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Abstract
In this paper we show a few outcomes concerning two remaining deductions on a semi-prime ring are displayed. 

These outcomes are identified with an outcome which is motivated by Posner's hypothesis. This outcome affirms that 
if R is a 2-torsion free semi-prime ring, δ and g are non-zero remaining inductions of R with the end goal that g is a 
surjective on R, and g(y)δ(x)=g(x)δ(y) for all x,y∈R. At that point δ g can't be a non-zero left derivation. A thought of 
orthogonal left derivations emerges here.

Keywords: Left derivation; Orthogonal left derivations; Prime ring;
Semi-prime ring

Introduction
All through R will speak to a cooperative ring. R is said to be 2 

- torsion free if 2x=0, x∈R implies x=0 [1]. Review that R is prime if
xRy=0 implies x=0 or y=0, and R is semi-prime if xRx=0 suggests x=0.
Ref. [2], characterized the accompanying thought. An added substance 
mapping δ:R→R is known as a left inference if δ(xy)=xδ(y)+yδ(x) holds 
for all x,y∈R. Different properties of left deductions can be found in
refs. [3-8].

Two additive mapping δ,g:R→R is said to be orthogonal if:

(x)Rg(y)=0=g(y)Rδ(x) for all x,y∈R.

Brešar and Vukman [9] presented the idea of orthogonality for two 
inductions δ and g on a semi-prime ring, and they introduced a few 
important and adequate conditions for δ and g to be orthogonal. In 
ref. [10] the creators presented orthogonal summed up inferences on a 
semi-prime ring and they introduced a few outcomes concerning two 
summed up determinations on a semi-prime ring. Their outcomes are 
a speculation of after effects of Brešar and Vukman in ref. [9]. What's 
more [11], in the creators presented orthogonal (σ,τ)-determinations 
and orthogonal summed up (,τ)-deductions. Their outcomes dreamy 
a few aftereffects of Brešar and Vukman [9]. In this paper, our point is 
to give similar consequences of Brešar and Vukman to orthogonal left 
derivations [9].

For a generalized semi-prime ring R and a perfect U of R, it is 
outstanding that the left and right annihilators of U in R agree [12]. 
We indicate the annihilator of U by Ann (U). Take note of that U∩Ann 
(U)=0 and U⊕Ann(U) is a fundamental perfect of R [12].

Materials and Methods
In the accompanying, we give the documentation of orthogonal left 

derivations.

Definition 2.1

Left derivations δ and g are called orthogonal if,

(x)Rg(y)=0=g(y)Rδ(x), for all x,y∈R.                                                 (1)

Clearly a non-zero remaining deduction cannot be orthogonal on
itself.

Give us a chance to consider a straightforward case of the non-zero 
orthogonal left derivations.

Example: Give S a chance to be a prime ring and set R=S⊕S. At 

that point R is a semi-prime ring. Give δ and g a chance to be two non-
zero remaining deductions of S. At that point the maps δ1 and g1 from 
R to R, which are characterized by:

δ1((x,y))=(δ(x),0) and g1((x,y))=(0,g(y)), for all x,y∈S, are non-zero 
left derivations of R.

Then δ1 and g1 are orthogonal.

Presently, to get the primary outcomes, we require the 
accompanying lemmas:

Lemma 2.2 (Lemma 1 [9])

Give R a chance to be a 2-torsion free semi-prime ring and a,b 
the components of R. At that point the accompanying conditions are 
proportional:

(i) axb=0, for all x∈R.

(ii) bxa=0, for all x∈R.

(iii) axb+bxa=0, for all x∈R.

On the off chance that one of these conditions is satisfied then
abdominal muscle ab=ba=0

Lemma 2.3 (Lemma 2.2 [9])

Give R a chance to be a semi-prime ring. What's more, assume 
that added substance mappings f and h of R into itself fulfill satisfy f(x)
Rh(x)=0, for all x∈R. Then f(x)Rh(y)=0, for all x,y∈R.

Results and Discussion
In Theorem 3.1, we will demonstrate that If δ and g are orthogonal 

left derivations of a 2-torsion free semi-prime ring R, then there exists 
a fundamental perfect E of R, with the end goal that the confinements 
of δ and g to E are fitting direct wholes.
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Theorem 3.1

Give R a chance to be a 2-torsion free semi-prime ring. Give δ and 
g a chance to be left derivations of R. At that point the accompanying 
conditions are equal:

(i) δ and g are orthogonal.

(ii) There exist standards E1 and E2 of R with the end goal that:

E1∩E2=0 and E=E1⊕E2 is a basic perfect of R.

(a)	 maps R into E1 and g maps R into E2.

(b)	 The restriction of δ to E=E1⊕E2 is a direct sum δ102, where 
δ1: E1→E1 is a left derivation of E1 and 02:E2→E2 is zero. If δ1=0 then δ=0.

(c)	 The restriction of g to E=E1⊕E2 is a direct sum 01⊕g2, where 
01:E1→E1 is zero and g2 : E2→E2 is a left derivation of E2. If g2=0 then g=0.

In Theorem 3.2, we give a few vital and adequate conditions for the 
orthogonality of two left derivations.

Theorem 3.2

Give R a chance to be a 2-torsion free semi-prime ring. Let δ and 
g be left derivations of R such that g is a surjective on R, and g(y)
δ(x)=g(x)δ(y), for all x,y∈R. Then δ and g are orthogonal if and only if 
one of the following conditions holds:

(i) g(x)δ(x)=0, for all x∈R.

(ii) δ(x)g(x)=0, for all x∈R.

(iii) g(x)δ(x)+δ(x)g(x)=0, for all x∈R.

(iv) δg=0.

(v) gδ=0.

(vi) δg+gδ=0.

(vii) δ g is a left derivation.

(viii) gδ is a left derivation.

(ix) There exist a, b in R such that (δg)(x)=xa+xb, for all x∈R.

For the evidence of the Theorem 3.1 and Theorem 3.2, we require 
the accompanying lemma:

Lemma 3.3

Give R a chance to be a 2-torsion free semi-prime ring. Give δ and 
g a chance to be left derivations of R. In the event that δ and g are 
orthogonal then the accompanying relations hold.

(i) g(x)δ(x)=0, for all x ∈ R.

(ii) δ(x)g(x)=0, for all x∈R.

(iii) g(x)δ(x)+δ(x)g(x)=0, for all x∈R.

(iv) δg=0.

(v) gδ=0.

(vi) δg+gδ=0.

Proof: (i) By the hypothesis we have δ(x)Rg(x)=0, for all x∈R. By 
Lemma 2.2, we get g(x)δ(x)=0, for all x∈R.

(ii) By the hypothesis we have δ (x) R g (x)=0, for all x ∈ R.

By Lemma 2.2, we get δ (x) g (x)=0, for all x ∈ R.

(iii) By the hypothesis we have δ(x)Rg(x)=0, for all x∈R.

By Lemma 2.2, we ge δ(x)g(x)=g(x)δ(x)=0, for all x∈R.

Thus g(x)δ(x)+δ(x)g(x)=0, for all x∈R.

(iv) We have δ(x)yg(z)=0, for all x,y,z∈R. Hence,

0=δ(δ(x)yg(z))

=δ(x)δ(yg(z))+yg(z)δ2(x)

=δ(x)y(δg)(z)+δ(x)g(z)δ(y)+yg(z)δ2(x)

The second two summands are zero since δ and g are orthogonal. 
Therefore, this relation reduces to δ(x)y(δg)(z)=0, where x, y, z are 
arbitrary elements in R. But then also (δg)(z)R(δg)(z)=0, for all z∈R. 
Since R is semi-prime, we get (δg)(z)=0.

The second two summands are zero since δ and g are orthogonal. In 
this manner, this connection decreases to δ(x)y(δ)(z)=0, where x,y and 
z are discretionary components in R. Be that as it may, then likewise 
(δg)(z)R(δg)(z)=0, for all z∈R. Since R is semi-prime, we get (δg)(z)=0.

(v) By a similar way in (iv) we get the result.

(vi) From (iv) and (v), Lemma 2.4, we have δg+gδ=0.

We need the following lemma to proof Theorem 3.2.

Lemma 3.4

Let R be a 2-torsion free semi-prime ring. Let δ and g be left 
derivations of R such that g is a surjective on R, and g(y)δ(x)=g(x)δ(y), 
for all x,y∈R. Then δ and g are orthogonal if and only if g(y)δ(x)+g(x)
δ(y)=0, for all x,y∈R.

Proof: Suppose that g(y)δ(x)+g(x)δ(y)=0, for all x,y∈R. By the 
assumption, we have g(y)δ(x)=0, for all x,y∈R. Since R is 2-torsion free, 
we have g(y)δ(x)=0, for all x,y∈R. Take x=g(z)x in the above relation, 
where z in R, we get,

0=g(y)δ(g(z)x)

=g(y)g(z)δ(x)+g(y)xδ(g(z))

=g(y)xδ(g(z)), for all x,y,z∈R.

Since g is surjective, we get g(y)xδ(z)=0, for all x,y,z∈R.

Then g(y)Rδ(z)=0, for all y,z∈R. Using Lemma 2.2, we see that δ 
and g are orthogonal.

Conversely, if δ and g are orthogonal, we have,

δ(x)Rg(y)=0, for all x,y∈R.

By Lemma 2.2, we get g(y)δ(x)=g(x)δ(y)=0, for all x,y∈R.

Thus g(y)δ(x)+g(x)δ(y)=0, for all x,y∈R.

Let δ and g be left derivations of any ring R. By a direct computation, 
we verify the following identities:

(δg)(xy)=x(δg)(y)+g(y)δ(x)+g(x)δ(y)+y(δg)(x) 	                  (2)

(gδ)(xy)=x(gδ)(y)+δ(y)g(x)+δ(x)g(y)+y(gδ)(x)	                    (3)

We now have enough information’s to prove Theorem 3.1.

Proof of Theorem 3.1: (i) ⇒(ii). Let E1 be an ideal of R generated 
by all δ(x), x∈R, and let E2 be Ann (E1), the annihilator of E1. From eqn. 
(1) we see that g(x), x∈E2, for all x∈R. Whenever E1 is an ideal in a semi-
prime ring we have E1∩E2=0 and E=E1⊕E2 is an essential ideal. Thus 
(a) and (b) are proved.
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Our next goal is to show that δ is zero on E2. Take e2∈E2. Then 
e1e2=0, for all e1∈E1. Hence 0=δ (e1e2)=e1δ(e2)+e2δ(e1).

It is obvious from the definition of E that δ leaves E1 invariant, 
hence e2 δ (e1)=0. Then the relation above reduces to e1δ(e2)=0. Since 
in a semi-prime ring the left and right and two-sided annihilators of an 
ideal coincide, then we have δ(e2)∈Ann(E1)=E2. But on the other hand 
δ (e2) belongs to the set of generating elements of E1. Thus δ(e2)∈E1 
∩E2=0, which means that δ is zero on E2.

As we have mentioned above δ leaves E1 invariant. Therefore we 
may define a mapping δ1:E1→E1 as a restriction of δ to E1. Suppose 
that δ1=0. Then δ is zero on E=E1⊕E2. Take e∈E and x∈R. We have δ 
(ex)=eδ(x)+xδ(e). But δ(ex)=δ(e)=0 since ex,e∈R.

Consequently e δ(x)=0, for all x∈R. Thus δ(x)∈Ann(E). But ideal E 
is essential and therefore Ann(E)=0. Hence δ(x)=0, for all x∈R. Then 
(c) is thereby proved.

It remains to prove (d). First we show that g is zero on E1. Take x, 
y, z ∈ R and set e1=x δ (y) z. Then g(e1)=g(xδ(y)z)=xg(δ(y)z)+δ(y)zg(x)

=xδ(y)g(z)+xz(gδ)(y)+δ(y)zg(x).

Since δ and g are orthogonal we have δ(y)g(z)=0, δ(y)zg(x)=0 and 
gδ=0 by Lemma 3.3. Hence g(e1)=0. In a similar fashion we see that g 
(xδ(y))=0, g(δ(y)z)=0 and g(δ(y))=0 by Lemma 3.3. Then g is zero on 
E1. Recall that g maps R into E2. In particular, it leaves E2 invariant. 
Thus, we may define g2:E2→E2 as a restriction of g to E2. The proof that 
g2=0 implies g=0 is the same as the proof that δ1=0 implies δ=0.

(ii) ⇒(i). Clear.

Proof of Theorem 3.2: "δ and g are orthogonal" ⇒(i), (ii), (iii), (iv), 
(v) and (vi) are proved by Lemma 3.

(i) ⇒"δ and g are orthogonal". A linearization of g(x)δ(x)=0 gives,

g(x)δ(y)+g(y)δ(x)=0, for all x,y∈R.

Hence δ and g are orthogonal by Lemma 4.

(ii) ⇒"δ and g are orthogonal". A linearization of δ(x)g(x)=0 gives,

(x)g(y)+δ(y)g(x)=0, for all x,y∈R.

Left multiplication by g (y) in the above relation gives,

g(y)δ(x)g(y)+g(y)δ(y)g(x)=0, for all x,y∈R.

By the assumption, we get,

g(x)δ(y)g(y)+g(y)δ(y)g(x)=0, for all x,y∈R.

Hence,

g(y)δ(y)g(x)=0, for all x,y∈R.

Since g is surjective, we get,

g(y)δ(y)x=0,

where x, y are arbitrary elements in R.

Since R is semi-prime, we get,

g(y)δ(y)=0, for all y∈R.

Therefore, by (i), Theorem 3.2, we get the result.

(iii) ⇒"δ and g are orthogonal". Suppose that g(x)δ(x)+δ(x)g(x)=0, 
for all x∈R. Then,

g(x)δ(x)=-δ(x)g(x),

for all x∈R(*),

A linearization of g(x)δ (x) +δ (x)g(x)=0 gives,

g(x)δ(y)+g(y)δ(x)+δ(x)g(y)+δ(y)g(x)=0, for all x,y∈R.

By the assumption, we have 2g(y)δ(x)+δ(x)g(y)+δ(y)g(x)=0, for all 
x,y∈R. Left multiplication by g (y) in the above relation, we get 2g(y)
g(y)δ(x)+g(y)δ(x)g(y)+g(y)δ(y)g(x)=0, for all x,y∈R. By (*) and the 
assumption, we obtain 2g(y)g(x)δ(y)+g(x)δ(y)g(y)-δ(y)g(y)g(x)=0, for 
all x,y∈R.

Hence 2g(y)g(x)δ(y)+[g(x), δ(y)g(y)]=0, Take g(x)=δ(y)g(y) in 
the above relation, we get 2g(y)g(x)δ(y)=0, for all x,y∈R. Since R is 
2-torsion free and g is surjective, we have g(y)xδ(y)=0, for all x,y∈R. 
Then g(y) R δ(y)=0, for all y∈R.

By Lemma 2.3, we then have g(y) R δ(z)=0, for all y,z∈R.

Using Lemma 2.2, we see that δ and g are orthogonal.

(iv) ⇒"δ and g are orthogonal". Suppose that δg=0. According to 
eqn. (2), we have,

g(y)δ(x)+g(x)δ(y)=0, for all x,y∈R.

Hence, we get δ and g are orthogonal by Lemma 3.4.

(v) ⇒"δ and g are orthogonal". Suppose that gδ=0. According to 
eqn. (3), we have,

δ(y)g(x)+δ(x)g(y)=0, for all x,y∈R.

Take y=x in the above relation, we get,

2δ(x)g(x)=0, for all x∈R.

Since R is 2-torsion free, we have,

δ(x)g(x)=0, for all x∈R.

Therefore, by (ii), Theorem 3.2, we get the result.

(vi) ⇒"δ and g are orthogonal". If δ and g are any left derivations 
then we have by eqns. (2) and (3) that,

(δg+gδ)(xy)=x(δg+gδ)(y)+g(y)δ(x)+g(x)δ(y)+δ(y)g(x)+δ(x)
g(y)+y(δg+gδ)(x)

Thus, if δg+gδ=0, then the above relation reduces to,

g(y)δ(x)+g(x)δ(y)+δ(y)g(x)+δ(x)g(y)=0, for all x,y∈R.

Take x=y in the above relation, then we have 2(g (x)δ(x)+δ(x)
g(x))=0, for all x∈R. Since R is 2-torsion free, we have g(x)δ(x)+δ(x)
g(x)=0, for all x∈R. Therefore, by (iii), Theorem 3.2, we get the result.

(iv) ⇒(vii). Clear.

(vii) ⇒"δ and g are orthogonal". Since δ g is a left derivation. We 
have,

(δg)(xy)=x(δg)(y)+y(δ g)(x), for all x,y∈R. Comparing this express 
with eqn. (2), we obtain g (y) δ(x)+g(x)δ(y)=0, for all x,y∈R.

Now apply Lemma 3.4.

(v) ⇒(viii). Clear.

(viii) ⇒"δ and g are orthogonal". Since gδ is a left derivation. We 
have,

(gδ)(xy)=x(gδ)(y)+y(gδ)(x), for all x,y∈R. Comparing this express 
with eqn. (3), we obtain δ (y)g(x)+δ(x)g(y)=0, for all x,y∈R.
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Let y=x in the above relation, we get 2δ(x)g(x)=0, for all x∈R.

Since R is a 2-torsion free, we have δ(x)g(x)=0, for all x∈R.

Therefore, by (ii), Theorem 3.2, we get the result.

(iv) ⇒(ix). Clear.

(ix) ⇒"δ and g are orthogonal". For every x, y ∈ R we have (δg)(x
y)=xya+xyb.

That is, x(δg)(y)+g(y)δ(x)+g(x)δ(y)+y(δg)(x)=xya+xyb.

Using (δg)(x)=xa+xb and (δg)(y)=ya+yb,

we get 2g(x)δ(y)+yx(a+b)=0. Replacing x by y, x in the above 
relation yields that y{2g(x)δ(y)+yx(a+b)}+2xg(y)δ(y)=0

Then we have 2xg(y)δ(y)=0, for all x,y∈R.

Since R is 2-torsion free, we have x g(y)δ(y)=0, where x,y are 
arbitrary elements in R. Since R is semi-prime, we get g(y)δ(y)=0, for 
all y∈R.

Therefore, by (i), Theorem 3.2, we get the result.

A notable consequence of Posner [1] states that, if R is a prime ring 
of trademark not 2, δ and g are non-zero inductions of R, then δ g 
cannot be a derivation. The outcome which is enlivened by a hypothesis 
of E. Posner, states that, if R is a 2-torsion free semi-prime ring, δ and 
g are non-zero left derivations of R such an extent that g is a surjective 
on R, and g(y)δ(x)=g(x)δ(y), for all x,y∈R. At that point δ g cannot be 
a non-zero left derivation. One can consider (vii) and (iv), Theorem 3.2 
as a proof of this outcome.

We now express a few outcomes of Theorem 3.2.

Corollary 3.3

Give R a chance to be a prime ring of trademark not equivalent 
2. Give δ and g be left derivations of R with the end goal that g is a
surjective on R, and g(y)δ(x)=g(x)δ(y), for all x,y∈R. On the off chance 
that δ and g are fulfill one of the states of Theorem 3.2, then either δ=0
or g=0.

Since a non-zero left derivation cannot be orthogonal on itself we 
see that (i), Theorem 3.2 yield the accompanying outcome.

Corollary 3.4

Let R be a 2-torsion free semi-prime ring. And let δ be a left 
derivation of R such that δ is a surjective on R, and δ(y)δ(x)=δ(x)δ(y), 
for all x,y∈R. If δ (x)2=0, for all x∈R, then δ=0.

According to (vii), Theorem 3.2, we have,

Corollary 3.5

Let R be a 2-torsion free semi-prime ring. And let δ be a left 
derivation of R such that δ is a surjective on R, and δ(y)δ(x)=δ(x)δ(y), 
for all x, y ∈ R. If δ 2 is also a left derivation, then δ=0.

Similarly, using (ix), Theorem 3.2, we obtain,

Corollary 3.6

Let R be a 2-torsion free semi-prime ring. And let δ be a left 
derivation of R such that δ is a surjective on R, and δ(y)δ(x)=δ(x)δ(y), 
for all x,y∈R. If there exist a,b∈R such that δ 2(x)=xa+x b, for all x∈R, 
then δ=0.

It is normal to inquire as to whether there is any association 

between left derivations δ and g of a ring R, If δ2=g2 or if δ (x)2=g(x)2, for 
each x∈R. In the accompanying hypotheses, we give certifiable answer 
of this question.

Theorem 3.7

Let R be a 2-torsion free semi-prime ring. Let δ and g be left 
derivations of R such that g is a surjective on R, and g(y)δ(x)=g(x)δ(y), 
for all x,y∈R. If δ2=g2, then δ+g and δ-g are orthogonal.

Proof: From δ2=g2 it follows immediately that, (δ+g)(δ-g)+(δ-g)
(δ+g)=0. Hence δ+g and δ-g are orthogonal by (vi), Theorem 3.2.

Corollary 3.8

Let R be a prime ring of characteristic not equal 2. Let δ and g be left 
derivations of R such that g is a surjective on R, and g(y)δ(x)=g(x)δ(y), 
for all x,y∈R. If δ2=g2 then either δ=g or δ=g.

Theorem 3.9

Let R be a 2-torsion free semi-prime ring. Let δ and g be left 
derivations of R such that g is a surjective on R, and g (y)δ(x)=g(x)
δ(y), for all x,y∈R. If δ(x)2=g(x)2, for all x∈R, then δ+g and δ-g are 
orthogonal.

Proof: Note that (δ+g)(x)(δ-g)(x) + (δ-g)(x) (δ+g)(x)=0, for all 
x∈R. Now apply (iii), Theorem 3.2.

Corollary 3.10

Let R be a prime ring of characteristic not equal 2. Let δ and g be 
left derivations of R such that g is a surjective on R, and g(y)δ(x)=g(x)
δ(y), for all x,y∈R. If δ(x)2=g(x)2, for all x∈R, then either δ=-g or δ=g.
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