Pathogenesis of Leptospirosis: Important Issues
Márcia Marinho* and Tereza Cristina Cardoso

Support Department, Animal Production and Health Microbiology Laboratory, State University of Sao Paulo, Brazil

Abstract

The leptospirosis is a re-emerging anthropozooonos is worldwide distribution. The immunopathogenesis of the disease is extremely complex. Which one the role of inflammatory mediators, cytokines, outer membrane proteins, apoptosis and others factors related with the virulence of the pathogen during the infection.

Summary

Leptospirosis is a re-emerging tropical infectious disease [1], is an important zoonotic disease spread-worldwide [2]. The spirochetes of the genus *Leptospira* is responsible of human and animal leptospirosis characterized as mild febrile illness to severe multiorgan failure, especially pulmonary hemorrhage and renal failure [3]. Pathogenic leptospires are highly motile and invasive spirochetes that have the capacity to survive and grow in tissue by escaping natural defense mechanism [4]. The disease is transmitted to humans by direct or indirect exposure to contaminated urine from mammalian reservoir hosts as rodents but also farm, wild, and domestic mammals [5]. Asymptomatic form of leptospirosis with fever, headache, and myalgia that can spontaneously resolve is one of clinical presentations [3]. The most cases are probably inapparent and associated with host-adapted serovars such as Canicola in dogs, Bratislava in horses and pigs, Hardjo in cattle and Australis and Pomona in pigs [6-9].

In humans can vary in severity according to the infection serovar of Leptospiro, and the age, health and immunological competence of the patient [2]. However, more severe cases, with sepsis and multiple organ failure, including hepatic and renal dysfunctions associated to pulmonary hemorrhage, are also reported [3]. Leptospires enter the body through small cuts or abrasions, via mucous membranes such as the conjunctiva or thorough wet skin. They circulate in the blood stream, with the bacteremic phase lasting for up to 7 days [2]. The second stage of acute leptospirosis is also referred to as the immune phase, in which the disappearance of the organism from the bloodstream coincides with the appearance of antibodies [5]. The mechanisms by which leptospires cause disease are not well understood. The presence of the virulence factors has been suggested. The involvement of toxins or toxic factors in the pathogenesis of leptospirosis has long been contemplated, since the absence of the microorganism at the site of tissue injury is a factor that strengthens this hypothesis [10,11]. Extracted a glycoprotein (GLP) from tissue infection *in vivo* and *in vitro* interaction with fibronectin, fibrinogen, collagen, laminin, tropoelastin, and elastin [29,30]. Others virulence factor might be of greater significance in the pathogenesis of leptospirosis would be the occurrence of apoptosis cellular or programmed cell death that is an essential mechanism for embryonic development and host response against many infectious and non-infectious disease [31] followed by tissue injury is well documented, including many renal diseases [32] *L. interrogans* serovar Icterohaemorrhagiae infection has been described to invade Vero cells and induce macrophages apoptosis [33]. Besides, *in vivo* apoptosis of hepatocytes of guinea pig infected by the same serovar has been described [34]. It has been demonstrated that *L. interrogans* induces apoptosis in J774A1 cells by activation of caspases-3 through activation of caspase-8 [35]. The clinical severity of the disease often appears to be out of proportion to the histopathological findings. Immune-mediated disease has been proposed as one factor influencing the severity of the symptoms [5]. The presence of the IgM, IgG and IgA and C3 along the alveolar basement membrane, were demonstrated, suggesting that as autoimmune process constitutes the etiology of fatal hemorrhagic complications due to leptospirosis [36]. A strong immunostaining of both II-6 and TNF-α was observed in addition to glomerular hypercellularity in Balb/c mice inoculated with Leptopira interrogans serovar Canicola [37]. Finally studies show that the expression of genes responsible for virulence factors in *leptospiro* is pathogen-specific genes and that may be expressed or not depending in the host and the infection stage [36].

*Corresponding author: Márcia Marinho, Support Department, Animal Production and Health Microbiology Laboratory, State University of Sao Paulo, Brazil, Tel: 18-3836-1382; E-mail: mmarinho@fmva.unesp.br

Received January 27, 2015; Accepted January 27, 2015; Published January 29, 2015


Copyright: © 2015 Marinho M, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
on the pathogen's ability to attach to host tissues during infection. However, additional research is essential to understanding how, the mechanisms by which leptospira induces the tissue injury and what role that virulent factors on the pathophysiology of leptospirosis.

References