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Abstract

Numerous attempts have been made at the design of controllers that can maintain glucose concentration levels in
the body of a diabetes patient within ideal limits. Because of physiological differences, a control strategy that works
for one patient may not work for another. There is a need to learn the glucose profile of a patient and come up with
an optimum insulin delivery protocol specific to the patient. In this paper, we attempt to learn the glucose profile of a
subject and compare it with an ideal/desired glucose profile. Using Particle Swarm Optimization (PSO) algorithm, we
optimize the insulin delivery so that the glucose profile of the model of a subject being tested follows the ideal profile.
The performance of the PSO algorithm is evaluated by varying some physiological parameters. Results show that
the PSO algorithm is effective in maintaining the glucose concentration levels within the ideal range while following a
pre-specified ideal profile.

Keywords: Diabetes mellitus; Hypoglycemia; Hyperglycemia;
Particle swarm optimization; Basal insulin delivery

Introduction
According to the American Diabetes Association, the number of

people diagnosed with diabetes is estimated to be over 150 million
worldwide. By 2025, this number is expected to go up to 300 million
[1]. In the United State alone, over 1.25 million people suffer from type
I diabetes (T1D). The World Health Organisation describes diabetes as
a chronic disease which severely affects the insulin production (type I)
or the effectiveness of insulin in the body (type II). This disease is
characterised by high concentration of blood glucose in the body. The
glucose concentration in the body increases after the ingestion of a
meal. In the case of healthy subjects, the β-cells in the pancreas release
insulin when the blood glucose concentration increases. Insulin allows
the cells to absorb glucose, leading to a decrease in the glucose
concentration. However, for subjects suffering from Type I diabetes,
the body loses its ability to produce insulin. This chronic disease
destroys the β-cells which are responsible for the production of insulin
in the body [2]. The destruction of β-cells results in excessive glucose
concentration. This can lead to long-term complications which may
include nerve damage, bone and joint problems, kidney failure and
blindness.

In order to prevent such complications, insulin therapies which
include injections, oral intake, and subcutaneous delivery by an insulin
pump have been employed. These insulin therapies aim to mimic the
insulin secretion process of the β-cells when the blood glucose
concentration increases [2].

Research has shown that an oscillatory delivery of insulin is effective
in maintaining the blood glucose concentration within the desired
range [2,3]. The amount of insulin to be delivered is decided by
medical practitioners depending on the metabolism and the
physiological parameters of a patient.

This is usually done by trial and error until an insulin delivery
protocol that results in acceptable levels of glucose concentration is
determined. If the body does not receive the right amount of insulin, it
can lead to both long and short-term health complications. A carefully
designed protocol which delivers the optimum amount of insulin
depending on the physiological parameters of a patient can reduce or
prevent such complications.

In this paper, we use Particle Swarm Optimization (PSO) algorithm
to optimize the insulin delivery by comparing the glucose profile of a
patient’s response to insulin delivery schedule with a pre-defined ideal
profile. In order to simulate the insulin-glucose dynamics, we use a
Delay Differential Equation (DDE) model for patients suffering from
Type I Diabetes. We further study the effect of variation of
physiological parameters and evaluate the performance of the
optimization algorithm as measured by its ability to adjust the insulin
delivery and track the ideal/desired glucose profile in the face of
parameter variations.

Materials and Methods

Mathematical model
There has been a lot of research on the development of models that

can describe the insulin-glucose kinetics effectively [4,5]. The Bergman
model [6] is one of the most commonly used models to describe the
insulin-glucose kinetics [7]. This model, also known as the Minimum
Model, has parameters which are relatively easy to identify and is
comparatively simple. However, the authors in [1,8-11] have
highlighted the drawbacks and the possible shortcomings of this
model. According to Al-Fandi et al. [1,8], this model fails to represent
the oscillatory nature of the insulin-glucose system. One of the major
drawbacks of the Bergman model is that it considers the insulin-
glucose system to be composed of two separate parts with a two-step
process for parameter fitting. However, the authors in [9-11] argue that
the system is an integrated physiological dynamic system, which
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should be considered as a whole, with a single-step process for
parameter fitting. This limits the model’s use for effective controller
design. Until 2008, the U.S. Food and Drug Administration (FDA) was
using clinical trials to test if a product is safe to be used by diabetic
patients. According to the authors [12], these trials failed to provide a
reason as to why a product being launched was ineffective or unsafe.
The use of computer simulators for in-silico tests has a great potential
to advance research and accelerate innovation. The use of such
computer models was approved by the FDA in 2008 [4], which
included the model developed by Cobelli et al. [5] as a substitute for
animal trials [6,8]. However, this model has several non-linear and
algebraic equations along with a number of parameters which need to
be identified, making it too complicated for control design.

This paper uses a Delay Differential model developed by Wang et al.
[2] to describe the insulin-glucose dynamics for patients suffering from
Type I Diabetes. This model was solved using the DDE 23 solver in
MATLAB. Under the influence of external insulin infusion, the
insulin-glucose dynamics are described using the following equations:�′ = ��� � − �2 � � − �3 � � �4 � � − �3 + �5 � � − �2  (1)�′ = ��� � − ��� �  (2)

where, the insulin and glucose concentrations at any time t ≥ 0 are
given by I(t) and G(t) respectively. Iin(t) is the exogenous insulin intake
rate while Gin(t) denotes the glucose intake rate. The other source
through which glucose enters the system is the liver. The α-cells located
in the Langerhan’s islets release the hormone glucagon when the
plasma glucose concentration drops [2]. This hormone exerts control
over the liver which leads to the production of glucose. The glucose
production controlled by the insulin concentration is given by f5(I),
where, τ2 > 0 represents the hepatic glucose production delay. The
insulin-independent glucose utilization, i.e. the glucose utilised by the
brain and nerve cells is denoted by f2(G) while the insulin-dependent
utilization, which is due to muscle, fat and other tissues, is denoted by
f3(G)f4(I). The time delay for insulin-dependent glucose utilization is
given by τ3 > 0. The model developed by Sturis et al. [3] consisted of
the function f1(G) to denote the insulin secretion as a function of
glucose. The authors [2,13] explain that the term αf1(G) denotes the
pancreatic insulin delivery in a normal patient. The term α denotes the
degree to which a patient is affected by diabetes. A patient whose
pancreas has completely lost the ability to produce insulin will have
α=0. Wang et al. modified their model by omitting the function f1 and
made appropriate changes to account for the insufficient insulin
production by the pancreas [2]. The insulin clearance rate (di) [2,14,15]
represents the rate at which insulin is removed from the body [15,16],
di is a constant and positive (di > 0). The insulin clearance rate plays an
important role in controlling the insulin action. The functions f2
through f5 are defined by the following equations.

f2(G)=Ub(1-exp(-G/C2Vg)))        (3)

f3(G)=G/(C3 g)          (4)

f4(I)=U0+(Um-U0)/(1-exp(-βln(I/C4(1/Vi+1/(0.2ti)))))    (5)

5 1 + exp � �/ � 5
Parameters Units Values Parameters Units Values

Vg L 10 U0 mg min-1 40

Ub mg min-1 72 Um mg min-1 940

C2 mg l-1 144 β  1.77

C3 mg l-1 1000 C4 mU l-1 80

Vp L 3 Rg mg min-1 180

Vi L 11 l mU-1 0.29

ti Min 100 C5 mU l-1 26

Table 1: Values of parameters in the functions defined by eqn. (3)
through eqn. (6).

Typical values of the various parameters used in eqns. (3). through
(6) are given in Table 1 [2,3,14,15,17].

In this paper, we use insulin lispro, an ultra-rapid-acting insulin, for
the treatment of Type I diabetes. Insulin lispro has a shorter duration
of action and begins to reduce the blood sugar faster than regular
insulin. It starts acting about 5 min after injection and reaches its peak
effect at 30-90 min. It usually has a lasting effect for 3-5 hours. It is
assumed that a patient ingests a meal every four hours. The whole
duration of glucose intake is 45 min and the glucose intake reaches it
maximum value after 15 min. It is further assumed that Gin(t) and
Iin(t) are piecewise linear functions which are periodic over a period ω
(ω=240 min=4 hours) [2].

Typical glucose and insulin infusion rate profiles are defined by the
following equations

��� � = 0.05 + 515�, 0 ≤ � < 15 min0.05 + 5 45− �45− 15 , 15 ≤ � < 45 min0.045, 45 ≤ � < 240 min  (7)

��� � =
0.25, 0 ≤ � < 5 min0.25 + 1 + � − 3030− 5 , 5 ≤ � < 30 min0.25 + 1− � − 30120− 30 , 30 ≤ � < 120 min0.25, 120 ≤ � < 240 min

 (8)

The glucose and insulin intake rates are shown in Figures 1 and 2
respectively.

Figure 1: Glucose Intake Rate Gin.
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Figure 2: Insulin Infusion Rate Iin.

β-cells, found in the pancreas, are responsible for the production of
insulin [2]. However, with the onset of Type I diabetes, these cells are
completely destroyed and the insulin production is adversely affected.
In the case of patients suffering from Type I Diabetes (T1D), the body
loses its ability to produce insulin in 5-10 years [2]. This leads to
excessive concentration of glucose in the bloodstream resulting in a
harmful condition known as hyperglycemia. This is an undesirable
condition which has long term effects on the body. To avoid this
condition, it is important to administer insulin at regular time
intervals. However, excessive amount of insulin can lead to a rapid
decrease in the glucose concentration, leading to hypoglycemia, which
is also harmful to the body. It is therefore very important to administer
the right amount of insulin to maintain the glucose concentration
within an ideal range.

In the following section, we introduce Particle Swarm Optimization
(PSO) algorithm and its application in optimizing insulin delivery. The
PSO algorithm is one of the most popular optimization algorithms
because of its simplicity, speed of convergence and its ability to
optimize different functions. We use this algorithm to study the
glucose profiles of different patients, compare them to an ideal profile
and optimize the exogenous insulin infusion rate (Iin) depending on
the patient’s physiological parameters.

Particle swarm optimization
Developed in 1995 by Kennedy and Eberhart [18-20], Particle

Swarm Optimization (PSO) algorithm draws inspiration from swarm
theory and the model of social interaction between different
organisms. Its uniqueness is defined by its relation to genetic
algorithms and evolutionary programming [19-22]. Unlike other
optimization algorithms such as gradient descent and neural networks,
particle swarm optimization eliminates the need to specify a gradient
for the cost function. Because of its simplicity and its connection to
genetic algorithms, it can be used to optimize different functions with
ease [20]. Particle Swarm Optimization algorithm comprises of several
vectors, known as “particles” which contain possible solutions to the
optimization problem. These particles move in a multidimensional
search space while retaining the memory of their best position and that
of their neighbors. Every particle uses its memory to move towards the
optimum solution and eventually converge at a certain point.

The velocity and position of every particle after each iteration is
given by the following equations:

vij(t+1)=w*vij(t)+r1c1(pij(t)-xij(t))+r2c2(gi(t)-xij(t))    (9)

xij(t+1)=xij(t)+vij(t+1)     (10)

where, r1 and r2 are two random numbers which are uniformly
distributed in the range (0,1) while c1 and c2 are the acceleration
coefficients. The personal best position of each particle and the global
best position of the swarm are given by “p” and “g” respectively. The
parameter “w”, also known as the inertia weight, was introduced in
1998 by Shi and Eberhart to improve the performance of the algorithm
[19,23]. The value of the inertia weight defines the extent of
exploration of the search space (Table 2).

Swarm Size 50

Number of Iterations 100

Unknown Variables 4

C1 2.05

C2 2.05

Table 2: Parameters for PSO algorithm.

The equation to update the velocity as given by eqn. (9) consists of
three main components: inertia component, cognitive component, and
the social component. The first term in the equation represents the
inertia component which prevents the particle from rapidly changing
its direction. This term ensures that the particle retains the memory of
its previous direction of travel. The second term, the cognitive
component, enables the particle to acquire knowledge about its
personal best positions and decide its direction in the search space. The
third term represents the social component which ensures the
collaboration of a particle with its neighbors.

In 2002, M. Clerc and J. Kennedy introduced the concept of
constriction coefficients and their effect on the performance of PSO
algorithm. They believed that the use of constriction coefficients would
guarantee convergence and promote exploration of the search space
[22,23]. The equation to update velocity as given in eqn. (9) was
modified to include the constriction coefficient “K” which is a function
of the acceleration coefficients c1 and c2. The modified equation to
update the velocity is given by:

vij(t+1)=K*[vij(t)+r1c1(pij(t)-xij(t))+r2c2(gi(t)-xij(t))]       (11)� = 22− ∅ − ∅2 − 4 ∅ ∅ = �1+ �2 > 4  (12)

Validating the particle swarm optimization algorithm
As mentioned before, Wang’s model has been used as a reference

model for our simulations. One typically used ideal glucose profile that
limits glucose levels within the desired range is shown in Figure 3.
However, since patients have different physiology, they require
different insulin delivery profiles in order to keep their glucose levels
within an ideal range. In this paper, we use Particle Swarm
Optimization algorithm to determine the best insulin delivery for a
patient so that the glucose profile follows a predefined ideal profile.
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Figure 3: Ideal Glucose Profile.

A model having the same parameters as that of the reference model
was used to validate the performance of the PSO algorithm. The PSO
algorithm is used to minimize the overall sum of the instantaneous
errors between the glucose profiles of the model under consideration
and the reference model. The cost function (CF) is given by�� = ∑� = 0� �mod��− ���������� 2/����������  (13)

where, Gmodel is the glucose output of model of the subject being
tested and Greference is that of the ideal/reference model being used. The
duration of simulation is given by n.

The goal of the PSO algorithm is to optimize the insulin delivery so
that the model being tested has a glucose profile which is similar to
that of the reference model. The PSO algorithm optimizes the
parameters a, b, c, and d of the insulin delivery profile given by:

��� � =
�, 0 ≤ � < � min�+ 1 + � − �� − � , � ≤ � ≤ � min�+ 1 + � − �� − � , � ≤ � ≤ � min�,� ≤ � ≤ 240 min

 (14)

As discussed in a study [21], actuators typically have saturation
limits. To account for this, an insulin limiter is added to the actuator
output. This limiter prevents the insulin infusion rate from rising above
or falling below the specified limit.

��� � = 1.50, ��� ≥ 1.500.25, ��� ≤ 0.25  (15)

Results and Discussion
Figure 4 shows that the model used closely tracks the reference

model which validates the performance of the PSO algorithm. The
normalized error between the actual and the reference models after
optimization was found to be 0.1318 mg/dl. Figure 5 shows the
reduction of the normalized error with every iteration. The insulin
delivery profile parameters converged to the following values
corresponding to the desired glucose profile.

Figure 4: Glucose profiles of the PSO optimized system and the
ideal model.

Figure 5: Reduction of total normalized error vs number of
iterations.

��� � =
0.2606, 0 ≤ � ≤ 8.33 min0.2606 + 1 + � − 3030− 8.33 , 8.33 ≤ � < 30 min0.2606 + 1 + � − 30118.20− 30 , 30 ≤ � < 118.20 min0.2606, 118.20 ≤ � ≤ 240 min

(16)

Figure 6 shows the plot of the optimized insulin infusion rate based
on eqns. (15) and (16). It can be seen that the use of the optimized
insulin delivery parameters leads to an insulin delivery profile similar
to the original insulin delivery profile shown in Figure 2.
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Figure 6: Optimized Insulin Infusion Rate.

In the following section, we describe the robustness of the algorithm
to variations in the clearance rate (di) and the rate at which the
algorithm adjusts the insulin delivery profile.

Robustness to variation in the clearance rate
The value of the clearance rate (di) varies from patient to patient

and it is important to test the robustness of the algorithm against this
variation. Changing the clearance rate directly affects the insulin
absorption. To account for the variation in insulin absorption rate for
different subjects, the clearance rate (di) was varied from its nominal
value by 20%. The nominal value of di was considered to be 0.0076 as
stated in a study [2]. As was done in a study [8] we assumed the
acceptable range of glucose concentration to be between 60-140 mg/dl.

di=0.0076 ± 20%

Figure 7: Glucose Profile of the reference model when di is
increased by 20%.

Figure 8: Comparison of glucose profiles of the reference model and
the PSO optimized system when di=0.00912.

Figure 7 shows the glucose profile corresponding to the nominal
model with a 20% increase in di while Figure 8 compares the glucose
profile of the reference model with those corresponding to PSO-
optimized and non-optimized insulin delivery. When di was increased
by 20%, insulin was cleared at a faster rate from the system. The
reference model was being supplied a pre-determined amount of
insulin as given by eqn. (8). This time-dependent insulin delivery failed
to maintain acceptable glucose range in the face of the modelling error.
This resulted in elevated glucose levels which led to hyperglycemia.
Since the PSO algorithm aims at minimizing the error between the
glucose concentration of the model being tested and the ideal glucose
profile, it generates optimized values of the insulin delivery parameters
in eqn. (14). Figure 8 shows how well the glucose profile of the
optimized system was able to follow the ideal glucose profile while
staying within acceptable range. The total error corresponding to the
PSO optimized insulin delivery was 5.193 mg/dl as shown in Figure 9.
The insulin delivery profile corresponding to the optimized parameters
when di was increased by 20% is given by:

Figure 9: Reduction of total normalized error when di=0.00912.
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��� � =
0.3841, 0 ≤ � ≤ 14.18 min0.3841 + 1 + � − 3030− 14.18 , 14.18 ≤ � < 30 min0.3841 + 1 + � − 30111.60− 30 , 30 ≤ � < 111.60 min0.3841, 111.60 ≤ � ≤ 240 min

 (17)

When di was decreased by 20%, the rate of clearance of insulin from
the system was very slow. Although insulin was cleared from the
system at a slower rate, the body still received the same amount of
insulin according to eqn. (8). This led to a condition known as
hypoglycemia, which is characterised by low glucose concentration. As
shown in Figure 10, the glucose concentration of the reference model
fell below 60 mg/dl which is not desirable.

Figure 10: Glucose Profile of the reference model when di is
decreased by 20%.

The insulin delivery profile corresponding to the optimized
parameters when di was decreased by 20% is given by:

��� � =
0.25, 0 ≤ � ≤ 12.69 min0.25 + 1 + � − 37.1537.15− 12.69 , 12.69 ≤ � < 37.15 min0.3841 + 1 + � − 37.1576.21− 37.15 , 37.15 ≤ � < 76.21 min0.25, 76.21 ≤ � ≤ 240 min

 (18)

The algorithm was able to optimize the insulin delivery so that the
glucose profile of the model of the subject being tested could follow the
ideal profile as shown in Figure 11. The total normalized error after
optimization was 4.2807 mg/dl as shown in Figure 12. It can be seen
that, while maintaining the glucose levels within the ideal range, the
PSO algorithm was able to adapt to the variation in the clearance rate
effectively.

Figure 11: Comparison of glucose profiles of the reference model
and the PSO optimized system when di=0.00608.

Figure 12: Reduction of total normalized error when di=0.00608.

Conclusion
A Particle Swarm Optimization (PSO) algorithm has been proposed

to optimize insulin delivery to patients with type I diabetes. A delay
differential model developed by Wang et al. is used to describe the
dynamics of the insulin-glucose system. The goal of the algorithm is to
mimic the ideal/desired glucose profile of a healthy subject. The
algorithm aims to optimize insulin delivery by reducing the error
between the glucose profile of the subject and the ideal/desired profile.
To test the robustness of the algorithm to varying physiological
parameters of patients, the clearance rate was varied by 20%.

The results presented in this paper show that the algorithm is
effective in dealing with parameter variations while maintaining the
blood glucose levels within the desired range. The desired periodic
insulin delivery profile mimics the oscillatory nature of the insulin-
glucose system corresponding to normal pancreatic insulin delivery
function. The results show that the PSO algorithm provides the
flexibility of adjusting the insulin infusion rate depending on the

Citation: Sathe A, Meressi T (2018) Optimizing Basal Insulin Delivery for Patients Suffering from Type I Diabetes Mellitus Using Particle Swarm
Optimization Algorithm. J Bioengineer & Biomedical Sci 8: 256. doi:10.4172/2155-9538.1000256

Page 6 of 7

J Bioengineer & Biomedical Sci, an open access journal
ISSN: 2155-9538

Volume 8 • Issue 4 • 1000256



glucose profile response of the subject. This optimization tool can help
medical practitioners decide the best patient-specific insulin delivery
profile that can be used to deliver a continuous basal insulin dose
throughout the day.
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