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Introduction
The nucleotide reverse transcriptase inhibitor 3′-Azido-3′-

deoxythymidine (AZT, zidovudine) is a key drug used to treat HIV/
AIDS in many countries of the developing world. AZT treatment, 
however, causes both short and long term toxic side effects (skeletal and 
cardiac myopathies, hyperlactatemia, peripheral neuropathy, increased 
incidence of diabetes and neurological disorders). These pathologies are 
consistent with AZT treatment leading to mitochondrial dysfunction 
and increased oxidative stress [1-3]. AZT treatment also results in the 
accumulation of random mutations in mitochondrial DNA (mtDNA) 
[4]. Mitochondrial dysfunction due to these mutations may further 
increase oxidative damage, initiating a feedback loop of more mutations 
and further oxidative damage leading to disease.

AZT may cause mitochondrial mutations and dysfunction by 
increasing the levels of reactive species (reactive oxygen and nitrogen 
species [ROS and RNS]) within mitochondria [5-9]. These reactive 
species oxidize DNA leading to the formation of 8-oxo-7,8-dihydro-2'-
deoxyguanosine (8-oxo-dG), 8-nitro-7,8-dihydro-2'-deoxyguanosine 
(8-nitro-dG), and other less frequent oxidation products. Mis-pairing 
of 8-oxo-dG and 8-nitro-dG results in G → T and C → A nucleotide 
substitutions characteristic of oxidative damage [10-14].

The work presented here tested the hypothesis that oxidative 
damage triggered by AZT may be a primary cause of AZT-induced 
mutations in mtDNA. This hypothesis is supported by our observation 
that addition of palm fruit juice (PFJ) to AZT-treated cultures 
reduced the number of drug-induced mtDNA mutations. Palm fruit 
juice is a water soluble by-product of oil extraction from the fruit of 
the oil palm (Elaeis guineensis) that is rich in antioxidant phenolics 
and other phytochemicals [15]. In particular, PFJ exhibits a high 
scavenging activity for hydrogen peroxide, the main reactive oxygen 
species produced in excess by defective mitochondria [16]. Similarly, 

individual antioxidants such as resveratrol, vitamin C, and vitamin E 
have been shown to mitigate mitochondrial dysfunction due to AZT-
induced oxidative stress in vitro and in vivo, although those studies did 
not measure mtDNA mutations associated with oxidative stress [9,17].

The experiments described here were designed to test two specific 
hypotheses. First, PFJ mitigation of AZT-induced mutations should 
correlate with reduced oxidative stress. Second, AZT-generated 
mutations should include excess G → T and C → A substitutions 
characteristic of oxidative damage. Despite demonstrating the strong 
antioxidant activity of PJF against hydrogen peroxide-induced ROS, 
neither of the above predictions proved true. Thus, the results question 
whether oxidative stress is the main driver of AZT-induced mutations.

Materials and Methods
Measurement of reactive species and PFJ antioxidant activity 
in treated HepG2 cells

Cell culture conditions and preparation of mitochondrial DNA 
were as previously reported [4]. HepG2 cells, a good model for studying 
the effects of drugs such as AZT on mtDNA [18], were cultured for 
thirty days in four separate conditions: (1) 7 µM AZT (Sigma, St. Louis, 
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MO), (2) 25 μg gallic acid equivalents (GAE)/mL PFJ (a gift from the 
Malaysian Palm Oil Board), (3) 7 µM AZT and 25 μg GAE/mL PFJ, 
or (4) culture media alone. After thirty days of treatment, triplicate 
samples of 2 × 104 cells/mL were placed in a 96-well plate in the above 
conditions, and cells were allowed to adhere for twenty-four hours prior 
to staining for reactive species. To confirm the anti-oxidant activity of 
PFJ in HepG2 cells, a set of wells with untreated or PFJ-treated cells 
were also incubated for 60 minutes at 37°C in the presence or absence 
of 1mM H2O2, the main radical species generated by mitochondria. To 
preclude the possibility that PFJ directly inactivated H2O2 in the culture 
media, all extracellular traces of PFJ were removed by multiple washes 
before addition of H2O2. After incubation with H2O2, all wells were 
rinsed with PBS twice to remove H2O2. To stain for mitochondrial-
specific reactive species (ROS and RNS), cells cultured in the four 
conditions above and H2O2 treated cells were incubated in serum-free 
Eagle's Minimum Essential Medium (EMEM, ATCC Manassas, VA) 
supplemented with 500nM MitoTracker® Orange CM-H2TMRos (Life 
Technologies, Grand Island, NY) for 15 min at 37°C [19]. After staining 
wells were again rinsed twice with PBS to remove unincorporated 
dye and read in an Infinite 200 PRO fluorescent plate reader (Tecan, 
Männedorf, Switzerland) at a 579 nm excitation wavelength and a 599 
nm emission wavelength.

Analysis of AZT mutational spectrum

Mitochondrial DNA was isolated as previously described [20]. 
Briefly, 1000 cells were lysed in 14 µL of Quantilyse [21]. Samples 
were stored at -20°C. Mutational analysis and DNA sequencing were 
conducted as described previously [4].

Statistical analysis

Statistical analysis of the antioxidant activity of PFJ data was carried 
out using a one-way ANOVA test followed by a Tukey HSD test. The 
test was performed using 95% significance (p-value of less 0.05).

Results
Palm Fruit Juice has antioxidant activity against H2O2-
induced. ROS in HepG2 cells

HepG2 cells were treated with H2O2 to test the anti-oxidant 
activity of PJF in our system since H2O2 is the major source of ROS in 
dysfunctional mitochondria [22]. Hydrogen peroxide in the absence 
of PFJ increased reactive species 24-fold. In contrast, PFJ alone did 
not affect ROS levels. Importantly, H2O2 added to cells grown in the 
presence of PFJ for thirty days failed to elicit an increase in ROS (Table 
1). These results demonstrate that one or more components of PFJ 
are effective inhibitors of H2O2 induced-ROS in HepG2 cells and are 
consistent with the reported antioxidant activity of PFJ in chemical 
assays [16].

Palm fruit juice did not decrease overall reactive species levels 
in AZT-treated HepG2 cells

The capacity of PFJ to affect AZT-induced increases in reactive 

species was investigated. In agreement with a previous report [7], 
HepG2 cells treated with a mutagenic concentration of AZT (7 µM) 
for thirty days developed higher levels of reactive species compared to 
untreated cells (Table 1). Palm fruit juice treatment alone, which is not 
mutagenic [23], did not increase reactive species above background. 
Despite using a concentration of PFJ that mitigated mtDNA mutations 
[23], AZT-induced reactive species remained elevated in cells co-
treated with AZT and PFJ (Table 1). These results uncouple PFJ 
mitigation of AZT-induced mtDNA damage from the ability of PFJ to 
mitigate reactive species generated by AZT.

The spectrum of AZT-induced mutations was inconsistent 
with oxidative damage

If AZT-induced mtDNA mutations resulted from direct oxidative 
damage, the mutations should exhibit a preponderance of G → T/C 
→ A transversions [10,11]. Although AZT treatment for 30 days 
resulted in a wide spectrum of mutations, G → T/C → A transversions 
characteristic of oxidative DNA damage did not increase above the 
background observed in untreated cells (Figure 1). The only mutations 
associated with oxidative damage observed above background were G 
→ C/C → G (20%, Figure 1). The most predominant mutations observed 
(G → A/C → T and T → C/A → G, 80% collectively) are characteristic 
of mtDNA polymerase errors [24,25]. These observations suggest that 
AZT-induced mutations were not likely the result of direct oxidative 
damage to mtDNA.

Discussion
A major conclusion from this work is that oxidative stress caused by 

AZT treatment is only a minor contributor to mtDNA mutations. The 
hypothesis that oxidative damage might be the major driver of AZT-
induced mutations was based on observations that (1) AZT treatment 
induces the formation of reactive species [5-9]; (2) these reactive species 
cause oxidative DNA damage [10-14]; (3) oxidative DNA damage 
promotes the formation of characteristic G → T/C → A transversion 
mutations [10,11]; (4) PFJ has strong scavenging activity against 
hydrogen-peroxide-induced ROS in vitro [16]; and PFJ mitigates AZT-
induced mutations [26]. This hypothesis predicts that PFJ mitigation of 
these mutations should be accompanied by a corresponding decrease 
in reactive species. However, direct measurements of overall reactive 
species in HepG2 cells co-treated with PFJ and AZT showed that 
mitigation of AZT-induced mutations occurred in the absence of 
a significant decrease in these reactive species, even though PFJ was 
demonstrated to have strong antioxidant activity against ROS.

The failure of H2O2 to induce ROS when cultured with PFJ could 
simply have been an artefact due to direct inactivation of H2O2 by PFJ 
in the media rather than inhibition of ROS production within the 
cells. To rule out this possibility, cells were cultured in the presence of 
PFJ, and all extracellular traces of PFJ were then removed by multiple 
washes before treating the cells with H2O2 (see Materials and Methods). 
Under these conditions PFJ still prevented formation of H2O2-induced 
ROS. These results are in agreement with the strong hydrogen peroxide 

HepG2 Treatment
Untreated H2O2 PFJ H2O2+PFJ AZT AZT+PFJ

Normalized Fluorescence 0 ± 3a,c 1417 ± 15a,b 59 ± 42b,c 46 ± 33b 430 ± 170 619 ± 18a, c

This table shows the difference in normalized fluorescence of MitoTracker® Orange CM-H2TMRos dye between H2O2 and AZT treated cells.  Palm fruit juice significantly 
lowers ROS in H2O2 samples while not lowering reactive species generated from AZT. Fluorescence was normalized by normalizing for the number of cells per well and 
then subtracting the background fluorescence of the untreated samples. The mean standard deviation is given. Similarly superscripted letters correspond to a significant 
difference (p<0.05) between treatments by one-way ANOVA followed by a Tukey HSD test.

Table 1: Effects of PFJ treatment on H2O2- and AZT-induced reactive species.



Citation: Osborne AE, Sanchez JA, Wangh LJ, Sambanthamurthi R, Hayes KC (2015) Oxidative Damage is not a Major Contributor to AZT-Induced 
Mitochondrial Mutations. J AIDS Clin Res 6: 441. doi:10.4172/2155-6113.1000441

Page 3 of 4

Volume 6 • Issue 4 • 1000441
J AIDS Clin Res
ISSN: 2155-6113 JAR an open access journal 

scavenging activity of PFJ in vitro [16] and indicate that PFJ inhibited 
ROS formation inside HepG2 cells.

Why, then, did PFJ not reduce the overall level of reactive species 
generated in AZT treated cells? Palm fruit juice may not counteract 
all reactive species the same way. Amatore et al. showed that reactive 
species induced by AZT treatment consists mostly of RNS (90%), with 
the remainder being of ROS (10%) [8]. The fluorescent dye used for 
detection of reactive species in this work (MitoTracker® Orange CM-
H2TMRos) detects both ROS and RNS [27]. However, PFJ appears to 
fall into the category of antioxidants that act predominantly on ROS, 
and not RNS, unlike vitamin C and other antioxidants which act 
on both [12,28]. The fact that AZT treatment generates mostly RNS 
together with the selective anti-oxidant activity of PFJ against ROS, 
not RNS, might account for failure of PFJ to appreciably reduce the 
overall reactive species generated by AZT. Since oxidative damage to 
DNA by RNS generates the same type of mutations as ROS [11,12], and 
PFJ mitigates AZT mutations without altering the total AZT-generated 
reactive species, oxidative damage must not be a major contributor 
to AZT mutagenesis. Use of non-discriminating antioxidants, such 
as vitamin C [28], may have led to the incorrect conclusion that 
oxidative damage accounts for AZT mutagenesis. Other groups using 
next-generation sequencing and other methods of mutation detection 
have also recently questioned whether oxidative damage is the major 
contributor to mtDNA mutations in general [29-31].

The working hypothesis also predicted that AZT-induced mutations 
should exhibit a preponderance of G → T/C → A transversions, 
characteristic of oxidative damage by ROS and RNS [11,12]. However, 
such transversion mutations were not increased above background 
(Figure 1). These observations provide independent evidence against 
oxidative damage of mtDNA as the main cause of AZT-induced 
mutations. Similar conclusions were reached when analysing mutations 
caused by other less frequent types of oxidative damage (Figure 1).

Graziewicz et al. reported that oxidative DNA lesions block 
mtDNA replication in vitro, which may result in mtDNA depletion 
[32]. Depletion of damaged mtDNA could explain the scarcity of 
oxidative mutations in the AZT mutational spectra. However, previous 

publications showed that neither AZT treatment, nor PFJ co-treatment, 
altered mtDNA copy number [4,23]. Thus, selective loss of mutated 
mtDNA would not account for the relative lack of signature mutations 
for oxidative damage in these experiments.

Given the present results, the working hypothesis that AZT-
induced oxidative stress was the main cause of mtDNA mutations, must 
be re-examined. It is unambiguous that AZT causes oxidative stress: 
AZT treatment induces cellular and mitochondria-specific hydrogen 
peroxide, peroxynitrite and ROS, increases mitochondria lipid 
peroxidation, and increases oxidation of mitochondrial glutathione in 
vivo and in primary and established cell lines [1-3,6-8]. It is also clear 
that AZT treatment causes the accumulation of 8-oxo-dG (up to 38% 
of all deoxyguanosine residues in samples treated with sub-optimal 
doses of AZT for 30 days) [33,34]. Why then were there not more 
mutations due to oxidative damage? Four explanations are plausible. 
First, the magnitude of the published 8-oxo-dG measurements, an 
index of oxidative DNA damage, may have been overestimated since 
the original studies did not distinguish between oxidation of free 
deoxynucleotides and oxidation of deoxynucleotides in mtDNA [35], 
nor did they control for artifactual oxidation during mtDNA isolation 
[36]. Second, even if 8-oxo-dG occurs it is weakly mutagenic; i.e., 
8-oxo-dG has mutation frequencies of only 2.5-4.8% in nuclear DNA 
[35]. Third, the mutagenic effect of 8-oxo-dG and 8-nitro-dG on 
mtDNA may even be less than predicted, since different polymerases 
respond differently to different lesions. In vitro studies with purified 
enzymes showed that mitochondrial DNA polymerase gamma inserts 
dideoxyadenosine opposite 8-oxo-dG about 10% of the time [37]. 
Fourth, oxidative DNA lesions are efficiently repaired by redundant 
base excision repair and nucleotide excision repair [35,38].

In light of this body of knowledge and the findings reported here 
a new working hypothesis to explain the mutagenic effects of AZT 
emerges. Although oxidative damage plays a role in AZT toxicity, our 
results indicate that oxidative stress is likely a minor contributor to 
AZT-induced mutations. How might PFJ be mitigating AZT-induced 
mutagenesis? One possibility is that AZT-induced mutations may result 
from changes in the fidelity of the mitochondrial polymerase gamma 
[39]. This hypothesis is consistent with our observation that G → A/C 
→ T mutations characteristic of mitochondrial DNA polymerase errors 
[23-25] predominated among AZT mutations. Accordingly, PFJ might 
interact with the polymerase to preserve its fidelity. Alternatively, AZT 
might also alter the cellular nucleotide pools leading to mitochondrial 
DNA polymerase errors [40,41]. Palm fruit juice may be preventing 
these imbalances. Current research is focusing on evaluating the 
possible mechanism of action of palm fruit juice. 
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