Pancreatic Mucinous Lesions: How Dangerous are they?

Jonathan Blair Williamson and Peter V Draganov*
Division of Gastroenterology, Hepatology and Nutrition, University of Florida Gainesville, FL 32610, USA

Pancreatic cysts are being discovered with increasing frequency due to the expanding use of cross-sectional imaging. The prevalence of incidental pancreatic cystic lesions found on Multidetector Computed Tomography (MDCT) has been reported to be as high as 2.6% [1]. Retrospective reviews of Magnetic Resonance Imaging (MRI) have shown an even higher prevalence of pancreatic cysts, from 13.5% to 19.6% [2,3]. Mucinous cystic neoplasm (MCN) and Intraductal Papillary Mucinous Neoplasm (IPMN) comprise up to half of all resected pancreatic cysts that are incidentally discovered [4,5]. Most of these lesions harbor no malignancy at the time of diagnosis, though they are considered premalignant [6]. Traditional management has been to surgically resect all mucinous lesions; however, this paradigm is changing because risk of malignancy is not uniform among all types. The advent of Endoscopic Ultrasound with Fine Needle Aspiration (EUS-FNA) has significantly facilitated the diagnosis of mucinous pancreatic lesions [7]. Nevertheless, in everyday practice, we frequently struggle to firmly establish the mucinous nature of a lesion and to precisely determine its malignant potential.

The 2006 international consensus guidelines provided a useful framework for the diagnosis and management of pancreatic cysts [8]. Since then, a number of studies have provided us with a better understanding of the biologic behavior of mucinous pancreatic lesions. Therefore, the International Association of Pancreatology (IAP) released updated consensus guidelines for the management of IPMN and MCN of the pancreas [9]. Notable updates include: (1) a decreased threshold of Main Pancreatic Duct (MPD) dilation from 10 mm to 5 mm in order to suggest main duct IPMN (MD-IPMN); (2) a management algorithm that stratifies suspected branch duct IPMN (BD-IPMN) into lesions with “high-risk stigmata,” “worrisome features,” or no “worrisome features,” and (3) comment on the role of cyst fluid analysis for the diagnosis of pancreatic cystic lesions. A summary of the new management algorithm is provided in the figure 1.

MCN is defined histologically by the presence of ovarian struma and has a relatively low prevalence of invasive carcinoma (<1%) at the time of diagnosis [10,11]. An argument could be made for close observation of MCN, especially if the lesion is small (<4 cm) and without mural nodules, as the reported prevalence of invasive cancer in such cases is very low [11,12]. However, because most patients are relatively young and lesions are predominantly located in the pancreatic body and tail, the IAP guidelines recommend resection in all surgically fit patients who have a reasonable life expectancy. The paucity of prospective data, including detailed information about the natural history of MCN, and lack of a definitively proven alternative therapy guide this recommendation.

IPMN is more variable in its presentation and data suggests that this lesion can be stratified with respect to malignant potential. MD-IPMN is known to possess a higher frequency of malignancy than BD-IPMN (61.6% versus 25.5%, respectively), and the incidence of invasive malignancy in MD-IPMN is 43.1% [9]. Furthermore, studies to date have shown no consistent predictive factors for malignancy in MD-IPMN. Therefore, resection is also recommended for all surgically fit patients with MD-IPMN. Unfortunately, the preoperative diagnosis is not always certain, so radiographic features must be utilized to guide the diagnosis. The most recent IAP guidelines use a cutoff value of MPD dilation >5 mm without other causes of obstruction to characterize MD-IPMN. This decreased threshold increases the sensitivity for diagnosis of MD-IPMN without losing specificity [1]. Other diagnostic features, which are generally more obvious on EUS, include thickened walls, intraductal mucin, or mural nodules involving the MPD. Therefore, EUS can be considered if the MPD is from 5 to 10 mm in maximum diameter (Figure 1).

Certain characteristic features of BD-IPMN are known to increase the probability of inherent malignant or malignant transformation. The current IAP guidelines categorize these features with the highest probability given to “high-risk stigmata,” which include obstructive jaundice, an enhancing solid component within the cyst, and MPD involvement involving the MPD. Therefore, EUS can be considered if the MPD is ≥3 cm, or if a complete 3 cm lesion fills the MPD, including walls, main duct size 5-9 mm, or non-enhancing mural nodule. A sharp change in order of pancreatic duct with desmoplastic atrophy is a feature to consider for possible main duct IPMN.

IPMN features may include: (1) an enhancing solid component within the cyst; (2) high-risk stigmata, which include obstructive jaundice, a mural wall ≥10 mm, intraductal thickening, or mural nodules; and (3) consider surgery if imaging features suggest the lesion may harbor malignancy.

MCN features may include: (1) thin-walled cystic lesion, (2) insidious onset, and (3) consider surgery if imaging features suggest the lesion may harbor malignancy.

Figure 1: a. Pancreatitis may be an indication for surgery for relief of symptoms.
 b. Differential diagnosis includes mucin. Mucin can move with change in patient position, may be dislocated on cyst lavage and does not have Doppler flow. Features of true tumor nodule include lack of mobility, presence of Doppler flow and FNA of nodules showing tumor tissue.
 c. Presence of any one of the thickened walls, intraductal mucin or mural nodules is suggestive of main duct involvement. In their absence main duct involvement is inconclusive.
 d. Studies from Japan suggest that on follow-up of subjects with suspected BD-IPMN there is increased incidence of pancreatic ductal adenocarcinoma unrelated to malignant transformation of the BD-IPMN(s) being followed. However, it is unclear if imaging surveillance can detect early ductal adenocarcinoma, and if, so, at what interval surveillance imaging should be performed.

*Corresponding author: Peter V Draganov, Division of Gastroenterology, Hepatology and Nutrition, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610, USA, Tel: 352-273-9474; Fax: 352-392-3618; E-mail: ecpg@live.com

Received September 28, 2012; Accepted October 01, 2012. Published October 04, 2012

Citation: Williamson JB, Draganov PV (2012) Pancreatic Mucinous Lesions: How Dangerous are they? Pancreat Disorders Ther 2:3. doi:10.4172/2165-7092.1000e122

Copyright: © 2012 Williamson JB, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
size ≥10 mm. For BD-IPMN with any “high-risk stigmata,” surgical resection is recommended. “Worrisome features” for BD-IPMN include a cyst ≥3 cm in diameter, thickened/enhancing cyst walls, MPD size 5-9 mm, a non-enhancing mural nodule, and an abrupt change in caliber of the MPD with distal pancreatic atrophy. Lesions that possess any “worrisome features” deserve further evaluation with EUS to evaluate for mural nodules, MPD involvement, or suspicious cytology, all of which would warrant surgical resection (Figure 1).

Even in the setting of no “high-risk stigmata” or “worrisome features” on initial evaluation, patients with BD-IPMN deserve radiologic follow-up at an interval defined by cyst size. The interval ranges from 3-6 months for cysts ≥3 cm to 2-3 years for cysts <1 cm (Figure 1). The reason for follow-up in all patients is 2-fold: (1) the natural history of BD-IPMN is not entirely clear and (2) preoperative diagnosis by radiologic means is not always accurate. The latter point is highlighted by one study that showed the accuracy of preoperative diagnosis to be only 68% for pancreatic cystic lesions; also, 20% of presumed BD-IPMN based on radiographic criteria had a histological main-duct component after review of the surgical specimen [13]. Not only should radiographic features be taken into account, but patient characteristics, such as advanced age, are important as well. The morbidity and mortality associated with surgery may not be justified in an elderly patient with BD-IPMN, which has an overall annual malignancy rate of approximately 2-3% [14]. Alternatives to surgery, such as EUS-guided ethanol ablation, have shown promise but more research is needed [1].

An exact preoperative diagnosis of pancreatic cysts would be ideal but is not realistic with radiologic evaluation alone. The important role of imaging (MDCT, MRI, and/or EUS) is to identify and risk stratify pancreatic cystic lesions. Whether or not an exact diagnosis is achieved may not turn out to be as important as the risk stratification based on imaging characteristics. A few recent prospective long-term follow-up studies showed that patients with presumed BD-IPMN in the absence of concerning radiographic features can be safely followed [15-17]. More importantly, the patients that developed suspicious radiologic findings (e.g. mural nodules or increase in cyst size) during close follow-up underwent surgical resection and none had invasive cancer [15-17].

Finally, the issue of pancreatic cyst fluid analysis has been studied more rigorously in recent years in an attempt to better classify lesions. Cyst fluid Carcinoembryonic Antigen (CEA) level ≥192-200 ng/mL is close to 80% accurate for the diagnosis of a mucinous cyst, but the CEA level has no use in distinguishing benign from malignant cysts [7,18]. Molecular analyses of cyst fluid, notably KRAS and GNAS mutations, also offer promise in the diagnosis of malignancy [20,21]. Despite this data, the IAP guidelines still consider cyst fluid analysis as investigation in most scenarios.

It should be highlighted that in the United States (U.S.), the management algorithm endorsed by the international consensus guidelines (old and new) is rarely followed [22]. The vast majority of patients with incidentally discovered pancreatic cysts in the U.S. will be evaluated by EUS and most will undergo FNA for cyst fluid analysis [22]. We believe that a multitude of factors contribute to this discrepancy, including: (1) we have very crude criteria to judge malignant potential (e.g. size), but cancer can be present even in small cysts; (2) the natural history of mucinous lesions is not well-defined; (3) in the U.S., there is a perception that a conservative approach is inferior to an invasive alternative that has diagnostic potential; (4) U.S. patients are frequently unwilling to deal with uncertainty, particularly when it comes to the possibility of cancer; (5) from a medicolegal perspective, physicians are concerned that they may be liable if the diagnosis of cancer is missed (despite following the guidelines); (6) the U.S. medical system is fractionated and patients may not get appropriate follow-up imaging due to change of insurance status, geographic constraints, etc.; (7) there is growing concern about radiation exposure due to multiple CT’s; (8) cumulative costs of a surveillance protocol are perceived to be higher; and (9) even if the patient is not a surgical candidate, a firm diagnosis can help with life planning.

In conclusion, the new IAP consensus guidelines for the management of IPMN and MCN of the pancreas highlight advancements in knowledge since the initial 2006 guidelines were published. Nevertheless, the levels of evidence for all items addressed in the new guidelines remain low. The paradigm of surgical resection for mucinous lesions is changing to a more stratified approach, with close observation for low-risk cystic lesions. Until the natural history is better defined and diagnostic modalities are more accurate, surgical resection may be the optimal management strategy in equivocal cases. If surgery is spared initially, though, the key is to maintain close and indefinite follow-up of all patients with suspected mucinous cystic lesions of the pancreas. Early EUS with FNA and fluid analysis has become the preferred strategy for evaluation of pancreatic cystic lesions in the U.S., which is a departure from the international guidelines. More prospective data is needed to further refine our approach.

References:

