
PC Based Model of the Epileptic Brain
Ziv Yekutieli1,2* and Shai Hoshkover2

1School of Physics and Astronomy, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
2School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
*Corresponding author: Yekutieli Z, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel, Tel: +972 4 8580038; E-mail:
ziv.yekutieli@gmail.com

Received date: January 05, 2018; Accepted date: February 01, 2018; Published date: February 07, 2018

Copyright: © 2018 Yekutieli Z, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Epilepsy is known since ancient history and affects the lives of millions. Due to various physiological and ethical
reasons, it is extremely difficult to conduct thorough examination of the human brain. As a result, even after millennia
of identifying epilepsy and treating it, we know relatively little about what is causing epilepsy and what is the best
way to manage it. In order to meet this challenge, we have developed an artificial neural network, one that allows us
to mimic several aspects of the epileptic brain. Our model is based upon a specially designed neuron “cell”, and the
network is formed in a manner that offers several degrees of flexibility in its formation: Starting with the
neurotransmitter and up to properties of the entire network. We compare the activity of our model to that recorded
from real brains of epilepsy patients, and demonstrate resemblance in key properties of the neuronal activity. Using
this artificial network offers an easier experimental platform that manifests epileptic-like behavior, which allows to
investigate the underlying mechanisms causing epilepsy on one hand, and to examine potential treatments on the
other hand. The model can be adopted to manifest other physiological properties that can be suitable for modeling
other neurological disorders.

Keywords: Epilepsy; Epileptic brain; Medical treatment;
Neurological disorders

Introduction
Epilepsy is a well-known affliction characterized by recurrent and

unprovoked seizures, affecting 1-2% of the population. Epilepsy exact
prevalence is difficult to quantify especially in rural populations and
pediatric epilepsy [1]. Two thirds of epilepsy patients respond to
medical treatment, and for those that remain, surgery is the best viable
option [2,3]. Epilepsy is not a single disorder, but rather a group of
neurological disorders characterized by epileptic seizures, ranging
from nearly undetectable events to long periods of vigorous shaking
[4].

The cause of most epilepsy cases is unknown [5]. Few cases are
genetically related, and some people develop epilepsy as a result of
brain injury, stroke, brain tumor, or drug abuse. Recent research also
connects epilepsy with autoimmune diseases [6,7]. The diagnosis
typically involves ruling out other conditions known to cause similar
symptoms, such as syncope. Epilepsy is often confirmed by
electroencephalography (EEG), but a normal test is not enough to rule
out the disease [8-10]. Other than the actual seizure and the risks
involved in it, the sudden and unpredictable nature of the seizure is
one of the most disabling aspects of epilepsy. Thus, finding a method
capable of predicting epileptic seizures would open new therapeutic
possibilities, and this can be attempted by analyzing network activity
[11-14].

The human brain is the most difficult organ in our body to
experiment with, due to physiological and ethical reasons. This fact,
along with the variability in epilepsy pathogenesis and the difference in
epilepsy manifestation, is making clinical research very limited, which
reduces the quality of care for epilepsy patients.

Most epilepsy data is obtained by EEG and electrocorticography
(ECoG) [15-17]. Our previous work with this type of data has taught
us that, while offering real in-vivo data, both techniques are limited in
the number of channels, difficult to obtain [16,18-20], and does not
allow manipulating the source of the data (the real human brain)
which is required for understanding the mechanisms which result in
seizures. Facing these challenges, in order to support epilepsy research,
we have designed an artificial neural network that possesses key
elements of the real brain, and allows hands-on experiments with
various epilepsy related factors. The artificial neural network is a model
that mimics the behavior of the epileptic brain. It allows changing
various factors that affect the brain behavior while allowing easy access
to the output of the model. By no means do the authors state that this
model captures the vast complexity of the brain as a whole, yet we
believe that it can shed some light in understanding the underlying
mechanisms causing epilepsy, and offer accessible and safe
“laboratory” for experimenting with epilepsy treatments. The same
model and platform can be applicable to other neurological disorders.

Materials and Methods
EpilePC - neural network model: In order to support the work done

in our lab with ECoG, EEG and Multi-Electrode Array signals, we have
generated an artificial brain model called “EpilePC”. This model is
simple enough to be coded and run on a standard PC, yet complex
enough to allow manifestation of the network properties we have
investigated. EpilePC starts by using a single neuron module, many of
which are integrated according to the network variables and
probabilities, forming one unified network. The cells then start to act
and react based on their design and network setup. Figure 1 presents
an overview of the concept behind this work:
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Figure 1: EpilePC model concept. We start by setting the network
variables. Neuron model cells are connected according to the
variables and form a random network representing the brain. The
network operates and generates action potentials and EEG-like
output which is analyzed into various components. We can then
change the input variable and observe the effect over the output.

Neuron Model
The basic component of the network is a single neuron cell,

designed based upon Morris-Lecar neuron model. The model is a two-
dimensional "reduced" excitation model that allows relatively simple
calculation of the membrane voltage by governing Potassium and
Calcium conductance [21,22]. The computational neuronal model was
designed by D. Tishler [23]. Other computational neuron modules are
available as well and we have examined several, such as the
thalamocortical model [24], Spiking neural P systems [25] and others.
These were found to be less agile and too computational-resources
consuming for our purposes. There now also exist VLSI based neuron
modules that allow emulation of neural behavior, typically on a
configurable circuit [26], these devices are quite difficult to master and
are less convenient for integration into existing analytical tools of
neuronal data.

EpilePC Network Design
Network model was designed with the following three objectives:

Scalability
There are about 10 billion neurons in the human brain with about

1016 connections between them [27]. At this point, there is no super-
computer that can model even a fraction of this immense complexity,
let alone a PC. In order to allow the user to optimally balance the
computing capacity at hand with the model complexity, our network
model is using a single neuron model that can be connected to any
number of other neurons, and in any network morphology. We have
identified key elements in the network behavior while using as little as
20 such cells, and were able to experiment with up to 500 neurons. As
our key purpose was to experiment with as many different networks as

possible, 100 cells were few enough to allow the creation of thousands
of different networks in a relatively short time, and more than enough
to represent the key properties we wanted to examine in the network.
Time is another scalable factor, and each simulation can be run in
order to create a couple of seconds of activity or days, again, depending
on the research goals and computing capacity. There is no meaning for
the real time in that aspect: we can generate the progress of an entire
year’s worth of data within a course of minutes (if we keep the network
small enough), and it can last an entire day to run a simulation of a
couple of seconds worth of data (if we take a very large network). The
correlation between the real time and the simulation time is based on
the time constants which are attributed to the simulation through its
variables. Once a network is generated, it can be set to run for an
infinite time, yet, the key characteristics of the network can be noticed
even after a couple of seconds of activity. We have captured network
output from the scale of milliseconds to hours, for this paper all the
analysis was done based on 100 seconds worth of data per network.

Multi-level access
Since neurological disorders can originate in various levels of the

brain, our model allows accessing those various levels too. It is
impossible to model all the properties of a single neuron, let alone the
entire brain, at the same time. However, one can pick a couple of
neurophysiological properties as input variables and observe their
effect over the brain activity, while keeping others unchanged. We are
grouping these variables into three levels: Sub-Cellular – By that we
refer to variables that are manifested within the neuron itself e.g. ion-
channels, neurotransmitters etc. Cellular – properties attributed to the
entire neuron, e.g. refractory period, inhibition\excitation etc. Ultra-
Cellular – Network properties: How the neurons are distributed,
connected and affecting each other.

Simplicity
Another consideration for making EpilePC easy to use is its

interface. The network is created by applying a set of inputs, that are
used in order to configure each of the network variables, in each of the
layers mentioned above, and from that moment, automatic execution
is creating the network and simulation.

Randomness
It is important to note that, while the inputs for forming the

network are predetermined by the user, the network is randomly
generated and operated. This means that each network, even if set by
the same input variables, is different than any other network. For
example, we can generate an almost infinite number of different
networks while using the same inhibition\excitation ratio: in each
network, different neurons will belong to each group and will be
connected differently. At the same time, even within the same network,
the activity pattern in any given time is different than any other time.
This randomness has two reasons: first, our model is designed to be a
statistical model. As any real brain of a real patient differs from the
brain of any other patient, even if dramatically simplified, our artificial
network must allow the same variation. Thus, every result reported in
this work is obtained by running many iterations with many different
networks. Second, there is randomness of activity within any living
network, and this is also included into the model, where each action
potential (AP) is triggered according to the neuron probabilistic
attributes.
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Network Output
Real brain electrical activity is typically presented by analog signals,

which is the case for EEG and ECoG. In EpilePC, after setting the
model variables and running the simulation, an analog output signal is
produced for each neuron in the network. This signal is in the form of
a voltage trace of the membrane potential (very much like a patch
clamp). In order to analyze the average activity of the network, voltage
traces of neuron clusters are averaged into channels (summed and
divided by the number of neurons per channel). This step is done in
order to simulate the receptive field of the EEG\ECoG electrodes. The
number of grouped neurons per channel is set by the user. Any AC
modeling that the user wishes to apply to the signal (e.g. electrode RCL
model, noise, filtering) can be applied at this stage. Since, unlike in the
case of the real brain, we know the exact voltage of each neuron, we
can also sample the activity per neuron: the voltage trace of every
single neuron is run through a peak detection algorithm [23] which
turns it into a discrete binary signal. This output represents all the time
stamps when each neuron was triggered, for each index-channel (ic).
The algorithm detects all local maxima (peaks) which are above
threshold, we used 20 mV for excitatory neurons, 10 mV for inhibitory
neurons. After all neurons’ activity traces has been turned into binary
signals, we generate a raster plot with a [t, ic] matrix representing all
the time stamps of each action potential in [t], for each channel in [ic].
As this kind of format is widely used, generating the output in this
format allows detailed analysis with existing [t, ic] tools and
algorithms. Figure 2 demonstrates the output of the artificial network.
By aggregating signals from 50 neurons we generate an ECoG-like
signal. In (A) the network is quieter, demonstrating relatively
infrequent bursts, which are of relatively low energy, in (B) we zoom in
into one of these bursts. In (C) we see a more active network, with
more frequent bursts, and each with higher activity. In (D) we zoom in
into one of these bursts. In (E) we see the output of the network as a
raster plot, in alignment to the ECoG-like signal that is plotted in (B)
above. This figure presents our control over the neural network
characteristics on one hand, while keeping it random on the other
hand.

While Figure 2 shows the network at the operating zone, Figure 3
presents the network in its two extremes.

Activity Rate – Spikes Per Seconds
Several parameters are used in order to quantify the signals

obtained from EEG or ECoG signals. Practically any neuronal analysis
starts by looking at the network activity as depicted by the electrodes.
Therefore, the key element we chose for quantifying and comparing
the neural activity is the Spike Per Seconds count (sps) and not the
energy of the analog signal (which is extrapolated from the sps). Any
analog signal can be generated from the sps by picking the proper RCL
model of the electrodes. The opposite is not possible to do (calculating
sps from the analog data) as, for example, when X neurons are firing
randomly near f0 frequency, and grouped into one electrode, the result
will be a similar analog signal as half the number of neurons firing in
twice the frequency. Thus, unlike in the case of real EEG or ECoG
signals, which are a summation aggregation of many neurons, our
model offers the privilege of knowing exactly which neuron had spiked
and when, so this information will be used for the model output.

Scale and Normalization
We have set a limit of over 40 sps per neuron (on average) as a

saturated network. ECoG-like signals with higher sps appear very
similar to real ECoG signals recorded during an epileptic seizure, and
when comparing their frequency modulation to real ECoG signals, it is
clear that this limit indeed corresponds to the real physiological values
[28-30]. For the sake of simplicity, all outputs were normalized to an
Activity scale between 0 and 1, where 0 represents a totally inactive
network, and 1 represents a seizure.

Figure 2: Simulation output example. (A) Voltage trace of an
average of 50 neurons during a 10 seconds timeframe. (B) Zooming
in for one burst during a 1 second timeframe. (C) Voltage trace of a
single neuron during a 10 second timeframe in a more active
period. (D) Single neuron zoom-in for one burst during a 1 second
timeframe. (E) Raster plot of the frame used for generating the
ECoG-like signal in (C).

Multi-level Variables Inputs
One of the guiding principles in designing EpilePC was to allow

access to the various layers in the neuronal activity. In order to
demonstrate and experiment with this approach, we have chosen three
variables to investigate, one for the sub-cellular, one for the cellular,
and one for the ultra-cellular levels. All the variables chosen are ones
that are known to be related to neurological disorders in general and
epilepsy in particular, and the values examined were according to their
actual physiological values. As mentioned above, there are several
potential pathogens of epilepsy, so we can try and model their impact
on the network. We choose one pathogen for each level.
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Figure 3: Analog vs. binary display: Raster plot (bottom) and
ECoG-like signal (above) in two extreme cases: Low activity (left
column) and Seizure like activity (right column).

Sub-Cellular level - TauRec (τrec)
In the sub-cellular level one example for epilepsy factor is gamma-

aminobutyric acid (GABA) which holds a key importance in neuronal
activity. GAT-1, encoded by SLC6A1, is one of the major GABA
transporters in the brain and is responsible for re-uptake of GABA
from the synapse. SLC6A1 mutation is found in patients with epilepsy
demonstrating spontaneous spike-wave discharges [31]. In order to
model the transporter reuptake, we use τrec. Synaptic resources have
three states: active (y), inactive (z) and recovered (x).τrec represents the
time constant of resource recovery, the transfer of resources from the
inactive state to the recovered state, τd represents the time constant of
decay of active resources, the transfer of resources from the active state
into the inactive state. Both τrec and τd are constant. tAP represents the
time of arrival of the last AP to the pre-synaptic terminal. μ represents
the amount of resources which are activated when an AP arrives to the
synapse from the source neuron, the fraction transferred from the
recovered state to the active state when an AP arrives [32,33]. The
transfer of resources between the states is governed by the following
equations, the connections are and presented in Figure 4. These
equations were included into the neuron cell module affecting the sps.�̇ = � • (− tan(1.2� − 1.2))���� − ���(� − ���) (1)
�̇ = − ��� + ���(� − ���) (2)
�̇ = ��� − � • (− tan(1.2� − 1.2))���� (3)�+ �+ � = 1 (4)

Cellular Level - Excitatory\Inhibitory Synapses
The ratio between inhibitory and excitatory synapses is another

known factor of epilepsy, as evident from reduction of inhibitory
synapses [34], identification of decrease of inhibitory GABAergic nerve
terminals at epilepsy foci [35], the impact of sodium channels in
inhibitory interneurons which causes seizures [36] and more. Neuronal
synapses can be either excitatory or inhibitory, respectively increasing
or decreasing the likelihood of the post-synaptic neuron to trigger an

AP. While we can control the nature of each separate synapse in the
neuron model, for the sake of simplicity, we have grouped all the
synapses in each neuron to the same type so, instead of an inhibitory
synapse, we look at inhibitory neuron where all of its synapses are
inhibitory. The inhibition of the formed network is defined as ratio
between inhibitory and excitatory synapses (connections) in the
network [37,38]. Thus, in our case, setting Inhibition to 25% means
that 25% of the connections are inhibitory.

Figure 4: Synaptic resources time constants.

Ultra–cellular Level – Connectivity
Finally, network connectivity has perhaps the biggest impact of all,

with large-scale network connectivity resulting with seizures and even
cognitive dysfunction [39]. This is why surgery has high chances for
preventing seizures from happening, along with many other
indications obtained by both medical experience and research [40-42].
Connectivity is represented by a matrix that attributes the strength of
the connections between all the permutations of neurons in the
network. This matrix can be used in order to isolate one section from
the rest, to generate hubs, and control the linkage level in the network
in general. Global network connectivity is defined as the total number
of connections in the network divided by the number of potential
connections [27,37,43]. Connectivity of 25%, for example, means that
each neuron is fed (on average) by 25% of the neurons via synapses.

Setting the Operating Point
As we are experimenting with three input variables, each one with a

large range of values that can be assigned to it, it was important to set
the operating point. We have been using physiological values reported
in the literature as a starting point and examined the network around
it. Operating point value for TauRec (100) was taken from the original
Tsodyks-Uziel-Markram (TUM) model [22]. In the neocortex, which is
the target of our model, there are about 10 billon neurons [27]. It has
been reported in literature that each neuron in the neocortex is
connected to 5000 to 200000 neurons [44]. Bernhard Hellwig reports
that in one cubic millimeter there are about 75000 neurons [33].
Hellwig also reports that every neuron is connected on average to
about 7000 other neurons [33,37] and that the probability to be
connected to neuron distant more than 0.5 mm is very low (i.e. most
connections arrive from near neurons – within radius of about 0.5
mm). This means an average network connectivity ratio of about
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~10%, and up to 80% for the closest four neighbors. We have set
connectivity operating point to 25%, somewhat above the average
since we wanted to generate a relatively connected network, and
inspected the network relative to this point. In the neocortex,
inhibition level is typically around 20% [27,38,45] so this was the
operating point chosen for the inhibition level.

For validation purposes, we have been keeping two variables fixed at
the operating point, which is the physiological norm, changed the third
variable, and observed the network behavior. In all three cases, the
third variable converged near to its own reported norm value, which
increases our confidence in the artificial network and increases its
usability for representing real brain characteristics. We have used
Matlab 2014b (by Mathworks), EpilePC is free for use, in order to
obtain the code, please contact the authors.

Human ECoG Data
The ECoG recordings that were used as our reference were approved

by the University of Michigan IRBMED. The data was provided by
Prof. O. Sagher from the University of Michigan. The data provided to
the authors was fully anonymized. Subjects signed a written consent
for participation in the trial. The data provided includes multi-channel
recording of several patients during seizures and between them, and
we were thus able to analyze the data while knowing when seizures
took place.

Results
We start by presenting the network ECoG-like output as compared

with real ECoG signals. Having presented the similarity between the
two, we will then demonstrate the observability our model offers by
measuring the network activity as a factor of the three input variables
described above (sub-cellular, cellular, ultra-cellular). We start by one-
dimensional analysis, namely, we change one input variable and
present the network output dependency. Then we present a two-
dimensional representation of the network, and then a three-
dimensional one.

Artificial to Real Analog Signal Comparison
We start our comparison by a visual inspection of some examples.

Figure 5 shows two such comparisons. In each electrogram, the top five
channels are real (derived from the real ECoG data), and the bottom
five ones are simulated. Clearly, the human derived data is “richer” in
its patterns and shapes. One has to keep in mind that even when using
ECoG, the results are more distorted then our data, each electrode
records a much larger and deeper area, the electrical environment is
noisier etc. Nevertheless, what we are after is a dramatic increase in the
activity rate, which the model can produce. As no two patients are
alike, so does the simulation varies between one iteration and the
other, depending on the input variables and probabilities. Besides the
visual comparison that is presented in this paper, a detailed statistical
comparison was conducted, comparing several key quantitative
parameters between EpilePC and real human data. This detailed report
can be obtained by contacting the authors.

Figure 5: Real brain to EpilePC output comparison. Two example
comparisons for two patients (patients A and C in our database).
The top five channels are real ones, the lower five channels are
simulated. Red markers indicate epileptic seizure.

Artificial to Real Signal Frequency Comparison
Another comparison is done in the frequency domain. Brain

regions that demonstrate high frequency oscillations, higher than
10Hz and especially in the range of 60-100Hz are correlated with
epileptogenic foci [29,30]. We compare the spectrograms of real ECoG
signals to those generated by our model. The patterns observed are
similar to what is reported in literature [30,46], in the “bands” it
displays during the seizure as presented in Figure 6.

Changing EpilePC Input Variables
We start by examining the effect of changing our three input

variables, over the network output. Figure 7 shows how changing τrec is
affecting the network activity. As expected, when τrec is getting larger
(as we view the subplots from top to bottom), activity is decreasing.
When τrec = 70 ms (top) we get a very high firing rate of 1677 sps in
this example, a firing rate that drops to 140 sps when τrec = 140 ms
(bottom).

Figure 8 presents the effect of changing the inhibition to excitation
ratio. As expected, increasing the portion of the inhibitory neurons
(top to bottom) decreases the activity.

Finally, in Figure 9 we examine the activity level while changing
connectivity ratio. We see that increasing connectivity is increasing
activity.
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Figure 6: Example of ECoG-like spectrogram of 100 seconds a
seizure (A) and between seizures (B), and zoom in of 10 seconds
window in (C) and (D) respectively.

Figure 7: Activity over time for different levels of refractory period
(τrec). On the left, 100s view, on the right we zoom into 10s view.
When τrec is getting larger, (as we move downwards with the
subplots) activity decreases.

Figure 8: Activity over time for different levels of inhibition. On the
left, 100s view, on the right we zoom into 10s view. Top:
Inhibition=0%, middle, 20%, bottom, 40%. As expected, when
inhibition is getting larger, activity decreases.

One-dimensional Analysis
In Figures 7-9 we give an example for the effect of changing each

input variable (τrec, Inhibition\Excitation ratio and Network
Connectivity) over the network activity (by sps). These examples were
generated by one network in a specific timeframe, in order to present
the analog output signal. We now look on a broader view of each of
these input variables. In the following charts, each marker represents
the average activity of twenty randomly generated networks. All the
networks (in all three charts) are normalized to the same scale. As we
change one input variable, we hold the remaining two at their
operation point. Standard deviation across samples in all cases was
smaller than 0.073 so it was omitted for clarity. Figure 10 examines the
effect of τrec, in Figures 11 and 12 we repeat the same process for
Inhibition ratio and Connectivity.

Two-dimensional Analysis
Figures 10-12 show how changing each input variable, statistically

affects the network activity. However, the brain is not a one-
dimensional but a multidimensional system, with the accumulative
effect of many variables determining its overall behavior. It is therefore
important to observe the behavior of our model in more than one
dimension. In Figure 13 we demonstrate the network activity as a
factor of two variables, while the third is kept in the operating point.
Here too, every pixel is generated by running 20 random networks and
averaging their activity.
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Figure 9: Activity over time for different levels of connectivity: On
the left, 100s view, on the right we zoom into 10s view. Top:
Connectivity = 0%, middle, 25%, bottom, 40%. When connectivity
is getting larger, activity increases.

In these charts, the “deep blue water” regions represent very low
neural activity. The “hot” zone represents epileptic behavior. We can
see that the neural model operating point (values that were chosen
according to the real physiological ones) sets the network to operate in
the “shallow water” zone. These are the regions where the combination
of variables allows the network to operate in high enough activity,
allow even some increase, while still keep sufficient margin from the
epileptic zone.

Three-dimensional analysis
We now present the three-dimensional space. Looking at Figure 14

we can see sphere layers of the network: on the outside envelope, there
is the “deep blue” area of no activity at all, the core of the sphere is the
“hot spot” where ultra-activity takes place. In between we see the
transition sphere, which we expect normal brain activity to take place.

Discussion
EpilePC is a software based brain model that can run on any PC,

and generate normal and pathological brain patterns. In particular,
EpilePC can generate artificial neural networks patterns which
resemble the epileptic brain. While other brain models exist, using
software or hardware emulation, these solutions usually require
expensive devices and heavy computation capabilities.

EpilePC allows modifications of various network variables which
affect different levels of the network activity, from the neurotransmitter

up to the entire network, and observe the overall manifestation of these
modifications. The behavior of the network can be examined and
quantified in a much higher resolution and accuracy than what can be
achieved by real EEG\ECoG recording. By no means do the authors
claim that EpilePC provides a complete representation of the human
brain, yet it allows modifying key elements in the brain-model
structure, express key features in the brain behavior, and doing so in an
easy to access and harmless manner. We have used the overall network
activity (as manifested by sps), generated a scale of activity ranging
from zero activity to epileptic seizure, and found the model operation
point to be in acceptance with what is known from physiological
observations. We then shifted from this point and demonstrated how
the network activity alters in response. EpilePC is also useful in the
sense that it allows getting large statistics promptly, and thus to
examine seizure likelihood as a rate for the “epilepticity” of each
condition. Clearly, the threshold of a seizure in the model may differ
from that of a real patient, namely, the conditions and level of activity
beyond which a real seizure occurs. Nevertheless, there are many
differences between the seizure patterns of one patient to another as
well – EpilePC allows us to objectively compare all the networks
generated, according to the same scale, and it is this relative
comparison that allows measuring the impact of each change. We have
demonstrated that we can add and control different network variables,
and examine their independent and combined effect.

Figure 10: Activity as function of TauRec (all other parameters are
kept at operating point): Each point is a result of 20 iterations of
100s each. Activity scale is between 0 (no activity) and 1 (constant
seizures). Activity “knee” is occurring around TauRec = 100ms. As
expected, when increasing TauRec, (moving right from the knee)
activity decays since the recovery period is prolonged. When
TauRec is decreasing (moving left from the knee), recovery time is
getting shorter and neurons can spike too frequently, network
activity dramatically increases towards being an entirely epileptic
behavior.
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Figure 11: Activity as function of Inhibition ratio (all other
parameters are kept at operating point): Each point is a result of 20
iterations of 100s each. When Inhibition ratio is getting lower we
see that the networks demonstrate a higher activity as expected, but
even when there is no inhibition at all, the networks do no go
entirely out of control. When excitation-inhibition is about two to
one (inhibition = 33%) we see that the network is almost entirely
inactive. Inhibition “knee” is at about 25%.

Figure 12: Activity as function of Connectivity (all other parameters
are kept at operating point): Each point is a result of 20 iterations of
100s each. As expected, as connectivity is getting higher we see the
networks increase their activity towards the seizure level. The
“knee” of connectivity is around 25%.

Figure 13: Network activity as a factor of two input variables: The
higher the value is (red color), the networks are becoming more
epileptic. A) Keeping Connectivity to a constant value and
alternating TauRec and Inhibition. B) Keeping Inhibition to a
constant value and alternating TauRec and Connectivity. C)
Keeping TauRec to a constant value and alternating Inhibition and
Connectivity. In each case, X marks the operating point.

Figure 14: Network activity as a factor of three input variables. The
higher the value is (red color), the more epileptic the network is.
The two charts represent the same three-dimensional space from
two angles to better present the sphere like nature of this space.

Conclusion
While being much simpler than the real brain, EpilePC can still be

used for “experimenting” with the brain. The behavior of the artificial
properties we have explored, converge with known physiological
records. Using EpilePC, the multidimensional nature of epilepsy is
presented in a clear and visual manner. EpilePC suggests that it is not
necessarily a single factor that is the sole factor of epilepsy, but rather
the combination of several factors that can cause the network to be
more likely to demonstrate seizures. This concept suggests that proper
treatment is more likely to be obtained by addressing various aspects of
the brain rather than one. For a patient who can be located on the
three-dimensional space, one can determine a multidimensional
treatment for that patient, which will “push” the patient out of the “hot
zone” in the shortest path. This might have a lesser impact on the
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patient’s normal life. For example, a combination of the right drugs
that will have some effect on inhibition and some effect on
neurotransmitter uptake can have the same reduction in seizure
likelihood, as a major shift on the connectivity dimension – obtained
by brain surgery.

Using EpilePC we can also examine the effect of different treatments
on the network, as long as we can attribute a mathematical description
for that property or treatment, and apply them into the network. For
example, a brain surgery, where a certain part of the brain is
disconnected from its surrounding, would be manifested as zero values
in the connection matrix around the chosen area.

EpilePC can be useful for examining other brain properties and
different neurological conditions. EpilePC was already used to simulate
Ataxia-Telangiectasia (AT), a rare, neurodegenerative, autosomal
recessive disease. In the case of AT, EpilePC was used to simulate the
cortical plasticity, estimate the time constant of the DNA damage
response, and was correlated to data obtained from AT mutagenic
mice. The authors believe that EpilePC can be of service to expedite
and simplify the work of other brain scientists, offering an accessible
toolbox for validating their hypothesis prior to engaging with the real
brain. While we have demonstrated that the model parameters
converge to the real physiological ones (which were already known),
we suggest that EpilePC can be used for extrapolating unknown
physiological properties by tuning the model’s parameters until the
overall activity resembles the real one.
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