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Introduction
The transition to synchronization for two coupled autonomous 

oscillators is known to proceed along one of two possible routes 
[1,2]. In the regime of relatively low coupling, the asynchronous state 
(quasiperiodicity) can be depicted as an ergodic motion on the surface 
of a two-dimensional torus, and the transition to synchronization 
takes place via a saddle-node bifurcation that leads to a pair of stable 
and unstable resonance cycles on the torus surface. When varying 
the mistuning between the oscillators, this mechanism gives rise to a 
dense set of synchronization regions (Arnol’d tongues) organized in 
accordance with their so-called rotation number, i.e., the ratio of the 
periods for the uncoupled oscillators [3,4]. 

The second type of transition is commonly referred to as 
“suppression of the natural dynamics” [1,2]. For an externally forced 
oscillator, this transition implies that the torus, on which the forced 
oscillatory dynamics takes place, collapses and the system is left with 
a simple periodic motion representing the dynamics of its equilibrium 
point in the presence of the external forcing. Similarly, if the coupling is 
strong enough, a system of two non-identical oscillators may undergo 
a transition from (synchronized or ergodic) two-mode dynamics to a 
suppressed state in which the weaker oscillator no longer maintains 
its endogenous dynamics, but continuous to oscillate only under the 
forcing of the stronger oscillator. 

In regions between the resonance tongues, the oscillator 
suppression mechanism involves an inverse torus-birth bifurcation 
(secondary Hopf bifurcation).In the resonance zones, the transition 
follows a number of generic rules [5,6] such that, for instance, the 1:1 
tongue assumes a triangular (Vshaped) form and is terminated at high 
coupling strengths by a saddle-node bifurcation curve, the 1:2 tongue 
ends in a bubble of one or more closed period-doubling curves, and the 
2:3 resonance tongue terminates with a loop of its delineating saddle-

node bifurcation curve around the so-called period-3 resonance point 
on the torus bifurcation curve. 

For even higher coupling strengths, a system of two coupled, non-
identical oscillators can undergo a second transition, now to the regime 
of “total oscillator death” [7,8]. This transition involves an inverse 
Hopf bifurcation in which the equilibrium point of the coupled system 
stabilizes, and the oscillatory dynamics comes to a complete stop as the 
stronger oscillator no longer is capable of driving the weaker oscillator. 

It seems reasonable to expect that the transition between 
synchronized and suppressed oscillations can play a role in the 
regulation of physiological systems comparable, perhaps, even to that 
of the transition between quasi periodic and synchronized periodic 
oscillations. However, although they represent very different forms of 
dynamics, synchronized and suppressed oscillations are quite difficult 
to distinguish in experimental situations. Moreover, as model studies 
show, the region of suppressed oscillations often covers a significantly 
larger proportion of parameter space than do the synchronization 
regions. As a result, many cases of oscillator suppression may 
incorrectly be interpreted as representing cases of synchronization. A 
way to discriminate between the two types of dynamics is also required 
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to ensure that biomedical synchronization experiments are performed 
at forcing amplitudes that are low enough for the endogenous dynamics 
to be maintained. 

In a number of recent papers, Kuznetsov et al. [9], Kuznetsov and 
Roman [10], and Emel’yanova and Kuznetsov [11] have examined the 
two synchronization transitions for a pair of non-identical van der Pol 
oscillators with dissipative coupling and with a relatively large difference 
in oscillator strength. This has led to a more detailed understanding of 
the phenomena that can occur in the region of oscillator suppression. 
In particular it was shown how the region of oscillator suppression can 
stretch as a broad band across a wide range of mistuning, and how the 
width of this band increases with the difference in oscillator strength.

The purpose of the present paper is to examine how the same 
phenomena unfold in a physiology-based model of two interacting, 
non-identical functional units of the kidney. We first determine the 
distribution of quasi periodic, synchronized periodic, and suppressed 
modes in the parameter plane spanned by the coupling strength and by 
the mistuning between the two physiological oscillators and illustrate 
how difficult it is to distinguish between synchronized and suppressed 
modes on the basis of experimentally available information in the form 
of time and phase plots. We determine the coupling strength at which 
the transition to oscillator suppression occurs as a function of the 
mistuning and show, in accordance with the previously obtained results 
for coupled limit cycle oscillators [9-11], that a region of suppression 
can stretch across a very broad range of frequency mismatch. Finally, 
we determine the bifurcation structure associated with the transition 
from suppression to oscillator death.

Oscillatory Phenomena in Nephron Autoregulation 
The kidneys play an important role in maintaining a suitable 

environment for the cells of the body. In particular, the kidneys control 
the proportion of various blood solutes, the extracellular fluid volume, 
and the blood pressure. Figure 1 provides an illustration of the main 
structure of the functional unit of the kidney with the glomerulus, 
the different tubular sections, and the macula densa region. A human 
kidney contains approximately one million such nephrons operating 
in parallel, and a rat kidney about 30000. For superficial nephrons, the 
proximal tubules are visible in the surface of the kidney. This allows 
relatively long time series (20-40 min) of the proximal tubular pressure 
to be obtained by means of a small pressure pipette. The flow of blood 
to the individual functional unit (nephron) of the kidney is regulated 
by two different mechanisms: (i) a myogenic mechanism that adjusts 
the flow resistance of the afferent arteriole in response to changes in the 
arterial blood pressure, and (ii) the so-called tubuloglomerular feedback 
(TGF) mechanism that responds to changes in the salt concentration 
of the tubular fluid near the terminal part of the loop of Henle. The 
TGF mechanism represents a negative feedback [12]. However, due to 
a delay of approximately 15 s associated with the fluid flow through 
the tubular system, the feedback tends to be unstable and to produce 
large scale limit cycle oscillations with a period of about 30-40 s. The 
presence of such oscillations has repeatedly been demonstrated in 
experiments on rats [13,14]. It has also been shown that the oscillations 
tend to become chaotic in rats with elevated blood pressure [15,16]. For 
normotensive rats about half of the measured time series for the tubular 
pressure oscillations demonstrate episodes of period-2 dynamics with 
characteristic alternation between high and low maxima [17,18].

The myogenic (or vasomotoric) mechanism also produces 
oscillations associated with periodic contractions of the smooth muscle 
cells around the afferent arteriole [19]. For rat kidneys, the myogenic 

oscillations typically display a period of 6-8 s, or about five times 
shorter than the period of the TGF mediated oscillations. The myogenic 
oscillations are clearly detectable in the measured tubular pressure 
variations for both normotensive and hypertensive rats [20]. The two 
regulatory mechanisms both work through activation of the smooth 
muscle cells in the afferent arteriolar wall. This provides for interaction 
between the two regulatory modes, and wavelet analyses of the 
experimental pressure variations have clearly revealed the occurrence 
of intra-nephron modes with 4:1, 5:1, and 6:1 synchronization [20].

Neighboring nephrons interact with one another both via the 
displacement of blood from one nephron to the other (so-called 
hemodynamic coupling) and via signals of muscular activation that 
travel from nephron to nephron along the blood vessels (vascular 
propagated coupling). These interactions tend to synchronize the 
tubular pressure oscillations in neighboring nephrons [21]. Wavelet 
analyses of experimental time series have shown that both in-phase and 
anti-phase operation between neighboring nephrons occur. 

The nephron model to be used as an example for our discussion of 
oscillator suppression and total oscillator death in a system of coupled; 
non identical biological integrates the most essential mechanisms of 
nephron autoregulation into a consistent and physiological realistic 
picture. Over the years, a number of different versions of the model 
have been developed [22-24], each emphasizing specific aspects of the 
problem such as the absorption of water and salts along the loop of 
Henle [22] or the signal transmission between the macula densa cells 
and the smooth muscle cells in the arteriolar wall [24]. The present 
analysis is based on a version developed by Barfred et al. [23]. Due 
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Figure 1: Sketch of the functional unit of the kidney with the glomerulus, the 
different tubular sections and the macula densa region. Note how the distal 
tubule passes within cellular distances of the afferent arteriole for the same 
nephron. This unusual physiological structure provides the basis for the TGF 
regulation.
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to its relative simplicity, this version is particularly suited for detailed 
bifurcation studies, and the model has previously been used for studies 
of interacting nephrons [25,26]. 

Different models, including or excluding specific mechanisms, have 
been formulated by other groups. In particular Layton et al. [27,28] 
have developed a model of the TGF regulation and the transport of 
solutes along the ascending thick part of the loop of Henle to investigate 
potential sources of irregular pressure variations and explain the 
complex power spectra observed for hypertensive rats. However, 
excitation of high frequency overtones as suggested by the Layton 
model does not conform to the period-doubling processes revealed by 
the experimental time series and by the associated power spectra. Other 
models relating to the function of the individual nephron focus on the 
urine concentration mechanism in the rat outer medulla [29] or on the 
processes that occur in the distal tubule [30,31]. 

The Biophysical Oscillator Model
To illustrate the physiological significance of oscillator suppression 

and total oscillator death we shall consider a model of two interacting, 
non-identical nephrons. The description of the individual nephron 
focuses on the regulation of the incoming blood flow through 
cooperation between the tubuloglomerular feedback (TGF) mechanism 
and the myogenic (or vasomotoric) response. Both mechanisms act 
through adjustments of the afferent arterial flow resistance Ra. As 
described in the previous ection, the TGF mechanism reacts to changes 
in the salt concentration at the macula densa region near the end of 
the loop of Henle, and the faster myogenic mechanism responds to 
variations in the arterial blood pressure. The first component of our 
model is a conservation equation that relates changes in the proximal 
tubular pressure Pt to the rate of glomerular filtration Ffilt, the 
reabsorption of filtrate that takes place in the proximal tubule Freab, 
and the flow into the loop of Henle FHen:

1 (F F F )............(1)t filt reab Hen
tub

P
C

= − −

 Here, Ctub=3 nl/kPa denotes the elastic compliance of the tubule. 
As other parameters in the model, Ctub has been estimated from 
independent measurements [23,32]. Obviously, this involves a certain 
uncertainty stemming both from the representation of a distributed 
system by a lumped model and from the inhomogeneity of the nephron 
population. For simplicity, the rate of proximal tubular reabsorption 
Freab=0:3 nl/s is considered to be constant. The rate of filtration and the 
flow into the loop of Henle are given by
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 where the glomerular pressure satisfies
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       and the protein concentration in the efferent blood is given by

21C [ 4 (P P ) ]...........(5)
2e t ga b a
b

= − − −

 Here, Pa=13:3 kPa denotes the arterial blood pressure. Ha=0:5 
is the afferent hematocrit, and Ca = 54 g/l the afferent blood protein 

concentration. Pd=0:6 kPa is the distal tubular pressure, P_=1:3 kPa is 
the venous pressure, and RHen=5:3 kPa/(nl/s) is the flow resistance in 
the loop of Henle. Re=1:9 kPa/(nl/s) is the efferent arteriolar resistance, 
and a=21:7 Pa/(g/l) and b=0:39 Pa/(g/l)2 are parameters that relate 
protein osmotic pressure to protein concentration. Eqs. 2–5 directly 
express the assumptions that (i) protein is retained in the blood, (ii) 
the protein osmotic pressure at the efferent end of the glomerular 
capillaries balances the hydrostatic filtration pressure Pg -Pt, (iii) the 
flow into the loop of Henle is given by the pressure drop Pt - Pd divided 
by an effective flow resistance RHen, and (iv) the glomerular pressure 
may be determined by distributing the arterial to venous pressure drop 
between the afferent and efferent arteriolar flow resistances. The square 
root in Eq. 5 arises from an experimentally observed parabolic variation 
between protein concentration and protein osmotic pressure [23].

The delay in the flow of filtrate through the loop of Henle is modeled 
by means of the lag structure
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 The delay time T will be used as a bifurcation parameter. The base 
case value is T = 14 s. In lack of detailed knowledge about the damping 
of the oscillations associated with the flow of fluid through the loop 
of Henle, previous versions of the nephron model applied a standard 
third order delay structure. This provided for a relatively high damping 
which in practice was compensated by increasing the gain factor of the 
TGF mechanism by about 50%. Use of a fifth order delay allows us to 
bring the gain factor into the physiological regime.

The steady state relationship between the pressure Peq across the 
arteriolar wall (the transmural pressure) and the normalized arteriolar 
radius r

P (r) P (r) P (r)............(7)eq el actψ= +

 is assumed to consist of a passive elastic component
1 (r 1)

1 1P (r) P [e b (r 1)]..............(8)a
el

−= + −
 in parallel with the active (muscular) component

22 2(0.4 r)

1P (r) P [ b (r 0.9)]...............(9)act ae −= + +

 Peq represents the transmural pressure at which the arteriolar 
wall is at equilibrium with its present radius and its present muscular 
activation. Expressions or Pel and Pact were obtained by Feldberg et al. 
[33] by integrating a simplified model of the strain-stress relationship
across the arteriolar wall, while accounting for the fact that the
muscular volume remains constant. The muscular tone expresses the
degree of activation of the smooth muscle cells in the arteriolar wall.
The parameters a1=10, a2=13, b1=36:4 and b2=1:53 were determined
by fitting the above expressions Eqs 8 and 9 to available physiological
data. The form of the active component represents the observation that 
activation of smooth muscle cells in the arteriolar wall only takes place
in a range of radii around the resting state (r=1) for the vessel.

The TGF-mediated activation of the smooth muscle cells in the 
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arteriolar wall can be determined by inserting a small lump of wax 
into the proximal tubule and measuring the rate of filtration (or the 
so-called stopflow pressure) as a function of the externally forced flow 
through the loop of Henle [34]. This provides us with the open-loop 
feedback characteristics for the TGF mechanism

max min
max

,0

..............(10)5 51 exp[ ( S)]
HenTF

ψ ψψ ψ χα

−
= −

+ −

 As before, represents the muscular tone. The parameter determines 
the slope of the feedback characteristics. We will refer to as the gain 
factorfor the TGF mechanism. ¬5 is the delayed version of the flow 
into the loop of Henle provided by Eq. 6e. The parameters max=0:44, 
min=0:20, and S=1 - (1=) lnf (eq χ min)=(max χ eq) g with eq=0:35 
are used to scale and position the feedback characteristic relative to 
the experimental results. Along with the time delay T, the feedback 
gain factor is considered as a bifurcation parameter. The base case 
value is=9. Excitation of vasomotoric oscillations in the (normalized) 
arteriolar radius is described by means of the externally driven second 
order differential equation

2

0

r dr 0.............(11)eq avP P
P

ω
−

+ + = 

 Where the damping constant d=0:04 s-1.  ω=s-1 represents a 
characteristic angular frequency and P0 = 20 kPa is a normalization 
pressure. The driving term for the myogenic oscillations is the difference 
between the equilibrium pressure Peq and the average blood pressure

,01P (P P (P P ) )................(12)
2

a
av a g a g

a

R
R

β= + − −

 in the active part of the afferent arteriole. The active part of the 
afferent arteriole is assumed to be the fraction (1) = 1=3 of the arteriole 
that is positioned next to the glomerulus. Excitation of the myogenic 
oscillations thus occurs in response to TGF-related variations in Peq 
and Pav. It is worth noting, however, that the model also functions 
for negative values of the damping constant d where the myogenic 
oscillations become self-sustained. If the second-derivative term ¨r in 
Eq. 11 is deleted, the myogenic oscillations disappear, but the model 

continues to function as a physiologically meaningful model of the 
TGF-mediated oscillations. 

,01P (P P (P P ) )................(12)
2

a
av a g a g

a

R
R

β= + − −

Finally, as derived from Poiseuille’s equation, the afferent arteriolar 
resistance is given by 

4
,0 ( (1 ) r )...............(13)a aR R β β −= + −

 where Ra,0=2:4 kPa/(nl/s) denotes the equilibrium value of the 
afferent arteriolar resistance. Note, that simulation of the model in the 
above form involves the solution of a third order algebraic equation 
in each integration step. Different approaches to this problem can be 
chosen. In the present paper, the explicit solution to the third order 
equation was used.

Figure 2a presents an overview of the mode distribution in the 
relevant part of parameter space. This allows us to follow the period-
doubling bifurcations and the transitions to deterministic chaos for 
the partly overlapping regions of 5:1 (left) and 6:1 (right) resonance 
dynamics. Figure 2b-d show phase plots and temporal dynamics for 
the period-1, -2, and -4 solutions as observed in the points b-d of 
the 5:1 resonance zone. The phase plots clearly illustrate the period-
doubling transition for the slow TGF-mediated mode. One also notes 
how pronounced the fast mode is in the variation of the arterial radius. 

Vascular Coupled Non-identical Nephrons
As discussed in the Introduction, neighboring nephrons interact 

via two different mechanisms, a vascularly propagated mechanism [35] 
and a simple hemodynamic mechanism. The vascularly propagated 
mechanism makes use of signals that travel from one nephron to its 
neighbors along the vascular wall. The amplitude of these signals decay 
more or less exponentially with distance, but their rate of propagation 
is quite fast as compared with the distance between the nephrons 
relative to the period of the TGF oscillations. The vascularly propagated 
coupling may, therefore, be considered to be instantaneous. In the 
present analysis we shall also assume that the coupling is symmetric 
and that a fraction of the muscular activation (1 or 2) of one arteriole 
reaches the active region of the other nephron, i.e. 

*
1 1 2 1
*
2 2 1 2

( ),

( ),.................(14)

ψ ψ γ ψ ψ

ψ ψ γ ψ ψ

= + −

= + −

 

Where *
1ψ and *

2ψ are the muscular activations in the coupled 
nephron system. 

To investigate the mode distribution in our system of two coupled 
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Figure 2: (Online version in color.) (a) Overview of the mode distribution in 
parameter space for the single nephron model. (b)–(d) Phase plots and char-
acteristic temporal variations for the first modes to arise in the period-doubling 
cascade for the slow TGFmediated mode. Note how the slow and fast oscilla-
tions through the period-doubling process maintain a ratio of 5 : 1 in periodicity. 
The phase plots in Fig. (b)–(d) correspond to the points b–d in Fig. (a).
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nonidentical nephrons we again make use of the Poincar´e section 
technique to obtain charts of dynamical regions for the slow modes in 
the two nephrons. For this calculation we use the conditions Pt1=1:73 
kPa and Pt2=1:73 kPa, respectively. 

Figure 3 shows the distributions of TGF-mediated modes as 
plotted in the parameter plane defined by the coupling constant and 
the flow delay T2 for the second nephron. The flow delay for the first 
nephron is set to be T1 = 14 s. This implies that the natural period 
of the slow oscillations for this nephron is fixed (at about 33 s). The 
two feedback gain factors are set to be α1=9 and α1 =12, respectively. 
With its higher gain factor, the amplitude of the slow oscillations in the 
second nephron is expected to exceed the amplitude of the internally 
generated slow oscillations in the first nephron (Figure 2).

Inspection of Figure 3 reveals a number of interesting points:

(i)	 For values of the coupling parameter below approximately 
0.15, the mode distributions for the weakly oscillating (Figure 3a) and 
the strongly oscillating (Figure 3(b)) nephron both display resonance 

dynamics near T2=14 s (=T1) and near T2=33 s. At the lower resonance, 
the two nephrons have approximately the same delay in their Henle 
flows and, hence, before coupling, nearly the same period of their slow 
TGF mediated oscillations. This produces 1:1 synchronization. At 
the higher resonance (T2=33 s), the period of the strongly oscillating 
nephron is approximately twice the period of the weakly oscillating 
nephron, and the coupled system attains a form of 2:1 entrainment 
between the two nephrons. 

(ii)	 For higher values of the coupling parameter, the strongly 
oscillating nephron maintains its slow TGF-mediated oscillation 
both in a triangular region above the 1:1 synchronization region and 
in a broad band of coupling parameters (0:15< γ <0:31) that extends 
horizontally to the highest values of T2 investigated. The existence of 
this band is a main signature of “broadband synchronization”. In this 
band, the internally generated TGF-mediated oscillations of the weakly 
oscillating nephron are suppressed, and the nephron is entrained to 
follow the forcing from the strongly oscillating nephron. 
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Figure 4:  (Online version in color.) (a) Chart of dynamical modes constructed for the slow mode oscillations of the weakly oscillating nephron in the coupled nephron 
model. (b)–(i) Phase plots for the two nephrons obtained with different combinations of the delay time T2 and the coupling parameter γ. Other parameters are T1 = 14 
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(iii)	 The mode distribution for the weakly oscillating nephron 
(Figure 3a) displays a clearly pronounced 2:1 entrainment in the region 
around T2=33 s. The existence of this region is another characteristic 
feature of broadband synchronization. The region is delineated to the 
quasi periodic regime by a torus birth bifurcation, but the transition 
between the 1:1 and 2:1 entrainment zones in the region of broadband 
synchronization does not involve any bifurcation. 

(iv)	 Above the region of broadband synchronization (and 
away from the 1:1 synchronization regime), the system displays 
total oscillator death (TOD), i.e., extinction of the dynamics of both 
nephrons. We also observe a small disk-shaped region between the 
1:1 entrainment regime and the region of broadband synchronization 
where the system displays quasiperiodicity with different modes of 
synchronization (Figure 3).

The phase plots in Figure 4 illustrate the form and size of the 
oscillations observed in the two nephrons for different values of the 
bifurcation parameters  and T2. The corresponding points are indicated 
on the chart of dynamical modes in Figure 4a. Other parameters are as 
before T1=14 s, α1 =9, and α2 =12. 

When operating in the triangular 1:1 entrainment regime, the 
phase space trajectories for the two nephrons are nearly identical both 
in shape and size (Figure 4b). 

In the region of broadband synchronization (Figure 4c-e) 
immediately to the right of the small disk-shaped region of quasi 
periodicity, the two nephrons continue to oscillate in a 1:1 mode 
with the first nephron being driven by the second nephron and with 
a clear difference in oscillation amplitude. In Figure 4(e) we note the 
emergence of a small loop on the phase plot of the first nephron. This 
is related to the gradual transition from period-1 to period-2 dynamics 
of the weakly oscillating nephron. With further increase of the delay 
time T2 the point of operation moves into the large 2:1 region of 
broadband synchronization. Here, the first nephron continues to be 
driven by the second nephron. However, now in a 2:1 relation such that 
the first nephron completes two cycles each time the second nephron 
completes a single cycle (Figure 4f). 

At the points g and h in the white area below the region of broadband 
synchronization the two nephrons oscillate autonomously, and the 

coupled system exhibits quasiperiodic (or synchronized periodic) 
dynamics. With its higher feedback gain, the second nephron generally 
shows the strongest oscillations. However, subjected to the significant 
forcing from this nephron, the weakly oscillating nephron displays 
the more irregular dynamics. To support the above interpretation we 
have used continuation techniques [36] to perform a more detailed 
two-dimensional bifurcation analysis of the coupled nephron system. 
Continuation allows one to follow a particular solution under variation 
of one or more parameters, to determine the points of bifurcation, and 
to follow bifurcation curves in parameter space. Figure 5 shows the 
results of such an analysis. As in Figure 3, T1=14 s, α1=9, and α2=12. 
For low coupling strengths we observe the narrow 1:1, 2:3, 3:5, 1:2, etc., 
synchronization tongues bounded by saddle-node bifurcations along 
their sides and connected via the torus bifurcation curve Tb. Along this 
curve the autonomous oscillations of the weakly oscillating nephron 
become suppressed by the forcing of the stronger nephron. Hence, 
quasiperiodic and synchronized periodic motions cease to exist, and 
for higher values of the coupling parameter, the weakly oscillating 
nephron operates as a stable equilibrium system under the forcing of 
the strongly oscillating nephron. 

This part of the diagram is in full accordance with previously cited 
results for externally forced chemical and biochemical oscillators [5-
7]. It is interesting, however, to note that the regions of 1:1 and 1:2 
synchronization, as bounded by the triangular saddle-node bifurcation 
structures SNa and SNb, are quite small. In these regions, both nephrons 
maintain their autonomous oscillations and synchronization occurs 
through the mutual adjustments of the two periodicities. For coupling 
strengths above the triangular regions, the autonomous oscillations 
of the weaker nephron are suppressed, and rather than a torus with 
coexisting periodic node and saddle solutions around an unstable focus, 
the system only displays a single periodic orbit. For even higher coupling 
strengths and for stronger mismatch between the natural frequencies, 
the region of broadband synchronization is delineated by the Hopf 
bifurcation curves Ha and Hb, respectively. Above Ha and to the right 
of Hb, the coupled nephron system displays a stable equilibrium point 
representing the state of total oscillator death. The existence of such 
astate appears first to have been suggested by Aronson et al. [5]. Taylor 
and Kevrekidis [6,7] performed a preliminary bifurcation analysis of 
the transition to extinction, showing, in particular, how a small disk 
like region with quasiperiodicity and different synchronization regimes 
may develop from the point of intersection between Ha and Hb. In 
Figure 5, this region is delineated by the torus bifurcation curve Ta. 

From their point of intersection, the two Hopf bifurcation curves 
continue as curves of unstable Hopf bifurcations. Crossing, for instance, 
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Figure 5: (Online version in color.) Two-dimensional bifurcation diagram for 
the coupled nephron model in a parameter plane spanned by the flow delay 
T2 of the second nephron and the coupling parameter γ. T1 = 14 s, α 1 = 9, 
and α 2 = 12.
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the stable branch of the Hopf bifurcation curve Ha with decreasing 
values of the internephron coupling, a stable limit cycle is born as the 
equilibrium point turns into an unstable focus. With further reduction 
of the coupling parameter, as the point of operation crosses the unstable 
branch of Hb, the unstable focus equilibrium point destabilizes again 
(in a different sub-space), thus becoming a four times unstable focus 
with two pairs of complex conjugated eigenvalues in the positive half-
plane. The structure delineated by the saddlenode bifurcation curve 
SNc represents a region in which solutions are folded over one another. 
In the lower part of this region we have two stable tori one beside the 
other and with the inset to an unstable torus providing the boundary of 
the two basins of attraction.

Role of differences in oscillator strength
To further illustrate the form of dynamics observed in the region 

of broadband synchronization, Figure 6 displays phase plots and 
characteristic temporal dynamics for the weakly (Figure 6 a) and 
strongly (Figure 6b) oscillating nephrons before coupling and for the 
same nephrons after coupling is introduced (Figure 6c). Here, α1=9 and 
T1=14 s for the weak nephron while α2=12 and T2=37:7 s for the strong 
nephron. The coupling parameter is γ2. These conditions correspond to 
a point near the middle of the region denoted 2 in Figure 3b, i.e., above 
the triangular region of 2:1 synchronization in Figure 5. It is obviously 
difficult to distinguish the state of 2:1 broadband synchronization 
as revealed in Figure 6 from a proper state of 2:1 synchronization. 
However, as mentioned above, there is no bifurcation involved in the 
transition between the 2:1 and 1:1 modes in the regime of broadband 
synchronization.

As argued in the Introduction, the appearance of broadband 
synchronization hinges directly on the lack of symmetry between the 
two nephrons, i.e., the difference between their feedback gain factors. 
This difference allows the dynamics of the second nephron to dominate 
that of the first nephron. When the coupling becomes strong enough for 
the second nephron to suppress the autonomous dynamics of the first 
nephron, the second nephron can still main tain its activity and excite 
oscillations in the first nephron. However, driving the oscillations of 
the first nephron inflicts additional damping on the second nephron 
and, when the coupling becomes strong enough to completely exhaust 
this nephron, the system suffers a transition to the region of total 
oscillator death (TOD).

The oscillatory strength of the individual nephron (and the 
amplitude of the limit cycle it generates) depends on a variety of 
parameters in the model, including, besides the feedback gain factor 
, the time delay associated with the flow through the loop of Henle, 
the flow resistance in this loop, the elastic compliance of the proximal 
tubule, etc. The width of the region of broadband synchronization in 
this way depends on the net result of different parameters for the two 
nephrons.

To illustrate this point, Figure 7 shows the peak-to-peak variation 
R for the observed oscillations in the normalized arteriolar radius r as 
a function of the delay time T in the loop of Henle for gain factors of 
α=9 and α=12. R10 is the peak-to-peak variation of the arteriolar radius 
for α=9 and T=T1=14 s. We notice that a gain factor of α=12 produces 
a significant larger oscillation amplitude for all considered values of 
T. Moreover, for α=12, the value of R for large values of T appears
to stabilize around the value R20. This provides the background for
postulating that the region of broadband synchronization (as observed
for coupled van der Pol oscillators [9-11]) may continue to exist even
for very large values of T2.

As already emphasized, the appearance of broadband 
synchronization is related to a lack of balance in the autonomous 
dynamics of the two nephrons. Hence, if we choose a set of parameters 
T1, 1, and 2 for which the difference (R20-R10) between the peak-to-
peak variations of the normalized arteriolar radii for the two nephrons 
is small, then the phenomenon of broadband synchronization should 
become less pronounced or, perhaps, even disappear. 

Figure 8 illustrates the first possibility. Here, we have plotted 
the peak-topeak values R1 and R2 of the normalized radii r1 and r2 
as functions of the coupling parameter for two different sets of the 
parameters T1, α1, and α2. In both plots we note that the amplitude 
of the oscillations is smaller for the first nephron than for the second 
nephron. 

More importantly, however, there is a characteristic structure in 
the variation of R1 and R2, such that R1 exhibits a sharp drop in the 
interval immediately before 1, the value of the coupling parameter at 
which broadband synchronization sets in. Moreover, both R1 and R2 
drop to zero at γ2, the value of the coupling parameter at which the 
region of broadband synchronization terminates. Hence, we conclude 
that the amplitude of the weaker oscillator drops markedly just 
before broadband synchronization sets in, and that a transition from 
broadband synchronization occurs as the system enters the region of 
total oscillator death at γ2, when the amplitudes of both oscillators 
drop to zero. 
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function of the feedback delay for different feedback gain factors.
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Figure 9: (Online version in color.) Chart of dynamical modes constructed for 
the slow mode of the first nephron with T1 = 14 s, α1 = 10, and α2 = 12. With 
these values of α the nephrons are too similar for an actual region of broad-
band synchronization to develop.

So far our examples have considered the coupling of ephrons with a 
fairly large difference in their gain factors. With α1=9, the first nephron 
operates relatively close to the threshold of oscillations, and the limit 
cycle it produces is weak and small in amplitude. With α2=12 (or even 
14), on the other hand, the second nephron produces TGF-mediated 
oscillations that easily dominate the dynamics of the first nephron. 

To stress the significance of such a pronounced difference in gain 
factors (or oscillation amplitudes), Figure 9 shows a chart of dynamical 
modes calculated for α1=10 and α2=12. The delay time of the first 
nephron remains unchanged at T1=14 s. In spite of the finite difference 
in gain factors, however, a regime of broadband synchronization does 
not develop. The two oscillators are now too equal in strength and, for 
large mistuning; the system displays a transition from quasiperiodicity 
to total oscillator death through a pair of nearly coinciding torus and 
Hopf bifurcations. As this transition is followed for increasing coupling 
parameters, the system first undergoes an inverse torus bifurcation as 
the stronger oscillator suppresses the weaker oscillator. However, as 
this process transfers additional losses (dissipation) to the stronger 
oscillator, this oscillator also stops to oscillate, now through an inverse 
Hopf bifurcation. 

Conclusion
Discussions of physiological synchronization processes typically 

take their point of departure in the classic picture of Arnol’d tongues 
bounded on either side by saddle-node bifurcation curves at which 
two-frequency quasiperiodicity is replaced by resonance dynamics 
in the form of a pair of node and saddle cycles [1,2]. This picture is 
justified as long as the coupling is relatively weak. 

A different, and less studied, situation arises in the case where 
the interacting subsystems display a relatively strong coupling in 
connection with a significant difference in oscillator strength. In 
the present paper we have used a previously developed model of 
a pair of interacting nephrons (functional units of the kidney) to 
illustrate a number of significant phenomena that are generic to this 
situation. The best known aspect of this problem is the transition 
between the state of 1:1 synchronization and the state in which the 

stronger oscillator suppresses the natural dynamics of the other. This 
transition is discussed in standard textbooks on synchronization 
[1,2]. However, this discussion fails to emphasize how small the 
synchronization regions often are and how difficult it can be to 
distinguish between synchronization and oscillator suppression on 
the basis of experimental observations. In computer simulations 
where the parameters can be varied continuously the transition from 
quasiperiodicity to synchronization can be distinguished from the 
transition from quasiperiodicity by means of the involved bifurcations. 
Although this distinction may be somewhat qualitative, one can also 
follow the development of the frequency spectrum. The transition from 
quasiperiodicity to synchronization involves the mutual adjustment of 
the two frequencies, and the spectrum shows a gradual approach of 
the corresponding peaks as the coupling increases. The transition from 
quasiperiodicity to oscillator suppression, on the other hand, involves 
the gradual reduction and final disappearance of the peak associated 
with the weaker oscillator.

A more detailed discussion of the transition from synchronization 
in the low coupling regime to oscillator suppression in the high coupling 
regime was presented in a series of papers in the chemical literature 
already in the 1990’s [4-6]. These papers clearly emphasized the generic 
nature of the developed theory. However, in spite of the large number of 
different experiments conducted on forced and coupled physiological 
oscillator systems, we are only aware of a single analysis that consider the 
effects of a transition to oscillator suppression [37]. In our view there is 
a significant risk that many studies of forced (or coupled) physiological 
oscillators are actually conducted under conditions where the external 
forcing (or the stronger oscillator) completely suppresses the natural 
oscillation of the physiological system (the weaker oscillator). The 
transition from the suppressed state to total oscillator death was 
examined by a few authors in the chemical literature [7,8], and the 
transition from synchronized to suppressed oscillations has also been 
investigated for a spatially extended microwave oscillator [38]. In the 
present paper we have renewed attention to this problem by illustrating 
the difficulties associated with a distinction between synchronized and 
suppressed dynamics. We have also determined the size and form of 
the regime of broadband synchronization (oscillator suppression), and 
we have examined the internal structure of this regime. A preliminary 
version of this paper (in Russian) has appeared in Rus. J. Nonlin. Dyn. 
8 (2012) 875-896.
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