group of order 7 and we take Z7 = {0, 1, 2, 3, 4,
5, 6}.

Quasigroup (Z7, ◦), where x ◦ y = x+ 6y = x− y, is simple medial FESM-quasigroup in
which the maps e and s are zero endomorphisms, the map f is a permutation of the set Z7

(f(x) = 2x for all x ∈ Z7).
Quasigroup (Z7, ·), where x · y = 2x + 3y, is simple medial FESM-quasigroup in which

endomorphisms e, f , s are permutations of the set Z7.
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4 Loop isotopes

In this section we give some results on the loops and left loops which are isotopic to left F-,
SM-, E-, and FESM-quasigroups.

We recall that any F-quasigroup is isotopic to a Moufang loop [55, 57], any SM-quasigroup
is isotopic to a commutative Moufang loop [51]. Since any E-quasigroup is an SM-quasigroup
[52, 64], then any E-quasigroup also is isotopic to a commutative Moufang loop.

4.1 Left F-quasigroups

Taking into consideration Theorems 2.7 and 2.17, Lemma 1.79, and Corollary 1.80 we can
study loop isotopes of the factors of direct decompositions of left and right F- and E-
quasigroups.

Theorem 4.1. (1) A left F-quasigroup (Q, ·) is isotopic to the direct product of a group
(A,+) and a left S-loop (B, �), i.e., (Q, ·) ∼ (A,+)× (B, �).

(2) A right F-quasigroup (Q, ·) is isotopic to the direct product of a group (A,+) and right
S-loop (B, �), i.e., (Q, ·) ∼ (A,+)× (B, �).

Proof. (1) By Theorem 2.7(1) any left F-quasigroup (Q, ·) has the structure (Q, ·) ∼= (A, ◦)×
(B, ·), where (A, ◦) is a quasigroup with a unique idempotent element; (B, ·) is isotope of a left
distributive quasigroup (B, ?), x · y = x ? ψy for all x, y ∈ B, ψ ∈ Aut(B, ·), ψ ∈ Aut(B, ?).

By Corollary 1.80, if a quasigroup Q is the direct product of quasigroups A and B, then
there exists an isotopy T = (T1, T2) of Q such that QT ∼= AT1 ×BT2 is a loop.

Therefore we have a possibility to divide our proof into two steps.
Step 1. Denote a unique idempotent element of (A, ◦) by 0. We notice that e◦ 0 = 0.

Indeed, from (e◦)mA = 0 we have (e◦)m+1A = e◦ 0 = 0.
From left F-equality x◦(y◦z) = (x◦y)◦(e◦(x)◦z) by x = 0 we have 0◦(y◦z) = (0◦y)◦(0◦z).

Then L0 ∈ Aut(A, ◦).
Consider isotope (A,⊕) of the quasigroup (A, ◦): x ⊕ y = x ◦ L−1

0 y. We notice that
(A,⊕) is a left loop. Indeed, 0 ⊕ y = 0 ◦ L−1

0 y = y. Further we have x ◦ y = x ⊕ L0 y,
x⊕ e⊕x = x = x ◦ L−1

0 e⊕x = x ◦ e◦x, e⊕(x) = L0e
◦(x), e⊕(0) = L0e

◦(0) = 0 ◦ 0 = 0.
Prove that L0 ∈ Aut(A,⊕). From equality L0(x ◦ y) = L0x ◦ L0y we have L0(x ◦ y) =

L0(x⊕ L0y), L0x ◦ L0y = L0x⊕ L2
0y, L0(x⊕ L0y) = L0x⊕ L2

0y.
If we pass in the left F-equality to the operation ⊕, then we obtain x ⊕ (L0y ⊕ L2

0z) =
(x⊕ L0y)⊕ (L0e

◦(x)⊕ L2
0z). If we change L0y by y, L2

0z by z, then we obtain

x⊕ (y ⊕ z) = (x⊕ y)⊕
(
L0e

◦(x)⊕ z
)

= (x⊕ y)⊕ (e⊕(x)⊕ z) (4.1)

Then (A,⊕) is a left F-quasigroup with the left identity element. For short below in this
theorem we will use denotation e instead of e⊕.

Further we pass from the operation ⊕ to the operation +: x + y = R−1
0 x ⊕ y, x ⊕ y =

(x ⊕ 0) + y. Then x + y = (x/0) ⊕ y, where x/y = z if and only if z ⊕ y = x. We notice,
R−1

0 0 = 0, since R00 = 0, 0⊕ 0 = 0, 0 = 0.
It is well known [83, 12, 15] that (A,+) is a loop. Indeed, 0 + y = R−1

0 0⊕ y = 0⊕ y = y;
x+ 0 = R−1

0 x⊕ 0 = R0R
−1
0 x = x.

We express the map e(x) in terms of the operation +. We have x ⊕ e(x) = x. Then
(x⊕ 0) + e(x) = x, e(x) = (x⊕ 0)\\x, where x\\y = z if and only if x+ z = y.
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If we denote the map R⊕0 by α, then x⊕ y = αx+ y, e(x) = αx\\x. We can rewrite (4.1)
in terms of the loop operation + as follows:

αx+ (αy + z) = α(αx+ y) + (αe(x) + z) (4.2)

From e(x⊕y) = ex⊕ey we have e(αx+y) = αe(x)+e(y). By y = 0 from the last equality
we have

eα = αe (4.3)

Therefore e(αx+ y) = eα(x) + e(y), e is a normal endomorphism of (A,+). Changing αx
by x and taking into consideration (4.3) we obtain from equality (4.2) the following equality:

x+ (αy + z) = α(x+ y) + (ex+ z) (4.4)

Next part of the proof was obtained using Prover 9 which is developed by Professor
W. McCune [75].

If we put in equality (4.4) y = z = 0, then αx+ ex = x, or, equivalently,

αx = x//ex. (4.5)

If we put in equality (4.4) y = 0, then

αx+ (ex+ z) = x+ z (4.6)

If we apply equality (4.5) to equality (4.6), then

(x//ex) + (ex+ z) = x+ z (4.7)

If we apply equality (4.5) to equality (4.4), then

x+
(
(y//ey) + z

)
=
(
(x+ y)//e(x+ y)

)
+ (ex+ z) (4.8)

If we change in equality (4.7) x by x+ y, then(
(x+ y)//e(x+ y)

)
+
(
e(x+ y) + z

)
= (x+ y) + z (4.9)

Taking into consideration Lemma 2.5 and Theorem 2.7 we can say that there exists
a minimal number n (finite or infinite) such that en(a) = 0 for any a ∈ A.

If we change in equality (4.4) x by en−1x, then

en−1x+ (αy + z) = α
(
en−1x+ y

)
+ z (4.10)

If we change in (4.10) αx by x//ex (equality 4.5), then

en−1x+
(
(y//ey) + z

)
=
(
(en−1x+ y)//ey

)
+ z (4.11)

We change in equality (4.9) x by en−1x. Then((
en−1x+ y

)
//ey

)
+ (ey + z) =

(
en−1x+ y

)
+ z (4.12)

We rewrite the left-hand side of equality (4.12) as follows:((
en−1x+ y

)
//ey

)
+ (ey + z) 4.11= en−1x+

(
(y//ey) + (ey + z)

) 4.7= en−1x+ (y + z)
(4.13)
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From (4.12) and (4.13) we have

en−1x+ (y + z) =
(
en−1x+ y

)
+ z (4.14)

We change in equality (4.9) x by en−2x, then((
en−2x+ y

)
//e
(
en−2x+ y

))
+
(
e
(
en−2x+ y

)
+ z
)

=
(
en−2x+ y

)
+ z (4.15)

We rewrite the left-hand side of equality (4.15) as follows:((
en−2x+ y

)
//e
(
en−2x+ y

))
+
(
e
(
en−2x+ y

)
+ z
)

4.14=
((
en−2x+ y

)
//e
(
en−2x+ y

))
+
(
en−1x+ (ey + z)

)
4.8= en−2x+

(
(y//ey) + (ey + z)

) 4.7= en−2x+ (y + z)

(4.16)

From (4.15) and (4.16) we have

en−2x+ (y + z) =
(
en−2x+ y

)
+ z (4.17)

Begin Cycle

We change in equality (4.9) x by en−3x. Then((
en−3x+ y

)
//e
(
en−3x+ y

))
+
(
e
(
en−3x+ y

)
+ z
)

=
(
en−3x+ y

)
+ z (4.18)

We rewrite the left-hand side of equality (4.18) as follows:((
en−3x+ y

)
//e
(
en−3x+ y

))
+
(
e
(
en−3x+ y

)
+ z
)

4.17=
((
en−3x+ y

)
//e
(
en−3x+ y

))
+
(
en−2x+ (ey + z)

)
4.8= en−3x+

(
(y//ey) + (ey + z)

) 4.7= en−3x+ (y + z)

(4.19)

From (4.18) and (4.19) we have

en−3x+ (y + z) =
(
en−3x+ y

)
+ z

End Cycle

Therefore

en−ix+ (y + z) =
(
en−ix+ y

)
+ z

for any natural number i. If the number n is finite, then repeating Cycle necessary number
of times we will obtain that x+ (y + z) = (x+ y) + z for all x, y, z ∈ A.

Since n is a fixed number (maybe and an infinite), then limi→∞(n− i)→ 0, where i ∈ N.
We can apply Cycle necessary number of times to obtain associativity. Indeed, suppose that
λ is a minimal number such that

eλx+ (y + z) =
(
eλx+ y

)
+ z (4.20)

and there exist a, b, c ∈ A such that

eλ−1a+ (b+ c) 6=
(
eλ−1a+ b

)
+ c
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But from the other side, if we apply Cycle to equality (4.20), then we obtain that

eλ−1x+ (y + z) =
(
eλ−1x+ y

)
+ z

for all x, y, z ∈ A, i.e., λ is not a minimal number with declared properties.
Therefore our supposition is not true and

eλx+ (y + z) =
(
eλx+ y

)
+ z

for all suitable λ and all x, y, z ∈ A.
Step 2. From Theorems 2.7 and 1.33 it follows that

(B, �) = (B, ·)(ε, ψ, ε)
((
R?a
)−1

,
(
L?a
)−1

, ε
)

= (B, ·)
((
R?a
)−1

, ψ
(
L?a
)−1

, ε
)

is a left S-loop.
(2) This case is proved similarly to Case (1).

Corollary 4.2. A loop (Q, ∗), which is the direct product of a group (A,+) and a left S-loop
(B, �), is a left special loop.

Proof. Indeed, any group is left special. Any left S-loop also is a special loop (see [81,
p. 61]). Therefore (Q, ∗) is a left special loop.

Lemma 4.3. The fulfilment of equality (4.4) in the group (A,+) is equivalent to the fact
that the triple Tx = (αLxα−1, ε, Lαx)(ε, Le(x), Le(x)) is an autotopy of (A,+) for all x ∈ A.

Proof. From (4.4) by y = 0 we have

x+ z = αx+ (ex+ z) (4.21)

i.e., Lx = LαxLe(x).
If we change in (4.4) y by α−1y, then

x+ (y + z) = α
(
x+ α−1y

)
+ (ex+ z) (4.22)

Equality (4.22) means that the group (A,+) has an autotopy of the form

Tx =
(
αLxα

−1, Le(x), Lx
)

for all x ∈ A. Taking into consideration that Lx = LαxLe(x), we can rewrite Tx in the form

Tx =
(
αLxα

−1, Le(x), LαxLe(x)
)

=
(
αLxα

−1, ε, Lαx
)(
ε, Le(x), Le(x)

)
Corollary 4.4. If the group (A,+) has the property [Ld, α−1] ∈ LM(A,+) for all d ∈ A,
then

(i) e(A,+) E C(A,+) E (A,+);
(ii) α ∈ Aut(A,+);
(ii) α|(Ker e,+) = ε.
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Proof. (i) It is well known that any autotopy of a group (A,+) has the form (Laδ,Rbδ,
LaRbδ), where La is a left translation of the group (A,+), Rb is a right translation of this
group, δ is an automorphism of this group [15].

Therefore if the triple Td is an autotopy of the loop (A,+), then we have

αLdα
−1 = Laδ, Le(d) = Rbδ, Ld = LaRbδ (4.23)

Then Le(d)0 = Rbδ0, e(d) = b. From Ld0 = LaRbδ0 we have d = a+ b, d = a+ e(d). But
d = αd+ e(d). Therefore, a = αd.

We can rewrite equalities (4.23) in the form

αLdα
−1 = Lαdδ, Le(d) = Re(d)δ, Ld = LαdRe(d)δ (4.24)

Then

δ = R−e(d)Le(d) = Le(d)R−e(d), αLdα
−1 = LαdLe(d)R−e(d) = LdR−e(d)

L−dαLdα
−1 = R−e(d),

[
Ld, α

−1
]

= R−e(d)

We notice that all permutations of the form {R−e(d) | d ∈ A} form a subgroup H ′ of the
group RM(A,+), since e is an endomorphism of the group (A,+).

By our assumption H ′ ⊆ LM(A,+). Then

H ′ ⊆ RM(A,+) ∩ LM(A,+)

But LM〈A,α〉 ∩ RM〈A,α〉 ⊆ C〈A,α〉 [43, 90]. Therefore R−e(d) = L−e(d) for all d ∈ A,
e(A) ⊆ C(A).

(ii) From (i) it follows that the triple (ε, Le(b), Le(b)) is an autotopy of (A,+). Indeed,
equality y + (e(b) + z) = e(b) + (y + z) is true for all b, y, z ∈ A since e(b) ∈ C(A).

Then the triple (αLbα−1, ε, Lαb) is an autotopy of (A,+), i.e., αLbα−1y+ z = Lαb(y+ z).
By z = 0 we have αLbα−1y = Lαby. Then the triple (Lαb, ε, Lαb) is a loop autotopy.

The equality αLbα−1 = Lαb means that αb+y = α(b+α−1y) for all b, y ∈ A. If we change
y by αy, then αb+ αy = α(b+ y) for all b, y ∈ A, α ∈ Aut(A,+).

(iii) From equality αx+ e(x) = x by e(x) = 0 we have αx = x.

Remark 4.5. Conditions [Ld, α−1] ∈ LM(A,+) for all d ∈ A and α ∈ Aut(A,+) are
equivalent.

Corollary 4.6. If e(x) = 0 for all x ∈ A, then α ∈ Aut(A,+).

Proof. In this case equality (4.22) takes the form (αLxα−1, ε, Lαx). If autotopy of such form
true in a loop, then αLxα

−1 = Lαx, αLx = Lαxα.

Sokhatsky has proved the following theorem (see [113, Theorem 17]).

Theorem 4.7. A group isotope (Q, ·) with the form x ·y = αx+a+βy is a left F-quasigroup
if and only if β is an automorphism of the group (Q,+), β commutes with α and α satisfies
the identity α(x+ y) = x+ αy − x+ αx.
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Example 4.8. Dihedral group (D8,+) with the Cayley table

+ 0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 0 3 2 6 7 4 5
2 2 6 7 1 0 3 5 4
3 3 4 5 0 1 2 7 6
4 4 3 0 5 7 6 1 2
5 5 7 6 4 3 0 2 1
6 6 2 1 7 5 4 0 3
7 7 5 4 6 2 1 3 0

has an endomorphism

e =

(
0 1 2 3 4 5 6 7
0 3 3 0 3 3 0 0

)
, e2 = 0

and permutation α = (1 2)(4 5) such that α /∈ Aut(D8). Using this permutation and taking
into consideration Theorem 4.7 we may construct left F-quasigroups (D8, ·) and (D8, ∗) with
the forms x · y = αx+ a+ y and x ∗ y = αx+ a+βy, where β = (15)(24). These quasigroups
are right-linear group isotopes but they are not left linear quasigroups (α /∈ Aut(D8,+)).
This example was constructed using Mace 4 [74].

Corollary 4.9. A left special loop (Q,⊕) is isotope of a left F-quasigroup (Q, ·) if and only
if (Q,⊕) is isotopic to the direct product of a group (A,+) and a left S-loop (B, �).

Proof. If a left special loop (Q,⊕) is an isotope of a left F-quasigroup (Q, ·), then from
Theorem 4.1 it follows that (Q,⊕) is isotopic to a loop (Q, ∗) which is the direct product of
a group (A,+) and a left S-loop (B, �).

Conversely, suppose that a left special loop (Q,⊕) is an isotope a loop (Q, ∗) which is the
direct product of a group (A,+) and a left S-loop (B, �). It is easy to see that isotopic image
of group (A,+) of the form (ε, ψ, ε), where ψ ∈ Aut(A,+), is a left F-quasigroup.

From Theorem 1.33 we have that isotopic image of the loop (B, �) of the form (α,ψ�, ε),
where ψ� is complete automorphism of (B, �), is a left distributive quasigroup (B, ◦). By
Lemma 2.3 (see also [15]) isotope of the form x · y = x · ψ◦y, where ψ◦ ∈ Aut(B, ◦), is a left
F-quasigroup. Hence, among isotopic images of the left special loop (Q,⊕) there exists a left
F-quasigroup.

Corollary 4.9 gives an answer to Belousov 1a Problem [12].

Corollary 4.10. If (Q, ∗) is a left M-loop which is isotopic to a left F-quasigroup (Q, ·),
then (Q, ∗) is isotopic to the direct product of a group and LP-isotope of a left S-loop.

Proof. By Theorem 4.1 any left F-quasigroup (Q, ·) is LP-isotopic to a loop (Q,⊕) which
is the direct product of a group (A,⊕) and left S-loop (B, �).

By Theorem 1.35 any loop which is isotopic to a left F-quasigroup is a left M-loop.
Up to isomorphism (Q, ∗) is an LP-isotope of (Q, ·). Then the loops (Q, ∗) and (Q,⊕) are

isotopic with an isotopy (α, β, ε). Moreover, they are LP-isotopic (see [15, Lemma 1.1]).
From the proof of Lemma 1.79 it follows that LP-isotopic image of a loop that is a direct

product of two subloops also is isomorphic to the direct product of some subloops.
By Albert Theorem (Theorem 1.36) LP-isotopic image of a group is a group.
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4.2 F-quasigroups

Theorem 4.11. Any F-quasigroup (Q, ·) is isotopic to the direct product of a group (A,⊕)×
(G,+) and a commutative Moufang loop (K, �), i.e., (Q, ·) ∼ (A,⊕)× (G,+)× (K, �).

Proof. By Theorem 2.7(1) any left F-quasigroup (Q, ·) has the structure (Q, ·) ∼= (A, ◦) ×
(B, ·), where (A, ◦) is a quasigroup with a unique idempotent element; (B, ·) is isotope of a left
distributive quasigroup (B, ?), x · y = x ? ψy for all x, y ∈ B, ψ ∈ Aut(B, ·), ψ ∈ Aut(B, ?).

By Theorem 2.7(2) the quasigroup (B, ·) has the structure (B, ·) ∼= (G, ◦)× (K, ·), where
(G, ◦) is a quasigroup with a unique idempotent element; (K, ·) is isotope of a right distribu-
tive quasigroup (K, ?), x · y = ϕx ? y for all x, y ∈ K, ϕ ∈ Aut(K, ·), ϕ ∈ Aut(K, ?).

By Theorem 4.1(1), the quasigroup (A, ◦) is a group isotope. By Theorem 4.1(2), the
quasigroup (G, ◦) is a group isotope.

In the quasigroup (K, ·) the endomorphisms e and f are permutations of the set K and
by Theorem 3.19 (K, ·) is isotope of a distributive quasigroup. Then by Belousov Theorem
(Theorem 1.31) quasigroup (K, ·) is isotope of a CML (K, �). Therefore (Q, ·) ∼ (A,⊕) ×
(G,+)× (K, �).

Theorem 4.12. Any loop (Q, ∗) that is isotopic to an F-quasigroup (Q, ·) is isomorphic to
the direct product of a group and a Moufang loop [55, 57].

Proof. By Theorem 4.11 an F-quasigroup (Q, ·) is isotopic to a loop (Q,+) ∼= (A,+)×(B,+)
which is the direct product of a group and a commutative Moufang loop. Then any left
translation L of (Q,+) is possible to be present as a pair (L1, L2), where L1 is a left translation
of the loop (A,+), L2 is a left translation of the loop (B,+).

From Lemma 1.62 it follows that any LP-isotope of the loop (Q,+) is the direct product
of its subloops.

By generalized Albert Theorem LP-isotope of a group is a group. Any LP-isotope of
a commutative Moufang loop is a Moufang loop [12].

Corollary 4.13. If (Q, ∗) is an M-loop which is isotopic to an F-quasigroup, then (Q, ∗) is
a Moufang loop.

Proof. The proof follows from Theorem 4.12. It is well known that any group is a Moufang
loop.

4.3 Left SM-quasigroups

Theorem 4.14. A left SM-quasigroup (Q, ·) is isotopic to the direct product of a group
(A,⊕) and a left S-loop (B, �), i.e., (Q, ·) ∼ (A,⊕)× (B, �).

Proof. In many details the proof of this theorem repeats the proof of Theorem 4.1.
By Theorem 2.17 any left SM-quasigroup (Q, ·) has the structure (Q, ·) ∼= (A, ◦)× (B, ·),

where (A, ◦) is a quasigroup with a unique idempotent element and there exists a number
m such that |sm(A, ◦)| = 1; (B, ·) is an isotope of a left distributive quasigroup (B, ?),
x · y = s(x ? y) for all x, y ∈ B, s ∈ Aut(B, ·), s ∈ Aut(B, ?).

By Corollary 1.80, if a quasigroup Q is the direct product of quasigroups A and B, then
there exists an isotopy T = (T1, T2) of Q such that QT ∼= AT1 ×BT2 is a loop.

Therefore we have a possibility to divide our proof into two steps.
Step 1. Denote a unique idempotent element of (A, ◦) by 0. It is easy to check that s◦ 0 = 0.

Indeed, from (s◦)mA = 0 we have (s◦)m+1A = s◦0 = 0.



On the structure of left and right F-, SM-, and E-quasigroups 251

(23)-parastrophe of (A, ◦) is left F-quasigroup (A, ·) (Lemma 1.85, (5)) such that |em(A, ·)|
= 1. Then (A, ·) also has a unique idempotent element. By Theorem 4.1 principal isotope of
(A, ·) is a group (A,⊕).

We will use multiplication of isostrophies (Definition 1.89, Corollary 1.90, and Lemma
1.91). (23)-parastrophe image of group (A,⊕) coincides with its isotope of the form (I, ε, ε),
where x ⊕ Ix = 0 for all x ∈ A. Indeed, if x ⊕ y = z, then x ⊕23 z = y. But y = Ix ⊕ z.
Therefore x⊕23z = Ix⊕z, i.e., (⊕)((23), ε) = (⊕)(ε, (I, ε, ε)). Then (⊕) = (⊕)((23), (I, ε, ε)),
since I2 = ε.

We have

(⊕) = (◦)
(
(23), ε

)(
ε, (α, β, ε)

)
= (◦)

(
(23), (α, β, ε)

)
,

(⊕) = (⊕)
(
(23), (I, ε, ε)

)
= (◦)

(
(23), (α, β, ε)

)(
(23), (I, ε, ε)

)
= (◦)

(
ε, (αI, ε, β)

)
.

Step 2. The proof of this step is similar to the proof of Step 2 from Theorem 4.1 and we
omit them.

4.4 Left E-quasigroups

Lemma 4.15. A left E-quasigroup (Q, ·) is isotopic to the direct product of a left loop (A,⊕)
with equality (δx⊕x)⊕ (y⊕ z) = (δx⊕ y)⊕ (x⊕ z), where δ is an endomorphism of the loop
(A,⊕), and a left S-loop (B, �), i.e., (Q, ·) ∼ (A,⊕)× (B, �).

Proof. In some details the proof of Lemma 4.15 repeats the proof of Theorem 4.1. By
Theorem 2.17 any left E-quasigroup (Q, ·) has the structure (Q, ·) ∼= (A, ◦) × (B, ·), where
(A, ◦) is a quasigroup with a unique idempotent element and there exists a number m such
that |fm(A, ◦)| = 1; (B, ·) is an isotope of a left distributive quasigroup (B, ?), x · y =
f−1(x) ? y for all x, y ∈ B, f ∈ Aut(B, ·), f ∈ Aut(B, ?).

By Corollary 1.80, if a quasigroup Q is the direct product of quasigroups A and B, then
there exists an isotopy T = (T1, T2) of Q such that QT ∼= AT1 ×BT2 is a loop.

Therefore we have a possibility to divide our proof into two steps.
Step 1. We will prove that (A,⊕) is a left loop. Denote a unique idempotent element of

(A, ◦) by 0. It is easy to check that f◦ 0 = 0. Indeed, from (f◦)mA = 0 we have (f◦)m+1A =
f◦0 = 0.

From left E-equality x◦(y◦z) = (f◦(x)◦y)◦(x◦z) by x = 0 we have 0◦(y◦z) = (0◦y)◦(0◦z).
Then L0 ∈ Aut(A, ◦).

Consider isotope (A,⊕) of the quasigroup (A, ◦): x⊕ y = x ◦L−1
0 y. We notice that (A,⊕)

is a left loop. Indeed, 0⊕ y = 0 ◦ L−1
0 y = y.

Prove that L0 ∈ Aut(A,⊕). From equality L0(x ◦ y) = L0x ◦ L0y we have L0(x ◦ y) =
L0(x⊕ L0y), L0x ◦ L0y = L0x⊕ L2

0y, L0(x⊕ L0y) = L0x⊕ L2
0y.

If we pass in left E-equality to the operation ⊕, then we obtain x ⊕ (L0y ⊕ L2
0z) =

(f◦x⊕ L0y)⊕ (L0x⊕ L2
0z). If we change L0y by y, L2

0z by z, then we obtain

x⊕ (y ⊕ z) =
(
f◦x⊕ y

)
⊕
(
L0x⊕ z

)
(4.25)

We notice that f◦x ◦ x = x. Then f◦x⊕ L0x = x. Moreover, from f◦(x ◦ y) = f◦x ◦ f◦y
we have f◦(x ⊕ L0y) = f◦(x) ⊕ L0f

◦(y). If x = 0, then f◦L0(y) = L0f
◦(y), f◦(x ⊕ L0y) =

f◦(x)⊕ f◦L0(y), f◦ is an endomorphism of the left loop (A,⊕).
We can rewrite equality (4.25) in the following form:(

f◦x⊕ L0x
)
⊕ (y ⊕ z) =

(
f◦x⊕ y

)
⊕
(
L0x⊕ z

)
(4.26)
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If we change in (4.26) x by L−1
x , then we obtain(

f◦L−1
0 x⊕ x

)
⊕ (y ⊕ z) =

(
f◦L−1

0 x⊕ y
)
⊕ (x⊕ z) (4.27)

If we denote the map f◦L−1
0 of the set Q by δ, then from (4.27) we have (δx⊕x)⊕(y⊕z) =

(δx⊕ y)⊕ (x⊕ z). The map δ = f◦L−1
0 is an endomorphism of the left loop (A,⊕) since f◦

is an endomorphism and L−1
0 an automorphism of (A,⊕). We notice, f◦L−1

0 0 = 0.
Step 2. From Theorems 2.17 and 1.33 it follows that

(B, �) = (B, ·)(f, ε, ε)
((
R?a
)−1

,
(
L?a
)−1

, ε
)

= (B, ·)
(
f
(
R?a
)−1

,
(
L?a
)−1

, ε
)

is a left S-loop.

Remark 4.16. If we take f◦a = 0, then from f◦a ⊕ L0a = a we have L0a = a. Thus from
(4.26) we have a⊕ (y ⊕ z) = y ⊕ (a⊕ z).

Lemma 4.17. A left E-quasigroup (Q, ·) is isotopic to the direct product of a loop (A,+)
with equality (δx+x) + (y+ z) = (δx+ y) + (x+ z), where δ is an endomorphism of the loop
(A,+), and a left S-loop (B, �), i.e., (Q, ·) ∼ (A,+)× (B, �).

Proof. We pass from the operation ⊕ to operation +: x+y = R−1
0 x⊕y, x⊕y = (x⊕0)+y.

Then x+ y = (x/0)⊕ y, where x/y = z if and only if z ⊕ y = x. We notice that R−1
0 0 = 0,

since R00 = 0, 0⊕ 0 = 0.
If we denote the map R⊕0 by α, then x ⊕ y = αx + y. We can rewrite (4.27) in terms of

the loop operation + as follows:

α(δαx+ x) + (αy + z) = α(δαx+ y) + (αx+ z) (4.28)

Prove that αδ = δα. Notice that R⊕y x = R◦
L−1

0 y
x. Then R⊕0 = R◦0. Thus

L0R
⊕
0 x = L0R0x = 0 ◦ (x ◦ 0) = (0 ◦ x) ◦ 0 = R⊕0 L0x

f◦R⊕0 x = f◦(x ◦ 0) = f◦x ◦ 0 = R⊕0 f
◦x

Then δ is an endomorphism of the loop (A,+). Indeed, δ(x+y) = δ(α−1x⊕y) = δα−1x⊕
δy = α−1δx⊕ δy = δx+ δy.

Equality (4.28) takes the form

α(δx+ x) + (αy + z) = α(δx+ y) + (x+ z) (4.29)

If we put in equality (4.29) x = y, then αx = x, α = ε and equality (4.29) takes the form

(δx+ x) + (y + z) = (δx+ y) + (x+ z) (4.30)

Lemma 4.18. If δx = 0 for all x ∈ A, then (A,+) is a commutative group.

Proof. If we put in equality (4.30) z = 0, then x+ y = y+ x. Therefore, from x+ (y+ z) =
y + (x+ z) we have (y + z) + x = y + (z + x).

Lemma 4.19. There exists a number m such that in the loop (A,+) the chain

(A,+) ⊃ δ(A,+) ⊃ δ 2(A,+) ⊃ · · · ⊃ δm(A,+) = (0,+) (4.31)

is stabilized on the element 0.
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Proof. From Theorem 2.17 it follows that (A, ◦) is a left E-quasigroup with a unique idem-
potent element 0 such that the chain

(A, ◦) ⊃ f◦(A, ◦) ⊃
(
f◦
)2(A, ◦) ⊃ · · · ⊃

(
f◦
)m(A, ◦) = (0, ◦) (4.32)

is stabilized on the element 0.
From Lemmas 4.15 and 4.17 it follows that (A,+) = (A, ◦)T , where isotopy T has the

form (R−1
0 , L−1

0 , ε). Since 0 ∈ (f◦)i(A, ◦), then ((f◦)i(A, ◦))T = (f◦)i(A,+) is a subloop of
the loop (A,+) (Lemma 1.14) for all suitable values of i.

Thus we obtain that the isotopic image of chain (4.32) is the following chain:

(A,+) ⊃ f◦(A,+) ⊃
(
f◦
)2(A,+) ⊃ · · · ⊃

(
f◦
)m(A,+) = (0,+) (4.33)

We recall that δ = f◦L−1
0 and f◦L−1

0 = L−1
0 f◦ (Lemma 4.15). Then δi = (f◦)iL−i0 and

δi(A,+) = (f◦)iL−i0 (A,+). It is clear that L−i0 is a bijection of the set A for all suitable
values of i.

Thus we can establish the following bijection: (f◦)i(A,+) ↔ δi(A,+). Then δi(A,+) ⊃
δi+1(A,+), since (f◦)i(A,+) ⊃ (f◦)i+1(A,+). Therefore (f◦)m(A,+)↔ δm(A,+), δm(A,+)
= (0,+).

Lemma 4.20. The loop (A,+) is a commutative group.

Proof. From Lemma 4.19 it follows that in (A,+) there exists a number m such that
δmx = 0 for all x ∈ A. We have used Prover’s 9 help [75]. From (4.30) by y = 0 we obtain

(δx+ x) + y = δx+ (x+ y) (4.34)

If we change in equality (4.34) y by y + z, then we obtain

(δx+ x) + (y + z) = δx+
(
x+ (y + z)

)
(4.35)

From (4.30) by z = 0 using (4.34) we have

(δx+ y) + x = δx+ (x+ y) (4.36)

If we change in (4.36) y by δx\y, then(
δx+ (δx\y)

)
+ x = δx+

(
x+ (δx\y)

)
(4.37)

But (δx+ (δx\y)) = y (Definition 1.15, equality (1.1)). Therefore

δx+
(
x+ (δx\y)

)
= y + x (4.38)

If we change in (4.30) x by δm−1x, then, using condition δmx = 0, we have

δm−1x+ (y + z) = y +
(
δm−1x+ z

)
(4.39)

Begin Cycle

If we change in equality (4.38) the element x by the element δm−2x, then we have

δm−1x+
(
δm−2x+

(
δm−1x\y

))
= y + δm−2x (4.40)
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If we change in (4.39) z by δm−1x\z, then, using Definition 1.15, equality (1.1), we obtain

δm−1x+
(
y +

(
δm−1x\z

))
= y + z (4.41)

If we change in (4.41) y by δm−2x, z by y and compare (4.41) with (4.40), then we obtain

δm−2x+ y = y + δm−2x (4.42)

We have δm−1(A) ⊆ δm−2(A) since δ is an endomorphism of the loop (A,+). Notice from
equalities (4.39) and (4.42) it follows that δm−1(A) ⊆ Nl(A).

From equality (y/δm−2x) + δm−2x = y (Definition 1.15, equality (1.2)) using commuta-
tivity (4.42) we obtain

δm−2x+
(
y/δm−2x

)
= y (4.43)

From equality (4.43) and definition of the operation \ we have

δm−2x\y = y/δm−2 (4.44)

If we change in (4.39) y + z by y, then y pass in y/z and we have

δm−1x+ y = (y/z) +
(
δm−1x+ z

)
(4.45)

Applying to (4.45) the operation / we have(
δm−1x+ y

)
/
(
δm−1x+ z

)
= (y/z) (4.46)

Write equality (4.30) in the form

(δx+ y)\
(
(δx+ x) + (y + z)

)
= x+ z (4.47)

From (4.47) using (4.35) we obtain

(δx+ y)\
(
δx+

(
x+ (y + z)

))
= x+ z (4.48)

From equality (4.48) using (4.44) we have(
δx+

(
x+ (y + z)

))
/(δx+ y) = x+ z (4.49)

If we change in equality (4.49) x by δm−2, then we obtain(
δm−1x+

(
δm−2x+ (y + z)

))
/
(
δm−1x+ y

)
= δm−2x+ z (4.50)

Using equality (4.46) in equality (4.50) we have

(δm−2x+ (y + z))/y = δm−2x+ z (4.51)

Therefore

δm−2x+ (y + z) =
(
δm−2x+ z

)
+ y

and

δm−2x+ (y + z) = y +
(
δm−2x+ z

)
(4.52)

End Cycle

Therefore we can change equality (4.39) by the equality (4.52) and start new step of the
cycle.

After m steps we obtain that in the loop (A,+) the equality x+ (y + z) = y + (x+ z) is
fulfilled, i.e., (A,+) is an Abelian group. If m = ∞, then we can use arguments similar to
the arguments from the proof of Theorem 4.1.
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Theorem 4.21. (1) A left E-quasigroup (Q, ·) is isotopic to the direct product of an Abelian
group (A,+) and a left S-loop (B, �), i.e., (Q, ·) ∼ (A,+)× (B, �).

(2) A right E-quasigroup (Q, ·) is isotopic to the direct product of an Abelian group (A,+)
and a right S-loop (B, �), i.e., (Q, ·) ∼ (A,+)× (B, �).

Proof. (1) The proof follows from Lemmas 4.17 and 4.18.

Theorem 4.21 gives an answer to Kinyon-Phillips problems (see [64, Problem 2.8, (1)]).

Corollary 4.22. A left FESM-quasigroup (Q, ·) is isotopic to the direct product of an Abelian
group (A,⊕) and a left S-loop (B, �).

Proof. We can use Theorem 4.21.

Corollary 4.22 gives an answer to Kinyon-Phillips problem (see [64, Problem 2.8, (2)]).
We hope in a forthcoming paper we will discuss a generalization of Murdoch theorems

about the structure of finite binary and n-ary medial quasigroups [78, 102] on infinite case
and medial groupoids.

Acknowledgment

The author thanks MRDA-CRDF (ETGP, Grant no. 1133), Consiliul Suprem pentru Ştiinţă
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[1] J. Aczél, V. D. Belousov, and M. Hosszú. Generalized associativity and bisymmetry on quasi-
groups. Acta Math. Acad. Sci. Hungar., 11 (1960), 127–136.

[2] A. A. Albert. Quasigroups. I. Trans. Amer. Math. Soc., 54 (1943), 507–519.
[3] A. A. Albert, Quasigroups. II. Trans. Amer. Math. Soc., 55 (1944), 401–419.
[4] A. S. Basarab. A class of LK-loops. Mat. Issled., 120 (1991), 3–7 (in Russian).
[5] G. E. Bates and F. Kiokemeister. A note on homomorphic mappings of quasigroups into mul-

tiplicative systems. Bull. Amer. Math. Soc., 54 (1948), 1180–1185.
[6] V. A. Beglaryan and K. K. Shchukin. The structure of tri-Abelian totally symmetric quasi-

groups. In “Mathematics, No. 3”. Erevan. Univ., Erevan, 1985, 82–88 (in Russian).
[7] V. A. Beglaryan. On the theory of homomorphisms in quasigroups. Ph.D. thesis, IM AN MSSR,

1982 (in Russian).
[8] V. D. Belousov. On one class of quasigroups. Učen. Zap. Bel’ck. Gos. Ped. Inst., 5 (1960),
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[82] I. I. Parovichenko. The Theory of Operations over Sets. Shtiintsa, Kĭsinĕv, 1981.
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