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Introduction
Considering environmental issues, researchers have exerted 

considerable effort in exploring sustainable development, aimed at 
easing the deterioration of the natural environment. Among these 
efforts, the concept of remanufacturing is developed to achieve such 
goal by saving materials. Remanufacturing refers to the process by 
which a producer can return the quality of used products to at least 
the same as that of new products, but with less energy and resource 
consumption [1]. Given its profitability and environmental friendliness, 
the company and entire society could benefit from remanufacturing in 
terms of reduced costs, lower prices for the consumers, and minimized 
demand for materials, and energy [2]. In recent years, numerous studies 
on production planning problem have been published. Most studies 
consider the case in which the producer receives one batch of orders 
for each period at the beginning of the planning horizon [3-6]. This 
assumption is contrary to actual practice where producers often receive 
multiple orders from retailers, which place their periodic orders at the 
beginning. Thus, considering the logistical and management concerns 
of backlogging and inability to meet retailers’ expectations (i.e., the 
quantity of products specified in every accepted order must be met), 
respectively, the producer faces two questions:

1. Which orders should the producer accept?

2. How should the producer allocate products to retailers within a 
multiple-period planning?

This study aims to investigate these issues and provide a more 
flexible model for analysis.

This study is organized into sections. First, we review the research 
that focus on the production plan in a closed-loop supply chain system 
and identify the unsolved issues at the end of the section. Second, we 
propose a mathematical model in the form of an integer program to 
deal with the unsolved issues. The properties of the proposed model are 
also investigated. Third, a numerical example is provided to show how 
the model works. Finally, we conclude by stating the contributions of 
this study and identifying future research directions. 

Literature Review
“Remanufacturing” differs from “reconditioning” and “repair” 

because the goal of remanufacturing is to recover the quality of a 
used product to that of a new product in such a way that materials 
and energy are not wasted. Sutherland et al. [7] compared the energy 
consumption of the manufacturing and remanufacturing of a diesel 
engine. Their results showed that, when remanufacturing is applied, 
energy consumption and greenhouse gas emissions can be reduced 
significantly, especially if core remanufacturability is increased. Richter 
and Sombrutzki [5] proposed a remanufacturing plan based on the 
Wagner/Whitin model. They added the reverse flow to the original 
Wagner/Whitin model and formulated a model of the alternative 
application of manufacturing and remanufacturing. Their model aimed 
to minimize the setup costs of manufacturing/remanufacturing and 
the inventory costs of new/used products. However, their model does 
not consider the recycle cost, disposal cost, capacity, and amount of 
products produced at each period. They also assumed that the demand 
must be satisfied at each period [5]. Golany et al.  [1] considered 
a production and remanufacturing planning (PRP) problem and 
proposed a model to minimize the total cost. Unlike the model of 
Richter and Sombrutzki [5], Golany et al. [3] replaced setup costs with 
manufacturing and remanufacturing costs. They also considered the 
disposal cost induced from disposing returned products. By reducing 
the PRP to a 0/1 knapsack problem, they proved that the problem is 
an NP-hard problem when costs generally have concave forms; they 
also showed that the problem can be resolved by utilizing a polynomial 
time algorithm when costs have linear forms. Pan et al. [4] proposed a 
single-item capacitated dynamic lot-sizing program. They introduced a 
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Abstract
Production planning, which allows the manufacturer to efficiently manage all production activities, is a major issue 

in manufacturing/processing industries. This study considers a medium-term production planning problem, in which a 
producer receives several periodic orders from multiple retailers at the beginning of the planning horizon. Given the limit 
in production capacity, the producer must reject some orders under the profit maximization principle, while considering 
multiple and inseparable orders, backlogging policy, and capacity limitation of the plant. Therefore, the producer faces 
two issues, namely, (a) which orders the producer should accept, and (b) how to allocate the products to the retailers. 
To solve these problems, we propose a multiple-period production plan in the form of an integer program. Theoretical 
development with numerical examples is provided. The results have shown that this study can help producers deal with 
a more realistic environment and derive useful product delivery information. 
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capacity limitation into their model, characterized useful properties for 
the general concave cost functions, and discussed several simplified but 
useful specific cases of their problem. Most recently, Wang and Fu [6] 
proposed a batch production plan, in which the production quantity 
at each period is presented in batches and permitted a backlogging 
policy. Therefore, products can be supplied even after the product 
delivery period. Considering the growing concern for the natural 
environment, they also addressed the issue of carbon emission. Many 
issues on multiple-period production planning in a closed-loop supply 
chain have been studied in recent works. However, some problems still 
need to be resolved, such as the number of products delivered to the 
retailers at each period. Most studies assumed only one batch order at 
each period, which needs to be satisfied. In the real world, a producer 
does not always serve one retailer, but serves two or more with multiple 
orders. Retailers inevitably increase transportation and ordering costs 
if they divide one order into several parts and then allocate these partial 
orders to different producers; hence, they require full satisfaction when 
the producer accepts the order.

Under these circumstances, the first issue is which order(s) should 
be accepted to maximize the profit of the manufacturer. If backlogging 
is permitted, then the second issue is the allocation of the products to 
each retailer or, more precisely, each order of a retailer in a multiple-
period planning horizon. In the next section, we shall state the problem 
formally and propose a mathematical model to deal with these two 
issues.

Model Formulation
Problem statement

Consider a process/reprocess plant that sells only one kind of 
product and the company receives orders from its customers at the 
beginning of the planning horizon. Considering the capacity limit, 
the plant may not satisfy all the orders. By considering the possibility 
of loss of its retailers, the manager decides that at least a minimum 
number of orders must be satisfied. The order can be satisfied using 
the backorder policy, for which a penalty cost, may be included for the 

delay of delivery. The products could be reprocessed after recycling 
from customers. Although profit varies with different combinations of 
satisfied orders, the goal of the company is to maximize its net profit. 
Therefore, the aim of this study is to develop an analytical model to 
support the target of the manager to achieve the maximum net profit.

Figure 1 shows the structure of this study. 

Before formulating the model, we state the assumptions first.

Assumptions

1.	 Reprocessed products are regarded as the same as processed 
products. Therefore, these products are processed along the 
same production lines and compete for capacities.

2.	 Once accepted, the order must be satisfied within the planning 
horizon or within the maximal delay period given by each 
retailer.

Notation definition

T	 Planning horizon.

U	 Product lifespan period.

P	 Net profit.

TNO j  Total number of orders retailer j gives to producer, j=1, 2…J.
t
jD   Quantity of products retailer j needs in period t. t=1, 2… T and 

j=1, 2,…, J.

γ  Collection rate.

Ck  The capacity of machine k, k=1,2,…,K.

CRMk  The quantity of resource machine k used for per unit of 
processing, k=1,2,…,K.

CMk	 The quantity of machine k used for per unit of reprocessing, 
k=1,2,…,K.

CL  Inventory limit of new product.

CRL	 Inventory limit of returned product.

MRSO j  Minimum ratio of accepted orders to total orders for 
retailer j, j=1, 2,…J.

dlj   The retailer j’s maximum tolerable delay periods (0 ≤ ddj ≤ 
T − 1).

REV  Unit revenue of sold product.

PC   Unit cost of processing.

RPC   Unit cost of reprocessing.

HS   Unit holding cost of serviceable product.

HR   Unit holding cost of returned product.

DC  Unit cost of disposal of returned products.

SC   Unit cost of setting-up for processing or reprocessing.

OC   Unit cost of ordering raw material.

BCj   Unit backlogging cost of retailer j, j=1, 2,…, J.

RC   Unit cost of recycling product.

xt   The quantity of products processing in period t. t=1,2,…,T.
Figure 1: The Structure of Periodic Closed Loop Supply Chain The Structure 
of Periodic Closed Loop Supply Chain.
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yt   The quantity of products reprocessing in period t. t=1,2,…,T.

ist   Inventory of new product at the end of period t. t=1,2,…,T.

irt   Inventory of raw material at the end of period t. t=1,2,…,T.

imi  Inventory of used product at the end of period t. t=1,2,…,T.

zt   The quantity of products disposed of in period t. t=1,2,…,T.

mt   Setup variable, 0-1 binary variable, t=1,2,…,T.

nt   Ordering variable, 0-1 binary variable, t=1,2,…,T.
,t t'

jb   The quantity of products supplied in period t’ for retailer j’s 
order of period t. t=1,2,…,T, t’=t,t+1,…,T, j=1,2,…J.

ot   The quantity of raw materials ordered in period t. t=1,2,…,T.

rt   The quantity of products recycled in period t. t=U, U+1,…,T.
t
js   Binary variable, t=1,2,…T and j=1,2,…J.

Proposed Production Mix Model (PMM)

In this part, a production planning model, called production mix 
model (PMM), is developed wherein the revenue and cost functions 
are assumed linear.

Maximize					          (PMM)
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, , , , , , , t t t t t t t tx y o im ir is z r  are non-negative and integral.
, ′t t

jb  is non-negative and integral.

,,t t t
js m n  are binary variables { } 0,1∈

L is a large number.

The objective function is used to maximize net profit, which is 
equal to the total revenue minus the costs of processing, reprocessing, 
recycling, disposal, setup, ordering, inventory, and backlogging. 
Constraints (2) to (4) refer to the inventory flow conservation of the 
serviceable products, returned products, and raw materials. Constraint 
(5) calculates the number of products returned at the end of each period. 
Constraint (6) ensures that, once the order is accepted, the retailer has 
to be satisfied before the latest delay period or the end of the planning 
horizon. Constraint (7) refers to the capacity limitation of the factory, 
and each production activity consumes these resources. Constraints (8), 
(9), and (10) refer to the inventory limitations of serviceable products, 
returned products and raw materials, respectively. Constraint (11) 
describes the largest number of reprocessed products at each period. 
Constraint (12) requires that the number of accepted orders for retailer 
j must exceed the minimum ratio of accepted orders to total orders, 
which are initially determined by the decision maker. Constraints (13) 
and (14) define the setup and ordering actions, respectively, such that 
processing or reprocessing has been completed if 0t tx y+ > . Thus, 
the setup cost of that period should be counted; otherwise, tm  is zero, 
which denotes no production activity during the period. If 0to > , then 
the producer orders the raw materials at that period. Thus, the ordering 
cost of that period should be counted; otherwise, tn is zero, which 
denotes no ordering cost during the period. Finally, constraint (15) 
ensures that the producer will not accept a zero-quantity order. 

Furthermore, constraint (5) is a floor function, and is equivalent to 
the following two linear forms:
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1 , 1

1 max 1, 1
 , , 1,′

′

− + − +
= = − + −

≤ γ× = + …∑ ∑
j

J t Ut t t U
jj t t U dl

r b t U U T          (5-1)

( )
1 , 1

1 max 1, 1
 1 , ,  1,− + − +

= = − +

′
′ −

+ > γ× = + …∑ ∑
j

J t Ut t t U
jj t t U dl

r b t U U T (5-2)

After transformation, PMM becomes an integer linear programming 
model, with TJ((T+ 3)/2) + 10T variables, which are all integers, and 
T(11 + 2J + K) − 2U + J constraints.

Alternative optimal allocation strategy-condition of multiple 
optimal solutions

Facilitating flexible management and production requires having 
an alternative optimal allocation strategy. In this section, we define the 
alternative allocation strategy first. Then, we show how the alternative 
optimal allocation strategy could be derived from the original optimal 
allocation strategy.

Definition 1: Optimal Allocation Strategy

Let * * * *
1 , , , ,

T

j J =   B B B B  be the optimal allocation strategy for all 
retailers j, 

1, ,j J=  , where * 1,1* 1,2* 1, * 2,2* , *T T T
j j j j j jb b b b b =   B  with 
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* * * * * * * * * *, , , , , , , , =  V x y z r is ir o m n  and * * * *
1 , , , ,

T

j J =   S S S S  with 
* 1* 2* *, , , T
j j j js s s =  S . Then, ( )* * *, ,V S B  forms the optimal solution.

Definition 2: Alternative Optimal Allocation Strategy

Here, ** **
j =  B B  is called the alternative optimal allocation strategy if 

( )* * **, ,V S B  is an optimal solution, where ** *≠B B .

Theorem 1: Sufficient Condition

Let ( )* * *, ,V S B  be an optimal solution. Then for any j, two periods, 2
jt  

and 1
jt ,  satisfy 2 1 2

j j j jt t t dl> ≥ − . If two periods, a and c, in the interval 
2 1,j j jI t dl t = −   possess positive 

1, ja t
jb  and 2, jc t

jb , respectively, then the 
alternative optimal allocation strategy exists.

Proof: See Appendix A.

Five steps are proposed based on the sufficient condition to obtain 
the alternative optimal allocation strategy, that is, to replace 

1, ja t
jb , 

1, jc t
jb

, 2, ja t
jb , and 2, jc t

jb  with 1,
*

ja t
jb , 1,

*
jc t

jb , 2,
*

ja t
jb  and 

2,
*

jc t
jb  for the satisfied retailer j, 

respectively. Table 1 summarizes these steps.

Figure 2 represents the “supply products from period p1 to p2 with 
x units, where p1>p2,” which explains how Table 1 works.

Next, we suppose that the maximum tolerable delay period of 
retailer j, dlj, is 3, with the original optimal allocation strategy of retailer 
j shown in Figure 3. Let us assume 2 4jt = , 1 3jt = , 1a = , and 2c = , which are 
in contrast to the conditions of 2 1

j jt t>  and 2 1, ,j j ja c t dl t ∈ −   with positive 
1, ja t

jb  and 2, jc t
jb . Then, using the procedure shown in Table 1, the alternative 

optimal allocation strategy is obtained and shown in Figure 4.

The reduced PMM

Reducing the complexity of PMM can decrease the computation 
time. This reduction is attained by assuming that all retailers allow the 
largest tolerable delay period equal to T − 1, that is, 1jdl T= −  for all j. 
We reduce the PMM to a simpler model that has the same number of 
constraints, but fewer variables than those of the PMM.

We first define a new variable t
jb  as the total supply to the order of 

retailer j at the tth period, ,
1

tt t t
j jt

b b ′
′=

= ∑ . The modified constraints in the 
reduced PMM model are summarized below. 

Corollary: The reduced PMM has the same optimal solution as the 
PMM.

Proof: See Appendix B.

The reduced PMM:
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Table 1: Steps to Obtain Alternative Optimal Allocation Strategy.

Figure 2: Supply products from period p1 to p2 with x units, where p1 > p2”.

 

1 p2 x 

Figure 3: Original Optimal Allocation Strategy for Retailer j.
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,  1, 2, , .+ ≤ × = …t t tx y L m t T 	                                                   (13)

, 1, 2, , .≤ × = …t to L n t T                                                             (14)

, 1, 2, ., ,   1, 2, .,≤ = … = …t t
j js D t T j J 	                                 (15)

The remaining constraints are the same as those in the PMM. After 
we replace the objective function (1) by (16); constraint (2) by (17); 
constraints (5-1) and (5-2) by (18-1) and (18-2), respectively; and 
constraint (6) by (19) and (20), we reduce the number of variables by 
( )( )1 2T TJ− , whereas the number of constraints remains the same. 

The complexity comparison between the PMM and the reduced PMM 
is shown in Table 2.

Although the reduced PMM minimizes the computation 
complexity, in reality, all retailers rarely allow delays along the entire 
planning horizon. Therefore, the reduced PMM is only for theoretical 
application and not for practical application.

Numerical Example and Analysis
This section provides numerical examples and the analyses. We 

first show how the PMM works using an example. After analyzing the 
parameters, this study provides managerial insights that support the 
decision-making process. Finally, we provide another example to show 
the difference of the allocation strategy tableaus between the PMM and 
the reduced PMM.

Numerical example for the PMM

In this section, an example is provided to show how our model 
works with input data indicated in Tables 3-5.

Using the optimization software package, ILOG CPLEX v12.5, an 
optimal value of 4689 is obtained. The optimal solution is shown in 
Tables 6-10 (shaded blocks in Table 6 represent the accepted orders, and 
0s in Tables 8-10 represent zero vectors).

Analysis of MRSO for managerial insight
Intuitively, if the number of accepted orders increases, the profit 

should also increase. However, the producer can accept more orders 
because of the backlogging policy. If the penalty of backlogging for an 
order exceeds the revenue gained by the order, then the profit is expected 
to decrease. In the PMM, the factor that affects the accepted orders is 

jMRSO , which is given by the decision maker. Given that a larger jMRSO

may decrease the profit, the goal of this section is to analyze how the 

Figure 4: Alternative Optimal Allocation Strategy for Retailer j.

5 5 5 

3 

2 

4 

PMM The Reduced PMM Difference
Number of 
variables TJ((T+3)/2)+10T=O(T2J) 2TJ+10T= O(TJ) TJ=O(T)

Number of 
constraints T(11+2J+K)-2U+J=O(T(2J+K)) T(11+2J+K)-2U+J=O(T(2J+K)) Same

Table 2: Complexity Comparison of PMM and the Reduced PMM.

Parameters value Parameters Unit
T 13 periods BCj [4, 5, 6, 5] dollars/per product
J 4 retailers RC 2 dollars/per product
K 4 machines OC 20 dollars /per product
U 3 periods REV 15 dollars /per product

TNOj [13,13,13,13] orders PC 10 dollars /per product
Y 0.7 RPC 7 dollars /per product

CL 500 new products HS 7 dollars /per product
CRL 150 returned products HR 5 dollars /per product

MRSOj, j=1,…,4 [0.7 0.8 0.5 0.4] HM 3 dollars /per product
CML 150 raw materials DC 2 dollars /per product

dlj, j=1,…,4 [1 2 1 0] periods SC 30 dollars/per period

Table 3: Input Parameters.

Retailers
Orders R1 R2 R3 R4

1st 85 95 78 88
2nd 96 110 90 115
3rd 150 160 170 152
4th 160 180 170 200
5th 110 60 30 250
6th 60 70 20 300
7th 2 1 2 4
8th 85 95 78 88
9th 96 110 90 115

10th 150 160 170 152
11th 160 180 170 200
12th 110 60 30 250
13th 60 70 20 300

Table 4: Periodic Orders.

machine k=1…4 1 2 3 4
Capacity of machine k(hr) 800 1000 1400 500

Unit consumption of processing of machine k(hr) 3 5 7 2
Unit consumption of reprocessing of machine k(hr) 1 2 4 1

Table 5: Resources and Consumption of Process and Reprocess.

Retailer
Orders
Period

R1 R2 R3 R4

1st 85 95 78 88
2nd 96 110 90 115
3rd 150 160 170 152
4th 160 180 170 200
5th 110 60 30 250
6th 60 70 20 300
7th 2 1 2 4
8th 85 95 78 88
9th 96 110 90 115

10th 150 160 170 152
11th 160 180 170 200
12th 110 60 30 250
13th 60 70 20 300

Ratio of accepted orders to 
TNOj

77.0% 85.0% 61.5% 46.2%

Table 6: Optimal Combination of Accepted Orders 4.
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optimal value varies with different values of  jMRSO  and, from it, derive 
managerial insights to support decision making.

To analyze how jMRSO  affects the objective value, let 
1 2, , , jMRSO MRSO MRSO MRSO =   . Then, two types of variables, *

jMRSO   
and **

jMRSO  are defined as follows:

1. *MRSO  : the value of the optimal returned profit is the largest, that 
is, when we set  *

j jMRSO MRSO≤  for all j, the maximum optimal value 
is obtained; and 

  Period t 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 
Process, xt 189 200 200 127 105 120 84 117 114 91 106 114 120

Reprocessyt 0 0 0 127 143 140 150 145 150 110 150 150 140
Disposed, zt 0 0 1 1 0 27 0 59 1 85 34 0 125
Recycled, rt 0 0 128 144 140 177 145 209 111 235 184 140 125
Inventory, ist 6 0 0 0 40 0 75 0 0 0 76 0 0
Inventory, irt 0 0 127 143 140 150 145 150 110 150 150 140 0
Inventory, imt 0 0 0 0 0 0 0 0 0 0 0 0 0

Raw material, ot 189 200 200 127 105 120 84 117 114 91 106 114 120
Setup mt 1 1 1 1 1 1 1 1 1 1 1 1 1

Ordering, nt 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 7: Optimal Production Activities.

        Supply
Order 1st 2nd 3rd 4th

1st (0,95,0,88) 0 0 0
2nd (96,110,0,0) 0 0
3rd (48,0,0,152) (102,0,0,0)
4th (152,0,0,0)

Table 8: Optimal Periodic Allocation for Retailers (R1, R2, R3, R4) from Periods 
1,2,3,4 with Allowed (1, 2 ,1, 0) Respective Delay by PMM.

Supply
Order 5th 6th 7th 8th

1st 0 0 0 0
2nd 0 0 0 0
3rd 0 0 0 0
4th (8,0,0,0) 0 0 0
5th (110,60,30,0) 0 0 0
6th (0,0,0,300) (60,70,20,0) 0
7th (2,1,2,4) 0
8th (76,95,78,88)

Table 9: Optimal Periodic Allocation for Retailers (R1, R2, R3, R4) from Periods 
5,6,7,8 with Allowed (1, 2 ,1, 0) Respective Delay by PMM.

Supply
Order 9th 10th 11th 12th 13th

1st 0 0 0 0 0
2nd 0 0 0 0 0
3rd 0 0 0 0 0
4th 0 0 0 0 0
5th 0 0 0 0 0
6th 0 0 0 0 0
7th 0 0 0 0 0
8th (9,0,0,0) 0 0 0 0
9th (55,110,90,0) (41,0,0,0) 0 0 0
10th (0,160,0,0) 0 0 0
11th (0,180,0,0) 0 0
12th (0,60,30,250) (110,0,0,0)
13th (60,70,20,0)

Table 10: Optimal Periodic Allocation for Retailers (R1, R2, R3, R4) from Periods 
9,10,11,12,13 with Allowed (1, 2 ,1, 0) Respective Delay by PMM.

2. **MRSO : the largest value wherein the producer can maintain its 
service level, that is, if  **

j jMRSO MRSO>  for all j, then the model would 
be infeasible.

If *
j jMRSO MRSO≥   for all j, then a trade-off between the profit and 

the service level is observed, such that the higher the value of *
jMRSO  , the 

lower the optimal value in the PMM. Although maintaining the service 
level of a company is important, the service level for each customer is 
the main issue that the producer should focus on.

Given that the values of *MRSO and **MRSO  may not be unique, in 
the following, we propose a rule of thumb for determining the *MRSO  
and **MRSO .

To determine, *MRSO we replace constraint (13) with the following:

, , , , .t
js  = × = ∑ =1

1 2T
j jt

MRSO TNO j J                                  (29)

Each jMRSO   is regarded as a variable. In the example, the values 
of *

jMRSO  are 0.2308, 0.3846, 0.3846, and 0.5385. By contrast, we 
calculate  **MRSO  by determining the maximum number of orders 
that the producer could accept. Then, instead of using constraint (29) 
to replace constraint (13), we remove constraint (13) and replace the 
original optimal function with the following:

.t
js∑ ∑=1 =1

max J T

j t                                                                            (30)

For this example, the optimal 1 1

J T t
jj t

s
= =∑ ∑   is 38, and the 

optimal objective value is -11,062. To calculate the value of **MRSO  
, we divide the number of accepted orders given by retailer j by the 
total number of orders given by retailer j. From this, we obtain

[ ]** 1,0.85,0.69,0.38MRSO = .

Following the previously presented analysis, a procedure to 
determine MRSO is proposed, which is described below. 

1. Set *MRSO MRSO=  and solve the model to determine the 
optimal objective value, optimal solution, and the number of accepted 
orders for each retailer jq  .

2. Let j∆   be the number of extra orders the decision maker wants 
to deliver to retailer j, where **0,j j jMRSO q ∆ ∈ × − jTNO  . Replace 
constraint (13) with:

, , , , .t
js = + =∑ =1

Ä 1 2T
j jt

q j J
                                                  

(31)

Reoptimize the model to obtain a satisfactory optimal solution.

Numerical example for the reduced PMM

To explain the reduced PMM, we consider an example where jdl
is equal to [12, 12, 12, 12], and the remaining input data are the same 
as those in the previous example. The optimal value is 5064. Given that 
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our goal is to identify the difference between the PMM and the reduced 
PMM, we only provide the optimal allocation tableau for each model. 
Tables 11-13 show the allocation tableau for the PMM, whereas Table 
14 shows the allocation tableau for the reduced PMM. A feature of the 
reduced PMM is that, although both tableaus could provide product 
delivery information to the producer, the reduced PMM simplifies the 
allocation tableau. This tableau is more readable for decision makers 

because the producer only needs to know the number of products 
supplied to retailer j in each period.

To connect these two kinds of tableaus, we simply add total supply 
to retailer j in period t in the PMM, thus enabling us to determine the 
total supply to retailer j in period t in the reduced PMM. For example, 
from Table 12, we observed that the supply to retailer 4’s 6th period 
order is 72, and the supply to retailer 4’s 7th period order is 4. Therefore, 
the total supply to retailer 4 in period 7 is 76, which is located at (4, 
7) in Table 14. By contrast, Theorem 1 implies that alternative optimal 
allocation strategies might exist. As such, we can infer tableaus for the 
reduced PMM from the multiple tableaus for the PMM.

Summary and Conclusion
In this study, we developed an analytical model, called the PMM, 

to deal with production planning that involves reprocessing and 
inseparable orders in multiple periods. The property of the PMM 
and the special case leading to the reduced PMM model are both 
investigated, especially the existing condition of multiple optimal 
solutions. Numerical examples are also provided to show how the PMM 
and the reduced PMM work.

Furthermore, considering managerial implications, we not only 
provide the existing condition of multiple optimal solutions for the 
alternative allocation strategy, but also analyze two extreme values of 
the minimum ratio of accepted orders ( jMRSO ), which are *

jMRSO   and 
**
jMRSO , for decision support. Based on their preferences, decision 

makers may refer to *
jMRSO   and  *

jMRSO  to tradeoff between the 
returned profit and the service level with regards the corresponding 
number of accepted orders.

In conclusion, apart from the information derived from the 
traditional production planning model, this study provides additional 
information for decision support. Such information can help managers 
decide on which orders the producer should accept and how the final 
products should be allocated to the retailers within each period to 
achieve the maximum net profit.

For future research, the scope of the PMM can be extended to a 
multiproduct production plan. The producer usually sells more than 
one item in the market; thus, the production of multiple products 
should be considered.
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