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Compared to the systems which are composed of simple atoms 
or molecules, the structures of polymer systems in equilibrium are 
richer. The main reason is that a polymer molecule is composed of 
many monomers with the same or different chemical property. Take 
AB diblock copolymers as an example. Each molecule has a form AA• 
• •ABB• ••B where the monomer A and B have different chemical
properties. The equilibrium structures for diblock copolymer, e.g.,
lamellar, hexagonal cylinder, bicontinuous gyroid and bcc sphere, etc,
have been found for different composition of monomer B through
computation [1] and experiments [2]. This equilibrium structures
(A-rich and B-rich phase domain) with a length scale of 10-100 nm, is
the result of competition of two factors: the repulsion of two chemically 
distinct monomer A and B, and the conformal entropy penalty. Since
monomers A and B are connected in each molecule, monomer A and B 
are only be separated microscopically. Thus it is called microseparation.

There are two kinds of model, i.e., particle-based and field-based 
models, to study the microseparation of diblock copolymers. The 
difference between them is that the degrees of freedom in particle-based 
models are particle position, particle velocity, etc, which are compared 
to the (continuous) fields as the degrees of freedom in the field-based 
models. The start point of all models is how to describe the interaction 
between monomers. As mentioned above, at equilibrium, the competing 
effects of the interfacial energy (caused by the repulsion of chemically 
distinct monomers A and B), which favors a larger domain size, and 
conformal entropy, which favors a smaller domain size, conspire 
to establish an optimal length scale for phase separation. Since all 
monomers occupied a volume, they cannot overlap geometrically. Hard 
sphere model are always used to approximate this kind of monomer 
interaction. All quantities, e.g., monomer density, pressure, etc, can 
be calculated if we know the partition function which is based on the 
interaction between monomers. The particle based models include the 
molecule dynamics, Monte Carlo methods, Brownian dynamics [3]. 
All these models always adopt a coarse-grained technique to study the 
equilibrium structures and its properties. This means that the details 
inside a monomer are not considered and the interaction between 
monomers become effective. From computational viewpoint, the 
computational demand of these particle-based models is proportional 
to the number of monomers, i.e., the number of degrees of freedom for 
the corresponding particle-based model.

In the particle-based model, the bead-spring model is always used 
to approximate each molecule. Another approximation, which is called 
continuous chain model, is used where the molecule is approximated by 
a continuous curve in three dimensions. Through this approximation, 
the corresponding partition function can be written as the (Feynman) 
path integral. The continuous curve (polymer) is analogous to a path of 
an electron in quantum mechanics. It should be noted that the structure 
of path integral can also be developed by Wiener, and it is called infinite-
dimensional functional integral in mathematical community [4]. This 
similarity between them has been noticed by Edwards and de Gennes 
in the 1960s and they used this tool of theoretical physics to the field 
of polymer science, including field theory techniques, scaling methods, 
and the renormalization group. Although each polymer molecule 
can be regarded as a continuous curve, the partition function is the 

summation of action over all these paths, but it is still a particle-based 
description! The field-based models use the fact that this particle-based 
partition function can be written as the functional integral over density 
and auxiliary field using Hubbard-Stratonovich transformation. Thus 
all quantities related to particle degree of freedom have been replaced 
by the (continuous) fields which are defined everywhere in the whole 
system. All quantities can be calculated from this partition function. 
Moreover, all continuum models should be derived from this field-
based partition function. Unfortunately, the calculation of functional 
integral in this partition function is rather difficult, unless the other 
approximations or numerical computation are adopted.

If the fluctuation for the system is small, the mean field approximation 
is always used to calculate the partition function. This is called the mean 
field approximation (or saddle point approximation), i.e., the variation 
of functional with respect to its arguments vanishes. The corresponding 
model is called the self-consistent mean field (SCMF) model [5]. The 
physical meaning of this approximation for the polymer systems is to 
replace the environment of each chain (the interaction between this 
chain and other chains) by an auxiliary field and thus the interaction 
between monomer is replaced by the interaction of monomer and the 
auxiliary field. In SCMF model, the main computation is how to solve 
a modified diffusion equation to obtain the monomer density of one 
chain in the auxiliary field. The modified diffusion equation is rather 
similar to SchÖdinger equation, where the time variable in SchÖdinger 
equation is replaced by the arc parameter of the chain in the modified 
diffusion equation. One advantage of this field-based model over 
the particle-based models is that many discretization methods for 
(continuum) field models can be used; Moreover, the space and time 
resolution can be adjusted such that the degrees of freedom in the 
corresponding discretized model has less than that in the particle-
based model. For example, if a simple difference scheme is adopted to 
solve this modified diffusion equation, its computational demand is 
proportional to the number of space mesh point time the “time step” 
along the chain. In SCMF model, each iteration of monomer density 
and auxiliary field needs the solving of the modified diffusion equation. 
The iteration stops until all quantities in SCMF model do not change.

Another field-based model is called the (classical) density functional 
theory (DFT) [5], which has the same mathematical theory with the 
(electric) density function theory for the description of electronic 
structure in quantum mechanics. The basic mathematical theory 
behind DFT is that the potential, i.e., the auxiliary field in SCMF, is 
also determined by the monomer density up to a constant. Under some 

*Corresponding author: Daming Li, Associate Professor, Department of
Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China, E-mail:
lidaming@sjtu.edu.cn

Received March 26, 2012; Accepted March  29, 2012; Published March 02, 2012

Citation: Li D  (2012) Particle-Based or Field-Based Models for Polymer Systems? 
J Applied  Computat Mathemat 1:e104. doi:10.4172/2168-9679.1000e104

Copyright: © 2012 Li D. This is an open-access article distributed under the terms 
of the Creative Commons Attribution License, which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original author and 
source are credited.

Particle-Based or Field-Based Models for Polymer Systems?
Daming Li*

Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China.



Citation: Li D  (2012) Particle-Based or Field-Based Models for Polymer Systems? J Applied  Computat Mathemat 1:e104. doi:10.4172/2168-
9679.1000e104

Page 2 of 2

Volume 1 • Issue 1 • 1000e104
J Applied  Computat Mathemat
ISSN: 2168-9679 JACM, an open access journal 

approximation, the analytical expression of this potential can also be 
obtained though the monomer density. Thus generally DFT has more 
computationally efficient than SCMF model.

The SCMF theory becomes inaccurate if the fluctuation is rather 
large. In this case, the main contribution of functional integral is not 
entirely determined by the mean field solution, and field configuration 
far from saddle point approximation can make important contribution. 
There are also the field-based simulation methods, which are called 
theoretical Monte Carlo or complex Langevin dynamics, to directly 
attack the functional integral. These two field-based numerical 
methods correspond to particle-based methods, i.e, the usual Monte 
Carlo method and Brownian dynamics [5]. Compared to the usual 
Monte Carlo and Brownian dynamics, a special treatment in these two 
field-based numerical methods is needed to overcome the numerical 
sign problem. Another Tool, called renormalization group [6-8], is also 
used to analyze field theories that exhibit strong field fluctuation. This 
technique evolved from pioneering work in the fields of high energy 
and condensed matter physics (specifically the subject of critical 
phenomena), but now it become a standard field-theoretic tool in many 
disciplines. In the polymer physics, these technique are used to calculate 
the critical exponents or for larger-scale simulations by coupling with 
Monte Carlo method. The idea behind the renormalization group is 
to find the transformation of the free energy between the fine level 
to coarse level, especially the correspondence of coefficients between 
different levels if the free energy keeps the same structure.

Particle-based and field-based models are two types of models 
for studying the equilibrium structure and its properties of polymer 

systems. Although the field-based models have computational and 
theoretical advantages over particle-based models, the particle-based 
models are more suitable if the atomical details become important or 
the polymer chain length becomes short. Sometimes, these two models 
should be used together, e.g., in polymer-coated nanoparticles. Now, 
the particle-based and field-based models are also used for many 
polymer systems, e.g., homopolymer, diblock copolymer, polymer 
blends, polymer solutions, polyelectrolyte, protein-solvent system, 
lipid, the dumbbell polymer coupled with flow, polymers under the 
effect of disorder, polymer-coated nanoparticles, etc.
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