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Introduction 
In this paper we study the stabilization of a coupled wave equations. 

More precisely, we consider the following initial and boundary value 
problem : 

2
1 1 1 2( ) = 0 (0, ),t t tu u a x u u in∂ −∆ + ∂ +∂ Ω× +∞    (1)

2
2 2 1 = 0 (0, ),t tu u u inα∂ − ∆ − ∂ Ω× +∞   (2)

1 = 0 (0, ),u on ∂Ω× +∞   (3)

2 = 0 (0, ),u on ∂Ω× +∞    (4)

0 1
1 1 1 1( ,0) = ( ), ( ,0) = ( ) ,tu x u x u x u x in∂ Ω    (5)

0 1
2 2 2 2( ,0) = ( ), ( ,0) = ( ) ,tu x u x u x u x in∂ Ω    (6)

where = \dΩ    and  an open bounded set of d with smooth 
boundary ∂Ω=∂, 0( ) ( )a x C∞∈ Ω  is a positive functions and α is a 
positive constant. 

The study of systems like (1)-(6) (and more generally coupled 
PDEs systems) is motivated by several physical considerations. In 
fact, There are many applied problems that can be modeled using 
coupled partial differential equations, for instance in heating processes, 
magnetohydrodynamics, quantum mechanics, optics, fluid dynamics....

Among the nowadays many contributions, using different methods 
and techniques, are given, and relevant reference therein [1,2].

One of the earliest tools in the stabilization analysis of partial 
differential equation is the micro-local default action of Gérard [3], 
Tartar [4].

Such techniques have been used firstly to study and to explicit 
the value of the best decay rate of damped waves equation [5], reduce 
the boundary and the regularity of the initial data or to show that the 
geometric condition for control by the board is required [6,7].

Similar works, based on the use of microlocal defect measures in the 
spirit of the article, have been achieved [5]. In the large time behavior 
of solutions of the wave equation were studied. The microlocal defect 
measures have been used to provide estimates of energy was shown in 
particular how these demonstrate the results of exact controllability, 
observation and stabilization [8]. without any assumption on the 
dynamics, the logarithmic decay of the local energy with respect to any 
Sobolev norm larger than the initial energy is proved [6]. In the two 

and three-dimensional system of linear thermoelasticity in a bounded 
smooth domain with Dirichlet boundary conditions were studied. In 
two space dimensions they proved a sufficient (and almost necessary) 
condition for the uniform decay under an assumption on the boundary 
of the domain and in three space dimensions sufficient conditions for 
the uniform decay are given [9].

Also, These techniques are used to study the stabilization of the 
wave equation in a domain with exterior Dirichlet condition [1], for 
the equation of damped waves equation in an outside field and under 
an "Exterior Geometric Control" condition inspired from the so-called 
microlocal condition of Bardos et al. [10] then for the stabilization 
of electromagnetic waves on an exterior bounded obstacle in 2D and 
3D is treated, and under an exterior geometric control condition the 
behavior of the solution for large time is studied [11-13].

Later, in three dimension space and under a microlocal geometric 
condition, the rate of decay of the local energy for solutions of the 
Lamé system on exterior domain, with localized nonlinear damping 
was given in ref. [14].

Recently these techniques are also used to study the stabilization of 
different coupled equations and different results have been established in 
this domain, some results are given, by Duyckaerts [15] the exponential 
and the polynomial stabilization of a coupled hyperbolic-parabolic 
system of thermoelasticity are addressed with microlocal techniques, 
explained by Atallah-Baraket and Kammerer [16] the energy decay of 
thermoelasticity system with a degenerated second order operator in 
the Heat equation was studied, a stabilization problem for a coupled 
wave equations on a compact Riemanian manifold under a geometrical 
control condition was examined and a logarithmic decay result of the 
energy is given [13]. And finally in the exact controllability problem 
on a compact manifold for two coupled wave equations, with a control 
function acting on one of them only was treated [17].
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that satisfy the following estimation 
2

10
( ,0) ( , ) = ( ) | ( , ) | .

t

sE u E u t a x u x s dxds
Ω

− ∂∫ ∫                              (12)

Let R>0 such that { }= , <n
RB x R x R⊂ ∈   , we set =R RBΩ Ω∩ . 

For u=(u1,u2) solution of (7), we denote ( )( )RE u t  the local energy of at 
instant  t>0 define by 

( )2 2 2 2
1 1 2 2( )( ) = | | | | | | | | .R t t

R
E u t u u u u dxα

Ω
∇ + ∂ + ∇ + ∂∫              (13)

Now, according to the research of Moulahi [19], we recall that at 
the boundary point ( , )t x ∈∂Ω  (  = RΩ ×Ω  ). Let ( , ) (0,0)t η ≠  be 
a tangential direction to ( , )t x ∈∂Ω ; that is η.v(x)=0, v(x) being the 
exterior normal to ∂Ω at x. with the assumption α≠1 we can consider 
(τ,η) as an element of 

*
( , ) ( )t xT ∂Ω , and to look for its inverse image is the 

both characteristic sets means to look for λ∈R such that 

1( , ; , ( )) = 0, ( , ; , ( )) = 0.p t x x p t x xατ η λν τ η λν+ +

That is 
2 2 2 2 2 2

1( , ; , ( )) =| | , ( , ; , ( )) = (| | )p t x x p t x xατ η λν η λ τ τ η λν α η λ τ+ + − + + −

and we write 
2

2 2 2= | | , = | | .or τλ τ η λ η
α

± − ± −

Hence, for the existence of such real λ, one of the two relations 
2 2 2 2

1 = 0 = 0r or rατ η τ αη− ≥ − ≥

mast be fulfilled. From the geometrical point of view there are some 
possibilities for a tangential direction = ( , ) (0,0)ζ τ η ≠  with different 

number of inverse image with respect to the projection 





* *
| ( )T T∂ΩΩ → ∂Ω . 

We introduce the characteristic transversal manifold: 

= ,Char Char CharΩ ∂Ω∪  

where 

{ }2 2= ( , ; , ), | | = 0, > 0Char t x tτ ξ τ α ξΩ −

{ }= ( , ; , ), , > 0, 0Char t y y t rατ η∂Ω ∈∂Ω ≥

and the characteristic longitudinal manifold of the wave coupled 
system is 

= ,Char Char CharΩ ∂Ω∪  

where 

{ }1= ( , ; , ), , > 0, 0Char t y y t rτ η∂Ω ∈∂Ω ≥

{ }1= ( , ; , ), , > 0, 0Char t y y t rτ η∂Ω ∈∂Ω ≥

the characteristic manifold of the system is 

=char char charα α αΩ ∂Ω∪  

and the assumption on the coupled wave (α≠1) one obtains 

=char Char CharαΩ Ω Ω∪  

and 

= > 1Char Char ifα α∂Ω ∂Ω 

either 

= < 1.Char Char ifα α∂Ω ∂Ω 

According, we recall the following definition [12,14]

Our aim in this work is to establish the energy decay and to give 
the best rate of convergence of a coupled damped wave equation On 
an exterior bounded obstacle. We prove this result in a geometric 
hypothesis and by using the arguments of the analysis microlocal.

The organization of this paper is as follows. In section 2, we give the 
main result and recalled some preliminary results. In section 3, we will 
study the poles of the resolvent, in the first, by means of conventional 
techniques is given a location on the low frequencies and by the defect 
measures theory we study the high frequencies. In section 4, the main 
results concerning the stability of systems are established. startsection 
section1@-3.5ex plus -1ex minus -.2ex2.3ex plus .2ex Preliminaries and 
Main result 

Let u=(u1,u2) then the system of equations (1)-(6) is equivalent to 
the following system 

2

0 1

= 0 (0, ),
= 0 (0, ),
( ,0) = ( ,0) = , ,

t a t

t

u D u K u in
u on
u u u u in

α∂ − + ∂ Ω× +∞
 ∂Ω× +∞
 ⋅ ∂ ⋅ Ω

               (7)

where 

0 2 ( ) 1
= , = ,

0 1 0a

a x
D Kα α

∆   
   ∆ −   

0 0 0 1 1 1
1 2 1 2= ( , ) = ( , ).u u u and u u u

Due to the nonlinear semi-group theory, it is well known that the 
problem (7) has an unique solution, obtained by using the Lummer-
Philips theorem for an unbounded operator [18].

We consider the Hilbert space ( )21 2 2
0= ( ) ( ( ))H H LΩ ⊕ Ω , which is 

the closure of ( ) ( )2 2

0 0( ) ( )C C∞ ∞Ω × Ω  with respect to the norm 
2 2 2 2

1 2 1 2| | | | | | | | .f f g g dxα
Ω
∇ + ∇ + +∫

We define

0
=a

a

id
A

D K
α

α

 
 − 

                   (8)

and 

{ }{
( ) ( ) }

1 2 1 2 2 1 2

2 21 2 1
0 0

( ) = ( , ) ( , ) a ( , )

= ( ( )) ( ) ( ) .

a aA u u u u H nd u D u K u H

H H H

α
α∈ ∈ − ∈

Ω ∩ Ω ⊕ Ω


    (9)

We can write the problem (7) as the following form 
( ) = ( )

(0) =
t a a a

a

u t f A u t f
u f f

α α α

α

∂                    (10)

where ( )( ) = ,a tu t f u uα ∂ . The problem (7) and (10) are equivalents if 
and only if that aAα  has a domain ( )aD Aα .

The problem (7) has an unique solution, obtained by using the 
Hille-Yosida theorem for an unbounded operator.

Let 1 2( , ) = ( , )( , )u x t u u x t  solution of (7) and we set 

1 2= ( , )x x xu u uα α∇ ∇ ∇ . We define the energy functional at the time 

t by 

( )

( )

2 2

2 2 2 2
1 2 1 2

1( , ) = | | | |
2
1= | | | | | | | |
2

t x

t t x x

E u t u u

u u u u dx

α

α

Ω

Ω

∂ + ∇

∂ + ∂ + ∇ + ∇

∫

∫
   (11)
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Definition 0.1 

Let η∈T*∂Ω , we say that 

1. η is a elliptic (orη∈ )if and only if Char αη ∂Ω∈  . 

2. η is a hyperbolic for the longitudinal wave (orη∈L) if and only 
if r1>0 

3. η is a glancing for the longitudinal wave (or η∈ L )if and only 
if r1=0.

4. η is a hyperbolic for the transversal wave (or η∈T) if and only 
if rα>0. 

5. η is a glancing for the transversal wave (orη∈ T) if and only if 
rα=0

Now, we are going to make a description of a generalized 
bicharacteristic path and refer to the research of Lebeau G [5] for more 
details. The generalized bicharacteristic flow lives in 

*Char Tα ⊂ Ω  
and for ρ∈Charα ,we denote by G(s,ρ) the generalized bicharacteristic 
path starting from ρ. Since charα is the disjoint union of charαΩ 
T and T if α>1or aChar α

Ω ,L and L if α<1. We shall consider 
separately the case where ρ belongs to each one of these sets. Moreover 
all the description below holds for |s| small, in the following we assume 
α>1.

Case 1. ρ∈charαΩ Here ρ=(x,t;ξ,τ) where x∈Ω, t∈(0,T) dept1,α 
(x,t;ξ,τ)=0. Then for |s| small, we have

( ) *( , ) = ( ), ( ), , ( )G s x s t s T Rρ τ ξ ⊂ ×Ω .

Where (x(s),ξ) is the characteristic starting from the point (x,ξ) of

• 2 2
1 = | |p τ ξ− +  if ,Charρ Ω∈   

• 2 2= | |pα τ α ξ− +  if .Charρ Ω∈   

Case 2. ρ∈∈(charα)∂Ω (i.e 10 )p≤  

Here = ( ( ), ( ), ( ), ( ))x s t s s sρ η τ  where x∈∂Ω, t∈(0,T) and the 
equation 1, ( , , , ) = 0np x tα η ξ τ+  has roots = ( )n xξ λν  described in ref. 
[12] and we have one of the two relation 

2 2 2 2
1 = , = .r rατ η τ αη− −

For s>0 ( resp. s<0), let ( , ) = ( ( ), ( ), , ( ))G s x s t s sρ ξ τ− − −  (resp. 
( , ) = ( ( ), ( ), , ( ))G s x s t s sρ ξ τ− − −  be the outgoing (resp. incoming) 

bicharacterestic of α. The generalized bicharacteristic path is such that 
G(0,ρ)=ρ and 

( , ) 0 < <
( , ) =

( , ) < < 0.
G s s

G s
G s s

ρ ε
ρ

ρ ε

+

−




−

Four possibilities may occur 

1. 
( ) = 2 , 0 < < ,
( ) = 2 , < < 0,

x s x s s
x s x s s

α ξ ε
α ξ ε

+ +

− −

 +


+ −

where = ( )
r

xαξ η ν
α

+ −  and = ( )
r

xαξ η ν
α

− + .

In particular, if 0<r one has x(s)∈Ω for small |s|≠0

2. If 0 pα≤  ( i.e., 1Gα αη ∈ ∪ ⊂  ): 

( ) = 2 , 0 < < ,
( ) = 2 , < < 0,

x s x s s
x s x s s

ξ ε
ξ ε

+ +

− −

 +


+ −

where 1= ( )r xξ η ν+ −  and 1= ( )r xξ η ν− + . 

( ) = 2 , 0 < < ,
( ) = 2 , < < 0,

x s x s s
x s x s s

ξ ε
α ξ ε

+ +

− −

 +


+ −

where 1= ( )r xξ η ν+ −  and = ( )
r

xαξ η ν
α

− + . 

( ) = 2 , 0 < < ,
( ) = 2 , < < 0,

x s x s s
x s x s s

α ξ ε
ξ ε

+ +

− −

 +


+ −

where = ( )
r

xαξ η ν
α

+ − , 1= ( )r xξ η ν− + .

We can see that the nature of the generalized bicharacteristic path 
changes when hitting the boundary, since it moves from char to 
char in 2 ii- and conversly from char to char in 2 iii-. Following 
ref. [14], we have: 

Definition 0.2 

We will call generalized bicharacteristic path any curve which 
consists of generalized bicharacteristics of α with possibility of moving 
from a characteristic manifold to another, at each of ∂Ω , in the way 
indicated above. 

In order to state the main results of this paper, we give the 
definition of outside geometric control condition ( OGCC) introduced 
[1] inspired of [5]. 

Definition 0.3 

LetR>0 such that RB⊂ , TR>0 andω={a>0} We shall say 
that(ω,TR) satisfy the outgoing geometric control condition (OGCC) 
above BR if every generalized geodesic path 1 γ derived, at time t=0 a 
point in ( )*

b RT R +×Ω  satisfies the following conditions 

•γ leave ×BR before the time TR. 

•γ meet the region R+×ω between the times 0 and TR. 

Let t>0, we set 

1 1 0 2 2 00 0
0 0

1 1( ) = ( ( , )) , ( ) = ( ( , )) .inf inf
t t

C t a x s ds C t a x s ds
t tρ ρ

ρ ρ∫ ∫
that satisfies 

( ) ( ) ( ) ( ), = 1,2.i i itC t sC s t s C t s i+ ≤ + +

We denote 

( )1 2

1 0 2 00 0
0 0

( ) = min ( ), ( )

1 1= min ( ( , )) , ( ( , ))inf inf
t t

C t C t C t

a x s ds a x s ds
t tρ ρ

ρ ρ
 
 
 

∫ ∫
    (14)

that is a additive function and we set ( ) = ( )lim
t

C C t
→+∞

∞ . We have
( ) ( )C t C≤ ∞  for all t.

Theorem 0.4 Assume α≠1 and under the hypothesis of (OGCC) 
above the BR, for any ( )< = 2 (0), ( ) ,min D Cδ ρ ∞  there exists c>0 such 
that for all g∈H supported in BR we have the following estimate of the 
energy 

( )( ) ( )(0) 0

1( )( ) ( )(0) 0

t
R

R d

E u t e E u t if d odd
or

E u t E u t if d even
t

δ−≤ ∀ ≥

≤ ∀ ≥
                (15)

startsection section1@-3.5ex plus -1ex minus -.2ex2.3ex plus .2ex 

1A generalized geodesic path is a projection of a generalized bicharacteristic path 
on Ω . 
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Location of the outgoing resolvent poles 

We consider the operator ( )a
α λ  define by the following 

expression 

0
( ) = ( ) f < 0i t

a af e u t fdt or Imα λ αλ λ
+∞ −∫                               (16)

aAα  is dissipative operator, by the Hille-Yosida theorem, generate a 
contraction semigroup ( )

0
( )a t

u tα

≥
.

Then, it is clear that the relation (16) define a bounded family 
of operators from 2 2( ( )) ( )L onto HΩ Ω  and it is holomorphic in 
{Imλ<0}

Moreover, we have the following characterization of the resolvent 
a
α :

Lemma 0.5 For all ( )22 ( )f L∈ Ω  with support in BR and for all 
λ≠0 and Imλ≤ 0 we have ( )a fα λ  is the unique solution satisfies the 
outgoing radiation condition (OGRC) of the following problem:

2 = ,
= 0 ,

aD i K fin
on

α λ λ− Ψ − Ψ + Ψ Ω
Ψ ∂Ω

                               (17)

Firstly, we recall that u=(u1, u2) satisfy the outgoing radiation 
condition if the following identity satisfy 

2 2
1 1 2 2| |=

| | | | ( ) = 0.lim
x RR

u i u u i u d xν νλ α λ σ
→∞

∂ + + ∂ +∫             (18)

Now, let ψ the difference between two solution of (17). Then, 
ψ satisfy the homogenous problem with Dirichelet boundary. By 
integration on ΩR for R large enough, we have 

2, , , = 0ai D i i Kαλ ψ λλ ψ ψ λλ ψ〈 Ψ〉 + 〈 〉 − 〈Ψ 〉

this implies that 
2 2 2 2

1 2

2 2 2
1 2 1

2 1

1 1 2 2

| | | |

| | | | ( ) | |

2

( ) ( ) = 0

R R

R R

R

R R

i dx i dx

i dx a x dx

Im

i d x i d xν ν

λλ ψ λλ ψ

λ ψ α ψ λλ ψ

λ λ ψ ψ

λ ψ ψ σ λ ψ ψ σ

Ω Ω

Ω Ω

Ω

∂Ω ∂Ω

+

− ∇ + ∇ +

− ⋅

∂ ⋅ + ∂ ⋅

∫ ∫

∫ ∫

∫

∫ ∫

        (19)

In particular, given that the real part of (19) is zero, gives

( ) 2 2
1 21 2 1| |= | |=

2 2 2 2 2
1 2 1 2

2 = 2 | | ( ) | |

2 | | | | 2 | | | | | | .

r rx R x R R

R R

Im d d a x

Im Im dx

λ ψ ψ σ λα ψ ψ σ λ ψ

λ ψ α ψ λ λ ψ ψ

Ω

Ω Ω

− ∂ ⋅ + ∂ ⋅ −

− ∇ + ∇ − +

∫ ∫ ∫

∫ ∫
  (20)

Since 
2 2 2 2 2 2 2

1 2 1 2

1 21 2

| | = | | | | | | | | | | | |

2 2 .

i

Im Im

α
ν ν ν

ν ν

λ ψ α ψ λ ψ λ ψ

λψ ψ α λψ ψ

∂ Ψ + Ψ ∂ + ∂ + +

− 〈 ⋅ ∂ 〉 − 〈 ⋅ ∂ 〉

Using the outgoing radiation condition, we get 

{

}

2 2 2 2
1 1

2 2 2 2 2 2
1 2 1 1| |=

2 2 2
2 2| |=

2 | | ( ) | | 2 | | | |lim

2 | | | | | | | | | | | | ( )

| | | | | | ( ) = 0.

R R

x RR

x R

a x dx Im dx

Im d x

d x

ν

ν

λ ψ ψ α ψ

λ λ ψ α ψ ψ λ ψ σ

ψ λ ψ σ

∂Ω Ω→+∞

Ω

− − ∇ + ∇

− + + ∂ +

+ ∂ +

∫ ∫

∫ ∫

∫

  (21)

Therefore, if Imλ<0 then we have 2| | = 0dx
Ω
Ψ∫  that implies Ψ=0 in 

Ω. Assuming that Imλ=0 and λ≠0 the equation (19) and 
2 2

1 21 2 1| |= | |=
( ) ( ) | | ( ) | | ( ) = 0

x R x R
Im d x d x a x d xν νψ ψ σ ψ ψ σ λ ψ σ

∂Ω
 ∂ ⋅ + ∂ ⋅ +  ∫ ∫ ∫

and combining the radiation condition, we conclude that 
{ >0} 0aΨ ≡ . Moreover, if ( ){ > 0} > 0meas aΩ∩ , it is easily to see that 

Ψ≡0 Which proves the lemma. 

In the following, we study the outgoing resolvent ( )a
α λ  on the 

real axis. We show firstly that it has no real pole and secondly it is 
bounded in the neighborhood of 0 in any angular sector does not meet 
the imaginary axis iR.

Boundedness of the Resolvent Near Zero
( )2 = ,

= 0 .
aD id i K u f in

u on
α λ λ− − + Ω

∂Ω
              (22)

Before beginning the study of holomorphic of the resolvent ( )aRα λ , Let 
us note that we can see (17) as a perturbation of the following problem 
in a free space 

( ) ( )22 2
1 2= , = ( , ) ( ) .d

RD id i J w g in R g g g Lα λ λ− − + ∈ Ω        (23)

where 
0 1

= 1 0J
− 

 
 
 
 

.

The solution of the eqn. (23) is given by 0= ( )w gα λ  with 0 ( )α λ  
is the free outgoing resolvent given by

0 ( ) = (| |, ) ( )dR
g x y g x dxα αλ λ+Γ −∫                (24)

( , ) { ( , ) ( , )}1(1 )
(| |, ) =

1{ ( , ) ( , )} ( , )1(1 )

ir r r

x y
i r r r

α

λγ λ γ γ λ
α

αλ
λ λγ γ λ γ

αα α
α

+ + +

+

+ + +

 − 
− 

 Γ −  −
 − 
 − 
 

 where  

and 
1

2 (2)( , ) = ( )
4 2

d

ir H r
r

λγ λ λ
π

−

+
 −  
 

 is the Hankel function and 

furthermore 1 ( 1)
2( , )

d irr r e λγ λ
−

+ 

 for r large [6].

Now, let 
=u w v−Θ

where 
2 = 0

=
= 0 { , | |= }

a R

d

D v v i K v in
v w on
v on x R x R

α ξ ξ+ − Ω
∂Ω

∈
and 0C∞Θ∈  equal to 1 on a neighborhood of ∂Ω with support in 
BR.The parameter ξ being chosen and subsequently fixed the following 
discussion. And w is completely determined by g and v is completely 
determined by w. The problem then is to determine the function g for 
which the function u verifies (22). 

( )
2

2 2
0 0

= ( )

= ( ) ( )

=

a

a a

f D id i K u

D id i K w D id i K v i K K w

g g

α

α α

λ

λ λ

λ λ λ λ λ

− − +

− − + − − − + Θ − −

− 

where 

( )2 2
0= ( ) ( ) ( ) ( )a ag D v v i K v i K K wα

λ α λ ξ λ ξ λ− Θ −∇ Θ∇ − − + − Θ − −

Lemma 0.6: We have 

1. λ is a bounded operator on ( )22 ( )RL Ω  for any λ∈C\{0} 

2. λ is a holomorphic function at λ in C on the Riemannian 
Logarithmic surface. 

Proof. Let ( )2
( )kH Ω  the Sobolev space functions with the following 

norm 
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1
2

2 2
1 2

| |
= | | | | .l l

k
Rl k

g g g′ Ω
≤

  ∂ + ∂ 
  
∑∫ 

By (24) and the oscillatory integral theory we can see that 

2 0w C gλ′ ′Θ ≤                       (25)

Where Cλ is bounded uniformly on any compact Riemanian 
Logarithmic surface [20]. Now we set = v wφ −Θ  satisfy the following 
problem

{ }

2 2= ( ) i ,
= 0 ,
= 0 o ; | |= .

a RD i K D w w n
on

n x x R

α αφ ξ φ ξ φ ξ
φ
φ

+ − − Θ − Θ Ω
∂Ω               (26)

by the ellipticity argument we deduce that 

2 2
' 'C wλφ ≤ Θ                        (27)

we obtain by eqn. (25) 



2 0 .' 'C C gλ λφ ≤   

                 (28)

Moreover λ contains only derivations of order less than or equal 
to 1 of φ, 

1 2 0
' ' 'g gλ φ≤ ≤     

                  (29)

 by the Rillich identity, we deduce that λ is compact operator on 
( )22 ( )L Ω  and this implies that ( )a

α λ  is meromorphic on C ( resp. 
Riemannian logarithmic surface ) if d odd (resp. d is even ). 

Low Frequencies
First we prove that the resolvent , ( )aRα

χ λ  have not poles in the 
real axis and it is bounded in an angular sector contain the real axis at a 
neighborhood of zero. For this we begin by the following result

Now, we prove that in a neighborhood of the zero, the resolvent 
, ( )aRα
χ λ  is bound in an angular sector contain a real axis. The same 

result has proved by Morawetz CS [21] in the standard Laplacian 
case where the dimensional space d=2,3 with Neumann or Dirichelet 
boundary condition and generalized by Burq N in the Dirichlet case 
[6].

Proposition 0.7: Let γ=eiθ 5[ , ]
4 4
π πθ ∈ −  an dΛγ the angular sector 

opening 
2
π  symmetric around of γ-1

{ }*= ; ( ) | ( ) | .C Re Imγ λ γλ γλΛ ∈ ≥

Then ,aRα
χ  uniformly bounded in Λγ. 

Proof. Let ( )22 ( )f L∈ Ω  with compact support in BR. By the 
previous lemma, the function = ( )aR fα λΦ  is the unique solution 
satisfying the (OGRC)of the problem 

2 =

= 0
aD i K f in

on
α λ λ − − + Φ Ω 

Φ ∂Ω
            (30)

Let λ∈Λγ and u solution satisfy the outgoing radiation condition of 
the following system 

( )2 = ,

= 0 ,
aD i K u g in

u on
α λ λ+ − Ω

∂Ω
                 (31)

where {| |< }suppg x R⊂ . We choose a function ( )C Rχ ∞∈  equal to 0 
for |x|<R and to1 for |x|>2R. We follow the proof of ref. [6], we obtain 
for λ∈Λγ 

( )
( )

( )

4 4 2

4 2 2 2 2 2 2
1 2 1 2

4 2
1 2 1 1 2

4 4
1 21 2

=

= | | | | | | | |

( ) | |

r r
a

r

r

r r
i j j i

Re e u g Re e u D i K u

Re e u u u u

i e a x u u u u u

r u u e r u u e

γλ γλ
α

γλ

γλ

γλ γλ

λ λ

α λ λ

λ

γλ αγλ

− −

Ω Ω

−

Ω

−

− −

Ω

⋅ ⋅ + −

 − ∇ − ∇ + +

− + ⋅ − ⋅

+ ∂ ∂ ⋅ + ∂ ∂ ⋅ 

∫ ∫
∫

∫

  (32)

This implies that 
4 ( ) 2 2 2 4 ( ) 2 2

1 2 1 2

4 ( )
1 21 2

4 ( ) 2
1

| | | | | | | | | |

| |

| | ( ) | | ( )

Re Re r

Re r

Re r

e u u C e u u dx

e u g u g dx

c e a x u d x

γλ γλ

γλ

γλ

α λ

λ σ

− −

Ω Ω

−

Ω

−

∂Ω

   ∇ + ∇ ≤ +   

 + ⋅ + ⋅ 

+

∫ ∫
∫
∫

(33)

Then for|λ|≤1; 

( )

{ }

{ }

4 ( ) 2 2
1 2>3

2 2 2 2
1 2 1 2<2

2 2 2 2
1 2 1 2<2

| | | |

| | | | | | | | > 2

| ln | | | | | | | | | = 2

Re r

r R

r R

r R

e u u

c u u u u dx if d

c c u u u u dx if d

γλ α

α

λ α

−

Ω∩

Ω∩

∇ + ∇ ≤

 ∇ + ∇ + +



∇ + ∇ + +


∫
∫

∫

            (34)

by (33), (34) and |λ|<1 we get 

{ } { }

( )

2 2 2 2 2
1 2 1 2<3 <3

4
1 21 2

| | | | | | | ln | | | | |

| |

r R r R

r

u u dx c u u

c e u g u g

ω

γλ

α λ λ α
Ω∩ ∩

−

∇ + ∇ ≤ ∇ + ∇

+ ⋅ + ⋅

∫ ∫

∫
Since { }<suppG r R⊂ Ω∩ , λ∈Λγ and λ small enough 

{ } { } ( )

{ } ( )( )
{ } ( )( )

2 2 4
1 21 2 1 2<3 <3

1
24 ( ) 2 2

1 2<3

1
24 ( ) 2 2

1 2<3

| | | | | |

| | | |

| | | | .

r

r R r R

Re r

r R

Re r

r R

u u dx c e u g u g dx

c e u u

e g g

γλ

γλ

γλ

α −

Ω∩ Ω∩

−

Ω∩

−

Ω∩

∇ + ∇ ≤ ⋅ + ⋅

≤ +

× +

∫ ∫

∫

∫
Using the Hardy- Poincaré inequality for d>2, we obtain 

{ } ( )( ) { } ( )( )
{ } ( )( )

1
24 ( ) 2 2 4 ( ) 2 2

1 2 1 2<3 <3

1
24 ( ) 2 2

1 2<3

| | | | | | | |

| | | | .

Re r Re r

r R r R

Re r

r R

e u u dx c e u u

e g g

γλ γλ

γλ

α α− −

Ω∩ Ω∩

−

Ω∩

∇ + ∇ ≤ ∇ + ∇

× +

∫ ∫

∫

For d=2 is used [6]. So in both cases we give a uniform bound 
of norm of the resolvent from 2 2( ( ))comL Ω  into 1

0,locH  for λ close to 
zero and in the Λγ. By choosing a finite number of real γi it covers a 
neighborhood of upper half-plane (which is excluded 0)∪Λγi which 
leads to the conclusion that the resolvent is bounded near zero and we 
have the assumption (1.1) in ref. [6].

which implies that one have to λ goes to zero and | ( ) / 2 |arg λ π π+ ≤ , 
the following behavior:

Proposition 0.8: α
χ  does not allow the accumulation point, has no 

zero on the real axis and admits the following behavior 

0 0 0

1
0 0

( ) ( ( ) ( ))11
( )

( ( ) ( )) ( ) ( / )11
d d

iR R R

if d is odd
i R R

α
χ

λλ λ
λ

αλ
λ λλ λ α
λ α

α

−

− − 
− 

 
 
 − + 
 − 
 


 



and 

2
0 0

2
0 0

ln( ) ( ( ) ( ))11
( )

( ( ) ( )) ln( ) ( / )11

d
d d

d
d d

i R R

if d is even
i R R

α
χ

λλ λ λ
λ

αλ
λλ λ λ λ α
λ

α

−

−

− + − 
− 

 
 
 − + 
 − 
 

 


 



where rank (d)≤1 and d is analytic at λ=0. 
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We begin by the following lemma inspired from [2] which will be 
useful to the proof of our proposition.

which gives a good uniform bound on the norm of the resolvent from 
2 2( ( ))L Ω  onto 1 2( ( ))H Ω  for λ close to zero and in the sector.

Proposition 0.9: 0 ( )α λ  and a
α  have the same behavior near zero. 

Proof. Let ( ) ( )2 22 2
0 ( ) : ( ) ( )com comL Lα λ Ω → Ω  the operator define by 

0 ( ) fα λ  is the unique solution of ( )2
|= , = 0D i J u f in uα λ λ Ω− − + Ω  

and u satisfy (OGRC). Let ( )22 ( )f L∈ Ω  supported in BR a(x) is supported 
in BR and 0= ( )u fα λ .

Then we obtain

( )2

/

= ( )

= 0
a aD id i K u f i K J u

u
α λ λ λ

∂Ω

− − + + −                (35)

And u satisfy the (OGRC). It follows that 

( )0

0

= ( ) = ( )

= ( ) ( ) ( )
a a

a a

u f f i K J u

id i K J f

α α

α α

λ λ

λ λ λ

+ −

 + − 

 

 

so for any ( )2 ( )f L∈ Ω  supported in BR, we have 

,( ) = ( ) ( ) ( )a af id i K J R fα α α
χ χ χλ λ λ λ + −  

where 0=α α
χ χ χ   is the troncated free resolvent.

Lemma 0.10 , ( )aRα
χλ λ  is analytic at λ=0 and ( ) ( ) 0ai K J Rα

χλ λ− →  
when λ→0

Taking into account the Lemma 0.10 we deduce that 0 ( )α λ  and 
( )a

α λ  have the same behavior near zero.

Studies of High Frequencies
 This section is devoted to the proof of Theorem 0.11.

Theorem 0.11: There exists δ0>0and λ0>0 such that the truncated 
outgoing resolvent ,a

α
χ  extends so as holomorphic in the region 

{ }0 00
= , | |> .G C Im and Reλ λ δ λ λ∈ ≤                                 (36)

More precisely, there exists c>0 such that for 2 2( ( ))f L∈ Ω , suppf 
Rsuppf B⊂  and for all λ∈G0e have 

2
, 2 2 , 2 2 2 2( ) ( ) ( )

( ) ( ) .a aL L LR R R
f f c fα α α

χ χλ λ λ∇ + ≤                    (37)

 Firstly, we denote that the operator ( )aRα λ  defined by 2 2( ( ))L Ω  in 
H is meromorphic on C (resp. the Riemann surface of the logarithm) 
if n  is even (resp. odd), holomorphic on {Imλ<0}. Moreover, c, δ0 and 
λ0 don’t depend of and we can check that ( ) = ( )a aR Rα αλ λ− . This allows 
us to limit our study to Re(λ)>0. The proof of (37) is based on a reductio 
ad absurdum argument. We assume that for any c ( in particular for 
n=c=n∈N, there exists fn∈(L2)2 and 1 2= ( , )n n n Rsuppf f f B⊂  such that 
Imλn→0 and Reλ ≥ n ( we assume for example Reλ ≥ 0 )such that 

2 2 2
2 2 2 2( ) ( )

( ) ( )a n n n a n n nL L
f f n fα α αλ λ λ∇ + ≥                      (38)

We note that 1 2= ( , ) = ( )( )n n n a n nu u u fα λ  is normalized by 
2 2

2 2 2 2( ) ( )
<n n nL LR R

u uα λ∇ + ∞    . We obtain

2 =
= 0

n n n a n n

n

n

D u u i K u f in
u on

u satisfy the outgoing radiation condition

α λ λ − − + Ω
 ∂Ω



2 2
2 2 2 2 2 2( ) ( ) ( )

2 2( )

= 1, 0,

10, 0 ( ) 0.

n n n nL L LR R R

n nLR n

u u f

u and Im
Re

λ

λ
λ

∇ + →

→ → →

     

 

                  (39)

Lemma 0.12: We have un 0 in 1 2[ ( )]locH Ω , λnun0 in 2 2[ ( )]locL Ω . 

Proof. By (39), we obtain that un 0 in ( )21 ( ) ,R RH Ω  where ΩR=Ω∩BR 

Moreover 
1 1= .n n n n a n

n n

u D u f iK uαλ
λ λ

− − −

By effecting the scalar product with ( )2

0 ( )C∞Φ∈ Ω , 

1 2
1 2

1 1, = , ,

1 1 1= , , , ,

n n n n a n
n n

n n n a n
n n n

u D u f i K u

u u f i K u

αλ
λ λ

α
λ λ λ

〈 Φ〉 〈− − Φ〉 − 〈 Φ〉

〈 ∇ ∇Φ 〉 + 〈 ∇ ∇Φ 〉 − 〈 Φ〉 − 〈 Φ〉

we get

2
2 2 2 2 2 2 2 2( ( )) ( ( )) ( ( )) ( ( ))

1 1
n n n nL L L LR R R Rn n

u u f C uαλ
λ λΩ Ω Ω Ω

≤ ∇ + +       

this impliesλnun → 0 in 2 2( ( ))RL Ω .

Let ( )0 2, ( )C M Rχ ∞∈ Ω  equal to the id near the boundary and 
supported in BR. We set ( )=n nw id uχ− .

We can see that
2 = [ , ] ( ) d

n n a n n nD w w i K w D u id f in Rα αλ λ χ χ− − + + −

then = ( )n n nw gα λ  where α is the outgoing free resolvent of the 

2D I i Jα λ λ− − +  operator and = [ , ] ( )n n ng D u id fα χ χ+ −  bounded 
in ( )22 ( )dL R , supported in BR.

We have 

0
( ) = ( )i tn

n n ng e t g dtλα αλ
+∞ − Λ∫

where Λα(t) is the free propagator.

So, by part integration and noticing the locate energy go to zero 
at +∞

0
( ) = ( )i tn

n n n t ng i e t g dtλα αλ λ
+∞ −− ∂ Λ∫

As Imλn≤δ0 for Reλn large enough for R′>Rwe have
2 1 2 2 2 1 2 2 2

1 2 2 2 2( ) ( ) ( ) ( ) ( )

1 2 2 2
2 2( ) ( )

=

| .

n n n n n n nH L L L L' ' ' ' 'R R R R R

n nL LR R

w w w w w

c g g

α λ λ
Ω Ω Ω Ω Ω

Ω Ω

∇ + ∇ + +

 ≤ + 
 

         

  

this inequality is deduced from the method of stationary phase for 
Reλn→ 0 ([8]). We can see that is bounded nw  in 1 2[ ( )]c

loc RH B  and||wn||→0. 
So un0 in 1 2[ ( )]locH Ω  and λnun0 in 2 2[ ( )]locL Ω . 

Let ( )( , ) = ( )iRe tn
n nv t x e u xλ− .

The sequence vn satisfy the following wave equation: 



0
( )2

0

2 ( ) 2 0
0 2 =

= 0 ,

itRe n
t n n t n t n n

n

a x
v D v J v v e f

v on R

λ
α

δ
δ −

− 
 ∂ − + ∂ + − ∂ 
 
 

∂Ω×

(40)

where  ( )2
0

2 ( ) 0
= ( ) 2 0 0n n n n n n n n n nn

a x
f f Im u Re Im u Im Ju Im uλ λ λ δ λ λ

 
 + + − + +  
 
 

.

Note that
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 0nf →  in 2 2[ ( )]locL Ω  in fact we have:

2 2( ( ))
0n Lloc

f
Ω

→   

2 2
2 2 2 2( ( )) ( ( ))

( ) | ( ) | 0n n n nL Lloc loc
Im u Im uλ λ

Ω Ω
≤ →     

( )0 2 2 0 2 2( ( )) ( ( ))

0 2 2( ( ))

| | | |

| | 0

n
n n n n n nL Lloc locn

n n n Lloc

ReRe Im u Im u

Im u

λλ λ δ λ δ λ
λ

λ δ λ

Ω Ω

Ω

− ≤ −

≤ − →

   

 

 

2 2 2 2( ( )) ( ( ))
0n n n nL Lloc loc

Im Ju C uλ λ
Ω Ω

≤ →     

2 2 2 2( ( )) ( ( ))

2 ( ) 0
0 0 0n n n nL Lloc loc

a x
Im u M uλ λ

Ω Ω

 
  ≤ → 
 
 

   

 

We can associate a microlocal defect measure µ in ( )21 ( )locH RΩ× , the 
support of  is a subset characteristic of the variety. On the other hand, 

(0, )Rsupp Bµ ∩ × +∞ ≠ ∅  because if not µ=0 on BR.which contradicts 

the fact that 1 = 1.n H
v 

Lemma 0.13: For all x∉BR ,we have: 
2 22 2{( , , , );{| | = ; | | = } . > 0}Supp t x or xµ τ ξ ξ τ α ξ τ ξ⊂ ∧

Proof. Indeed, let ω a borel set of *( ) [0,1]RT B ×  such that µ(ω)≠0 On 
ω1∪ω2 where ω1 and ω1 are two defined by:

* *
1 2= { ; , ( ) ( )}, = { ; 0, ( ) ( )}R Rs G s T B s G s T Bω ρ ω ρ ω ρ ω ρ∈ ∃ ∉ ∈ ∀ ≥ ∈

We have µ(ω)=µ(ω1)+µ( ω2) Or from Lemma 0.13µ(1)=0, in fact:

if ρ∈ω1there exists s such that G(s)ρ∉BR then G(s)ρ is outgoing and 
by lemma 0.13 we obtain µ(ω1)=0, And it follows that µ(ω)=µ(ω1) 

We note that if Ω is non-captive, ω=ω1 implies µ(ω)=0, which is 
absurd. So it remains the case where Ω is captive with the assumption 
of CGE above BR

On the one hand,we have *
20, ( ) ( ) [ , 1]Rs G s T B s sω∀ ≥ ⊂ × + , then

( ) 2
2 1

[0,1]
( ( ) ) [ , 1] 1R n HBR

G s B s s vµ ω µ
×

≤ × + ≤ ≤                 (41)

On the other hand, 

0

2 002

0 1 0 202 2

2 ( ( ) )0
0 1

2

2 ( ( ) ) 0
( ( ) ) = exp 0 2 ( , , , )

= exp( 2 ( ( ) ) ) exp 2

exp

s

s

s
a G d

a G
G s d d x t

a G d d sd

d

ω

ω ω

σ δ σ

ω

σ δ
µ ω δ σ µ ξ τ

σ δ σ µ δ µ

µ−

 − 
  −  

    

− + −

≥

∫ ∫

∫ ∫ ∫

∫∫
And by using the fact that 

( )1 2 1 0 2 00 0
0 0

1 1( ) = min ( ), ( ) = min ( ( , )) , ( ( , ))inf inf
t t

C t C t C t a x s ds a x s ds
t tρ ρ

ρ ρ
 
 
 

∫ ∫
And C(∞)δ0

there exists ε>0 such that: 0 0
1; / ( ) ( )
2

s s C C s ε∀ ≥ ∞ − ≥  we obtain 
[2 ( ) 2 ]0

2 2
[2 ( ) 2 ( ) 2 ( ) 2 ]0

2
[ 2 ]

2

2

( ( ) ) ( )

( )
( )

( )

C s s

C s C C s

s

s

G s e

e
e
e

δ

δ

ε ε

ε

µ ω µ ω

µ ω
µ ω

µ ω

−

− ∞ + ∞ −

− +

≥

≥
≥
≥

And as µ(ω)≠0, it follows that for sufficiently large n we get that 
µ(G(s)ω2>1, which contradicts(41) startsection section1@-3.5ex plus 
-1ex minus -.2ex2.3ex plus .2ex Stabilization 

Using the Theorem 15 and the bound of resolvent in a neighborhood 
of zero we deduce the decreasing exponential (resp. polynomial) of 
energy in odd dimensional (resp. even dimensional). The Theorem 
15 give a stabilization result by the boundary for the local energy for 
a coupled wave equation, on the exterior domain = \dR OΩ . Some 
results of decreasing exponential has proved in ref. [1]. The proof is 
based on a method of the resolvent (Location of poles) in which we use 
a lemma recovery and a theorem of propagation for microlocal defect 
measures

Proof

We will proceed in similar way to that one in ref. [21]. Let consider 
the function ϕ∈∞ such that:

0 1
( ) =

1 2
t

t
t

ϕ
≤

 ≥

and ( ) = ( ) itGaV t t e
α

ϕ , where =a aG iAα α− .

Note that by a simple calculation, one can find that for Im<0 

1

( )( ) ( )
( ) = ( )( ) ( )

a a a

a a a a

K i
G I i i K i I i

α α

α α α

λ λ λ
λ λ λ λ λ−

 +
 

− − + − 
 
 

 
 

Hence, 1( ) :a comp locG H Hα λ −− →  can be extended to an meromorphic 
operator on  if d is even, and on the Riemann logarithmic surface if d 
is even. Moreover, in view of Remark 3.2, 1( )aGα λ −−  is analytic at λ=0 
if n is odd and it has the following form, modulo an analytic function 
at λ=0, 

1 1 1( ) = ln( ) (| | ), 0,n n
a nG M Oα λ λ λ λ λ− − −′− + →

If n is even.

Furthermore, it is easy to see that under the assumptions of 
Theorem, 1( )aGα λ −−  can be extended by an analytical function on the 
set = { : 0 Im , Re > 0}Cλ λ λ±Λ ∈ ≤ ≤ ±  and it satisfies the estimate 

1
1 2( ) | | ,| | ,aG f C f for Im C Re Cα λ λ λ−− ≤ ≤ ≥   

for every compactly supported f∈H

Now, the Fourier transform of the function V is given by the 
integral: 

( ) = ( )itV e V t dtλλ
+∞ −

−∞∫
is well defined for Imλ<0 ,as a bounded operator on H. Furthermore, 
the inverse Fourier Transform of v is given by: 

( ) = ( )itV t e V dλ λ
+∞

−∞∫


=

1= ( ) , > 0
2

it

Im
e V dλ

λ ε
λ λ ε

π −
∀∫

and satisfy 

( ) ( ) = ( ) .tAa
t aA V t t e

α
α ϕ′∂ −

Then it follows that for Imλ<0:

 

1( ) = ( ) ( ) ( )aV i G t Uαλ λ ϕ λ− ′−

By the finite speed of the wave propagation, we have that for every 
compactly supported , , '( ) ( )f H t t U t fϕ∈ ∀ ∈  is supported in some 
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compact independent of t. Therefore, '( ) ( ) : comp compt U t H Hϕ →  extends to 
an entire function on .





{
 }

1

=

1

1

{ = ,0 }0

1

{ = ,0 }

1 2

1( ) = ( ) ( ) ( )
2
1= ( ( )) ( ) ( )

2
1 ( ) ( ) ( )lim

2

( ) ( ) ( )

1 1= ( )
2 2

it
aIm

t itz
a

it
aRe Im

it
aRe Im

t

V e A t U fd

e e A z i t U z i fdz

e A t U fd

e A t U fd

e W t f W

λ α

λ ε

δ α

λ α

λ ε λ δε

λ α

λ ε λ δ

δ

λ λ ϕ λ λ
π

δ ϕ δ
π

λ ϕ λ λ
π

λ ϕ λ λ

π π

−

−

+∞− −

−∞

−

− ≤ ≤→

−

≤ ≤

−

′−

′− + +

′+ −

′− −

+

∫

∫

∫

∫
( )t f

Clearly, 2 ( ) 0W t f ≡  if n is odd, while for n even, we have in view of 
(3.13), 2 ( ) = ( ) = ( ).n nW t dy O t O t− −+  In other words, 

2 ( ) d
RW t f Ct f−≤    

for every compactly supported f∈H

To estimate 1( ) RW t f   we will use Plancherel identity together with 
(3.12). We have 
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Let ( ), = 1 for | |d x Rχ χ∞∈ ≤ . An easy computation gives 
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and hence


1 1 0 0 1
0
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t
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This implies 




1 1 3 1
0

1/ 2
1/ 2 2

3 0 1
0

( ) ( ) ( )

( ) ( ) .

t

t

t

t

W t f W t f C f W s f ds

C f t t W s f ds

χ≤ ≤ +

 ≤ + −  
 

∫

∫

       

   

It is easy to see that (3.18) holds with 1( ) RW t f   replaced by 
1( )W t f

 

. Hence, for 1,t ≥  
1/ 2

1 4( ) .RW t f C t f≤   

Thus, (3.10) follows from (3.16), (3.17) and (3.19).

The Best Rate of Decay in Odd Dimension
Let β be the best exponential decay rate defined by: 

= { > 0; > 0, ,supp , ( )( ) ( )(0), 0 }t
R Rsup c f H f B E u t Ce E u tγβ δ −∃ ∀ ∈ ⊂ ≤ ∀ ≥

Then we have the following result 

Theorem 0.14 

= 2min( (0), ( ))D Cβ ∞

It results from theorem 0.11 that

= 2min( (0), ( ))D Cβ α≥ ∞

It remains to prove that β≤α 

Assume that β>2D(0), then there exists λ1 pole of R(λ) such that 
12Im < .λ β  From 1

1 0
( ) = ( )i tR f e u t fdtλλ

+∞ −

∫  we obtain: 
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≤
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−

∫
∫
∫
∫

   

 

 

 

 

               (42)

which contradicts the fact that λ1 is a pole of R(λ). And therefore it 
follows that β <2D(0) 

 Assume that > 2 ( )Cβ ∞ , then there exists η>0 such that 
= 2 ( ) 4Cβ η∞ +  and there exists c>0 such as for all f∈HR and t>0

( )( ( )) (0).t
RE u t ce Eβ η− −≤

Let t0>0 such that 
( ) ( 2 )0 0<t tce eβ η β η− − − −

 and then 
( ) 0

0
2( ( ) ) 0

( ( )) (0),

(0)

t
R R

C t

E u t c e E f H

c e E

β η

η

− −

− ∞ +

≤ ∀ ∈

≤                 (43)

and as 0( ) ( ) <C t C≤ ∞ ∞ ,(note that if C(∞)=∞ the inequality is trivially 
satisfied, there exists such that:

0( )
2

C t β η≤ −

and
2( ( ) )0 0

0( ( )) (0)C t t
RE u t c e Eη− +≤                  (44)

Indeed, let f such that L2 = 1. Was noted the uk solution of (1.3) with 
(0) = 0, (0) =k ku tu fk  and µ is a measure of the defect to microlocal 

assoociation (uk) in H The function f is chosen such that µ is carried by 
(bicharacteristic ray from BR). 

2( ( ) )0 0
00 0

( ( )) ( (0))C t t
R s sE u t ds e E u ds

ρ ρη− +≤∫ ∫               (45)

2( ( ) )0 0
0 0(] , [) (]0, [)C t tt t c e ηµ ρ µ ρ− ++ ≤              (46)

0 02 2( ( , )) ( ( , )) 20 0 0
0 00 0(]0, [) (]0, [).

t t
a x s ds a x s ds t

t te e
ρ ρ η

µ ρ µ ρ
− − −

≤∫ ∫         (47)

Or (]0, [) 0µ ρ ≠  (otherwise uk tends to zero in 1(]0, [ )RH Bρ × , which 

contradicts that 2 = 1
L

f  ). This completes the proof of Theorem.

Conclusion
A stabilization problem for a coupled wave equations on an exterior 

of bounded domain is deveried through the research.  
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