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Editorial
Organosilicon polymer-derived ceramics strategy has emerged 

a number of advantages in fabricating bioceramics for bone tissue 
engineering [1,2]. In traditional, the fabrication processes of silicate 
bioceramics including preparation of raw materials, shaping, porosity 
making and sintering. However, solid state reaction, sol-gel as well as 
other common methods are either high-energy consumption or difficult 
in processing and shaping. Fortunately, organosilicon polymers have 
been synthesized for fabricating silicate bioceramics in recent decades. 
The fabrication of organosilicon polymer-derived bioceramics involves 
cross-linking, pyrolysis and ceramization. In order to obtain silicate 
bioceramics, active fillers are added and they can react with silicon 
during polymer pyrolysis. One of the most important advantages for 
polymer-derived silicate bioceramics strategy is the combination of 
shaping with synthesis and the dispersity of active filers in polymer 
solution, which is better than that in solid environment, resulting in a 
decrease of sintering temperature as well.

To date, a variety of silicate bioceramics including calcium-based 
silicates (CaO∙SiO2, 2CaO∙SiO2), forsterite (2MgO∙SiO2), mullite 
(3Al2O3·2SiO2), zircon (ZrO2∙SiO2), willemite (2ZnO∙SiO2), and 
ternary silicates such as akermanite (2CaO·MgO·2SiO2), diopside 
(CaO·MgO·2SiO2), hardystonite (2CaO·ZnO·2SiO2), gehlenite 
(2CaO∙Al2O3∙SiO2), cordierite (2MgO∙2Al2O3∙5SiO2) have been 
successfully fabricated via polymer-derived strategy. As known, most 
of silicate bioceramics have been developed for bone tissue engineering 
due to their outstanding bioactivity [3].

As the commonest silicate bioceramics, wollastonite (CaSiO3) was 
first fabricated via the polymer-derived strategy by Bernardo et al. [4,5]. 
Different organosilicon polymers and calcium sources such as CaCO3, 
Ca(OH)2, CaO were used, and wollastonite could be synthesized 
beyond 1000°C. The crystallinity of wollastonite was influenced by the 
particle size of calcium sources, and the smaller sized active fillers with 
higher surface area led to a better crystallinity. Similarly, β-Ca2SiO4 
could be fabricated from silicone resin loaded with CaCO3 active 
fillers [1]. β-Ca2SiO4 phase could be formed over 900°C sintering and 
the crystallinity of the ceramic scaffolds increased with increasing 
the sintering temperature. Furthermore, ternary silicates such as 
hardstonite (Ca2ZnSi2O7) [6,7] and akermanite (Ca2MgSi2O7) [8] were 
also fabricated from the same organosilicon polymers loaded with 
CaCO3 active fillers, in which ZnO and Mg(OH)2 acted as second active 
fillers, respectively. Fiocco et al. [9] fabricated bioactive glasses (BG) 
derived from organosilicon polymers and active fillers. By adjusting the 
proportion such as CaCO3, Na2CO3 and Na2HPO4·7H2O, 45S5 and 58S 
bioactive glasses were fabricated from the reaction between silica and 
active fillers at 1000°C. Therefore, most of silicate bioceramics can be 
fabricated via polymer-derived strategy from organosilicon polymers 
loaded with different active fillers in a specific ratio.

Based on these studies, there are many researches about silicate 
composites derived from polymers. Hydroxyapatite (HA) is a naturally 
mineral form of calcium phosphate and bioactive glass (BG) are 
bioactive in vivo for bone regeneration, which have been widely used for 
improving the biological property [10,11]. For example, wollastonite/
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hydroxyapatite and wollastonite/AP40 BG composites have been 
fabricated from organosilicon polymer loaded with CaCO3 active fillers, 
while hydroxyapatite and bioactive glass were as passive fillers [12,13]. 
Besides improving biological properties, the passive fillers can provide 
a smaller shrinkage during ceramization. Elsayed et al. and Fiocco et 
al. [14-17] fabricated wollastonite/diopside composite with a molar 
ratio of 1:1. CaCO3 and Mg(OH)2 were used as both active fillers and 
reacted with organosilicon polymers at 1100°C to form wollastonite and 
diopside phases.

Except for component, porosity is another vital factor for 
bioceramics, which facilitates cell attachment, migration as well as flow 
transport of nutrients and bone ingrowth. The addition of foaming 
agents in starting materials is a common method to fabricate porous 
silicate bioceramics. Common foaming agents include polyurethane 
(PU), borax (Na2B4O7·10H2O), sodium borate, sodium phosphate 
dibasic heptahydrate (Na2HPO4·7H2O), dicarbamoylhydrazine (DCH), 
polymethyl methacrylate (PMMA), Pluronic P123, etc [18]. However, 
residual foams or impurities may damage the silicate bioceramics, and 
these traditional methods cannot provide a well pore interconnection, 
proper pore size or high porosity. In recent years, 3D printing has been 
developed and is able to create a complex porous structure for polymer-
derived silicate bioceramics [19,20].

The process of fabricating organosilicon polymer-derived silicate 
bioceramics is easily combined with 3D printing due to the regulated 
rheological property of polymers. Direct ink writing was first employed 
to shape organosilicon polymers to obtain wollastonite. A printable 
paste was prepared firstly by mixing CaCO3 into polymer solution for 
3D printing, and then the wollastonite was obtained after a sintering 
process. Porous hardystonite (Ca2ZnSi2O7) were fabricated by direct 
ink writing by Zocca et al. [6]. ZnO and CaCO3 powders were mixed 
into organosilicon polymer solution to form a printable ink. The 
final hardstonite scaffolds possesses large porosity (>76%) with a 
compressive strength of ca. 2.5 MPa. Similarly, wollastonite/diopside 
composite scaffolds were successfully fabricated by the same method, 
and the obtained scaffold possesses large porosity (68%-76%) with a 
compressive strength (3.9-4.9 MPa). On the other hand, Zocca et al. 
[12] fabricated wollastonite/AP40 BG scaffolds by powder-based 3D 
printing. Polysiloxane as an organosilicon polymer, CaCO3 and AP40 
bioactive glass powders were used as each deposit layer (150 μm). A 
mixture of 1-hexanol and hexylacetate was used as a printing liquid. 
After layer-by-layer shaping and sintering, the obtained composite 
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scaffolds possess a porosity of 80% and a biaxial flexural strength of 
ca. 6 MPa.

Subsequently, the biological property of silicate bioceramics is also 
important and many related studies on organosilicon polymer-derived 
silicate bioceramics. Human osteoblast and fibroblast cells have been 
used to evaluate the cell compatibility for those organosilicon polymer-
derived bioceramic scaffolds, which showed good bioactivity and the 
ability for cell adhesion, proliferation and differentiation.

In general, organosilicon polymer-derived bioceramics strategy 
has been developed for bone tissue engineering due to its low-energy 
consumption and easy for shaping. To fabricate the silicate bioceramics 
derived from organosilicon polymers, there are four main processes 
including the preparation of raw materials, shaping, cross-linking 
and sintering. Different organosilicon polymers and fillers decide 
the final component of bioceramics. However, there is no denying 
that the shrinkage and cracks of the organosilicon polymer-derived 
silicate bioceramics cannot be controlled precisely. Combining with 
3D printing technique, the obtained silicate bioceramics are more 
suitable for application in bone tissue engineering. In future, the 
development of organosilicon polymers can fabricate other functional 
bioceramics, such as borate and phosphate ceramics, and 3D printing 
provides bioceramics with promising porous structures for bone tissue 
engineering.
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