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Introduction
A number of recent theoretical and experimental works indicate 

that microcavity supercrystals may have interesting applications. 
Photonic structures and metamaterials are in the focus of 
interdisciplinary studies, which span laser physics, condensed matter 
physics, nanotechnology, chemistry and information science [1,2]. 
Many papers have been devoted to realization of light-emitting devices 
based on polariton crystals [3,4]. In this context, semiconductor 
microcavities represent quantum confined optical systems [5] featured 
by strong coupling of elementary crystal excitations (excitons) and the 
optical field. Photonic supercrystals can be built from spatially-periodic 
systems of coupled microcavities [6]. Semiconductor microcavities are 
widely used in optoelectronic devices nowadays [7,8]. Nanocavities 
in photonic crystals [9,10] represent a particular case of microcavities 
characterized by a discrete photonic spectrum. Nanocavities with 
embedded quantum dots have been used to demonstrate the strong 
light-matter coupling regime in Ref. [3,4,11] indicate also that chains 
of microcavities may be used for practical realization of quantum-
information processing. 

Here we study dispersions of localized electromagnetic excitations 
in an array of coupled microcavities which form a non-ideal supercrystal 
rich by point-like defects. The effect of point defects (vacancies) on the 
excitation spectrum is being numerically modeled. The adopted virtual 
crystal approximation (VCA) permits to obtain the dispersion law and 
the energy gap width of the considered quasiparticles and to analyze 
the dependence of their density of states on defect concentrations in a 
microcavity supercrystal. 

Based on the representations of the ideal photonic structures, the 
non-ideal systems of this class - polaritonic crystal, which is a set of 
spatially ordered cavities containing atomic clusters, is considered 
too. Moreover, in this part of the work we believe that the spatial 
distribution of cavities (resonators) is translation invariant, and the 
atomic subsystem has randomly distributed defects (impurity atomic 
clusters: quantum dots or a vacancies). Numerical modeling of 
dependence of the dispersion of polaritons in this imperfect lattice of 
associated microresonators on impurity concentration is completed. 
The analytical expressions for polaritonic frequencies, effective mass 
and group velocities, as a function of corresponding quantum dots and 

vacancies concentrations, is obtained. It turned out that even with a 
small number of vacancies in the lattice (one position for a thousand 
resonators) weight polaritons increases by three orders of magnitude. 
These results enable to extend the possibility of creating a new class of 
functional materials - polaritonic crystal systems.

Exciton-like Electromagnetic Excitations in Non Ideal 
Coupled Microcavities Lattice

Unlike in Refs [3,11,12] devoted to coupled resonators with dopant 
atoms let us here pose a somewhat different problem. Namely, we 
intend to examine a 2D array of tunnel-coupled randomly distributed 
microresonators of different types at the total absence of an atomic 
subsystem (Figure 1). Each resonator is assumed to possess just one 
optical mode. We also account for the overlap of optical fields, which 
enables photons to move along the chain. Since the VCA consists in 
replacement of configurationally dependent Hamiltonian parameters 
with their averaged values, Hamiltonian of a “virtual” crystal phH  in 
our case reads as follows:

,
phH E Aα α α α β α β

α α β

+ += Ψ Ψ − Ψ Ψ∑ ∑n n n n m n m
n n m

.	                  (1)

Here angular brackets denote configurational averaging. Quantity 
A α βn m  defines the overlap of optical fields of the αn -th and βm -th 

cavities and the transfer of the corresponding excitation, ,α α
+Ψ Ψn n  are 

bosonic creation and annihilation operators describing the photonic 
mode. Subscripts n  and m  are two-dimensional integer lattice 
vectors, α  and β  numerate sublattices, whose total number is σ .  

nE α αω≡ n , where αωn  is the frequency of photonic mode localized in the 
αn -th site (cavity). Hamiltonian (1) is formally identical to the tight-
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binding excitonic Hamiltonian in a semiconductor crystal [13,14], for 
which reason the studied electromagnetic excitations can naturally be 
referred to as exciton-like. It is worth stressing that we discuss photonic 
super-crystal excitations and no electronic transitions are involved. 
Nevertheless, it will be seen below that the dispersion relations of purely 
electromagnetic crystal excitations in the system we study are quite 
similar to the Frenkel exciton bands in molecular crystals [13,15]. Here 
we consider a topologically ordered non-ideal lattice of microcavities 
with point-like defect: vacancies and non-typical microcavities. In 
such a system, Hamiltonian Hphis no more translation invariant, 
hence the quantities αωn and A α βn m  are configurationally dependent. 
A convenient tool to study the quasiparticle excitation spectrum in a 
system with randomly distributed defects consists in configurational 
averaging of the solutions of corresponding Hamiltonians [16]. An 
averaged solution is translation invariant, hence the corresponding 
elementary excitation spectrum can be characterized by a wave vector 
K. A widespread method of computation of quasiparticle states in 
disordered media is the virtual crystal approximation (VCA) [16,17]. 
It proves sufficient to elucidate the transformations of elementary 
excitation spectra under varying defect concentrations. In what 
follows we rely on this method to compute and analyze the spectrum 
of electromagnetic excitations as well as the corresponding optical 
characteristics of the considered non-ideal super crystal.

Configurational averaging “restores” the translation invariance of 
the considered super crystal system. Eigenvalues of Hamiltonian (1) are 
found via its diagonalization by means of the Bogolyubov-Tyablikov 
transformation [13,14], and are ultimately found from the system of 
algebraic equations of the order σ :

( ) ( ) ( ) ( )L̂ u E uλ λ λ=k k k k .		                                  (2)

( )uλ k  are eigen functions of the σ σ×  matrix L̂  whose elements 
are expressed through the corresponding characteristics of the 
Hamiltonian (1):

( )

( ) ( ) ( ) ( ) ( )

( )

( ) ( )

, ( ) 1

exp

,
s r

L E A i

E A C C

αβ α αβ α β α β

α β
ν α µ β ν α µ β

α αβ αβ α β
ν α µ β

δ

δ
=

 = − − = 

= −

∑

∑

n n m n m
m

n

k r r

k
	              (3)

Here ( )Cν α
α  and  ( )Cµ β

β  are concentrations of the V-th and µ-th types 

of cavities, ( )

( )
1Cν α

α
ν α

=∑ . αnr  being the radius-vector of the resonator 

located in the α th sublattice of the n th elementary cell. The solvability 
condition of the system (2)

( ) ( ) 0E Aα αβ λ αβ αβδ ω δ− − =n k k

		                (4)

yields the dispersion law ( )λω k  of electromagnetic excitations in the 
considered photonic super crystal.

Consider localized electromagnetic excitations in a two-
sublattice ( 2σ = ) system of cavities. The left-hand side of Eq. (4) is 
then a second-order determinant, which being equated to zero gives 
the following dispersion of photonic excitations:

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }2
1,2 11 22 11 22 12 21

1 4
2

L L L L L Lω = + ±  −  + k k k k k k k


        (5)

Here ( ) ( ) ( ) ( )11 1 11 22 2 22,L E A L E A= − = −k k k k , ( ) ( )12 12L A= −k k  and 
( ) ( )21 21L A= −k k  are the matrix elements of the operator L̂ . 

To be more specific, let us consider a spectrum of electromagnetic 
excitations in a binary system where each sublattice contains only two 

types of cavities. In such a case, the quantities E αn
 and A α βn m  are 

given by ( ) ( )

( )

2

1
E E Cν α ν α

α α α
ν α =

= ∑n , ( ) ( ) ( ) ( ) ( )

( )

2

, ( ) 1
A A C Cν α µ β ν α µ β

α β αβ α β
ν α µ β =

= ∑n m k .

Being applied to the supercrystal lattice of microcavities where the 
only defects are vacancies, these expressions take the form

( ) ( ) ( ) ( ) ( ) ( )1 1 11 1 1
1 1 1 1 1 11 1 1;E E C A A C C= −=n n m n m ,

( ) ( ) ( ) ( ) ( ) ( )1 1 11 1 1
2 2 2 2 2 22 2 2;E E C A A C C= −=n n m n m 	                  (6)

( ) ( ) ( ) ( )11 1 1
1 2 12 1 2A A C C−=n m n m , ( ) ( ) ( ) ( )11 1 1

2 1 21 2 1A A C C−=n m n m , 

where ( )1
1 1C C≡  is the cavity concentration in the first sublattice, ( )1

2 2C C≡  

is the cavity concentration in the second sublattice, ( ) ( )1 , 2
1(2) 1(2)

VC C≡  is 
vacancy concentration in the 1st and/or 2nd sublattices. Concentrations 
must obviously satisfy the relations ( ) ( )1 1

1 1 2 21, 1V VC C C C+ = + = . In 

(6) matrix elements 
( ) ( )11 11
11 11 22 22,A A A A≡ ≡ , ( ) ( )12 21

11 12 22 21,A A A A≡ ≡ , 
( ) ( )12 21
11 12 22 21,A A A A≡ ≡  characterize the overlap of optical fields of cavities 

pertaining to the same sublattice but different cells (Figure 1). The 
energy spectrum of exciton-like electromagnetic excitations is defined 
by the type of the considered sublattices and the quantities E αn  and 

A α βn m
. Below we carry out a nearest-neighbor calculation for the 

case of a square Bravais lattice of period d  [3]. Location of cavities 
is defined by the radius-vector α α= +n nr r r , hence their location in the 
zero elementary cell, rn=0, is defined by vectors 01 0=r  and 02 2

d a=r 

, 
where a d

 (Figure 1). In the adopted approximation the matrix 
elements ( )Aαβ k  can with reasonable accuracy be written as:

( ) ( )( )11 112 cos cosx yA A d k d k d+k  , ( ) ( )( )22 222 cos cosx yA A d k d k d+k  ,

( ) ( ) ( )12 12 0 expA A ik a− ⋅k






,  ( ) ( ) ( )21 21 0 expA A ik a⋅k




 . 	               (7)

In (7) the overlap characteristic of optical fields ( )11(22)A d  defines 
the transfer probability of electromagnetic excitation between the 
nearest neighbors in the first (second) sublattice, and ( )12(21) 0A  is the 
excitation transfer probability between cavities in the first (second) 
and second (first) sublattices in an arbitrary cell. Substitution of 
expressions (7) into Eq. (5) gives the dispersion law ( )1,2ω k  for 
electromagnetic excitations (Figure 2). We performed calculation 
for modeling frequencies of resonance photonic modes in the 
cavities of the first and second sublattices 15

1 1 / 6 10nE Hzω ≡ = ⋅

 and 

 

Figure 1: Schematic of a non-ideal two-dimensional two-sublattice system of 
microcavities for the case of a square Bravais lattice, “V” denotes vacancies.
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14
2 2 / 8 10nE Hzω ≡ = ⋅

  respectively and for the overlap parameters 

of resonator optical fields 14
11 / 2 3 10A Hz= ⋅

,  13
22 / 2 5 10A Hz= ⋅

and 13
12 21/ 2 / 2 5 10A A Hz≈ = ⋅  . The lattice period was set equal 

to 73 10d m−= ⋅ . Figure 2 gives the example of surfaces depicting the 
dispersion dependence of collective excitation frequencies in the 
considered non-ideal microcavity lattice. Surfaces in Figure 2, plotted 
for 1 0.9VC =  and 2 0.4VC = . The presence of two dispersion branches 

( )1,2ω k  (see Eq. (5)) reflects a two-sublattice structure of the resonator 
system. For molecular crystals with two molecules in a cell an analogous 
occurrence of two branches in the dispersion law is referred to as the 
Davydov splitting of exciton zone [15] (Figures 2 and 3). Vacancies 
concentration dependence of the photonic gap width ( )1 2,V VC Cω∆  in 
the studied microcavity supersystem. Concentration dependence of 
the energy gap width ( ) ( ) ( )1 2 1 2 1 2, min , , , ,V V V V V VC C C C C Cω ω ω+ −

 ∆ ≡ − k
k k  

is shown in Figure 3. The surface ( )1 2,V VC Cω∆  is non-monotonic and 
turns to zero in a certain range of ( )1 2,V VC C . Therefore in a certain 
region of ( ) ( )1 2, 0,1V VC C ∈  electromagnetic excitations pass unhindered 
through the binary two-sublattice microcavity system. 

Polaritonic Crystal with the Atomic Subsystem 
Containing Vacancies

One way to create a polaritonic crystal is capture of two-level 
atoms in the photonic structure consisting of an array of tunnel-
coupled microcavities (CROW) [18]. As in [19,20] we study 1D lattice 

microcavities containing one optical mode, each of which interacts with 
a neighbor in the chain. Thus, each resonator contains the macroscopic 
cluster of ultracold two level atoms of the same type with the levels a  
and b  interacting with the quantized electromagnetic field directed 
(along the Z axis) perpendicular to the chain, which oriented along 
the X axis (Figure 4). In such a configuration the overlap of optical 
field and the wave functions of atoms are taken into account and there 
is a possibility photon tunneling along the chain resonators (Figure 
4). A schematic model of polariton crystal: microresonators lattice 
containing macroscopic ensembles of two-level atoms and interacting 
with resonators electromagnetic modes. The Hamiltonian H of the 
system considered is:

intat phH H H H= + +          	         		                 (8)

Here Hat corresponds to an ensemble of two-level atoms (quantum 
dots) in the trap-resonator, Hph corresponds to the propagation of the 
light field, Hint describes the atom-optical interaction in the cavity. 
Proceeding from the concepts developed, for example, in [4], the 
Hamiltonian H for ideal photonic structures can be reduced to the 
form:

( ( ) ( )
, , 1 1

1
( . .)

2

M
a b a

at n at n n n at n n n n n n
n

H a a b b a a a a H Cγω ω+ + + +
− +

=

= + − + + −∑
         (9)

1 1( . .) ,
2
b

n n n nb b b b H Cγ + +
− +

− + + 


, 1 1
1

( . .
2

M

ph n ph n n n n n n
n

H H Cαω ψ ψ ψ ψ ψ ψ+ + +
− +

=

 = − + + 
 

∑         (10)

( )int
1

,
M

n
n n n n n n

n

gH a b b a
N

ψ ψ+ + +

=

= +∑ 	                              (11)

where the annihilation (creation) operators an( na+ ), bn ( nb+ ) in equation 
(9) characterize the dynamical properties of atomic ensembles (atomic 

quantum modes) at the lower a  and upper  b  levels in the n-site of 

array n=1,2…..M, ( )
,
a

n atω  and ( )
,
b

n atω  characterize the energy of atom 

sat the levels respectively. The coupling coefficients ,a bγ  are the nearest-
neighbor hopping constants that depend on overlapping integrals of the 
atomic cloud wave function. Wave functions (these functions are real 
Wannier functions) are responsible for spatial distribution of ultracold 
n-site atoms under the so-called strong-bonding approximation [21]. 
The annihilation (creation) operators nψ  ( nψ + ) in (10) describe the 
temporal behaviour of a single photonic mode with frequency ,n phω  
located at the n-th cavity. The parameter α characterizes a spatial field 
overlapping between the neighboring cavities. The interaction of two-
level atoms with the quantized electromagnetic field in equation (11) is 
considered under the rotating wave approximation and determined by 
the constant Gn. It is assumed in framework of the polarization crystal 
model [3] that all the cells are identical to each other and have the same 
number of atom   N=N…., as well as the coefficients of atomic-optical 

 

Figure 2: Dispersion ( )1 2, ,V VC Cω± k  of electromagnetic excitations in 
the non-ideal two-dimensional two-sublattice system of microcavities for 

1 0.9VC = , 
2 0.4VC = .

 

Figure 3: Vacancies concentration dependence of the photonic gap width 
( )1 2,V VC Cω∆  in the studied microcavity supersystem.

 

Figure 4: A schematic model of polariton crystal: microresonators lattice 
containing macroscopic ensembles of two-level atoms and interacting with 
resonators electromagnetic modes.
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interaction in (11) are the same in all cells, that g=g1=g2=…..gM. Let’s 
consider the non-ideal system of this class-polaritonic structure–with 
atomic subsystem containing the impurity atom clusters. Moreover, the 
spatial distribution of traps resonators remains, as before, is translation 
invariant (with the lattice constant l) but the atomic subsystem 
contains randomly distributed foreign (relative to the ideal system) 
quantum dots (each cavity contains only one atomic complex of a 
certain sort). Therefore, the parameters of the problem related to the 
atomic subsystem are configuration-dependent variables. Numerical 
simulation of such systems can be completed within the VCA, which 
is to replace the configuration-dependent hamiltonian parameters Hat 
on their configuration averaged values. In this case, the configuration-
dependent values are ( ) ( ), ,

, , ,a b a b
n at ngω γ . After configuration averaging of 

these quantities we obtain:
( ) ( ) ( ) ( ), , , ,
, ,

,
, ,a b a b a b a b

n at n at nC C C g g C= = =∑ ∑ ∑ν ν µ ν ν
ν νµ

ν ν µ ν

ω ω γ γ       (12)

Here Cv is the concentration of atomic clusters (quantum dots) 

type V, which satisfies the equality 1Cν

ν

=∑ ; ( ) ( ), ,
, , ,a b a b

n at gν
ν νµω γ  are 

the characteristics relating to atomic components of  V-type. The 
procedure for configuration averaging allowed to “restore” ([16]), 
the translational invariance of the Hamiltonian and, therefore, to use 
the scheme of calculations [3,12]. With the help of the Bogolyubov 
transformations Hamiltonian, which describes the light and dark 
polaritons [22], is reduced to a diagonal form:

{ } { }1 21, 1, 2, 2,( , ) ( , )k k k k
k k

H k C k Cν ν+ += Ω Ξ Ξ + Ω Ξ Ξ∑ ∑   

 

          (13)

The annihilation operators 1,kΞ  , 2,kΞ   in equation (13) characterize 
two types of quasi particles (due to the atom–field interaction) i.e. 
upper and lower branch polaritons, respectively. These quasi particles 
propagate along the X-direction of the periodical structure. The 
characteristic frequencies 1,2Ω  in (13) define a dispersion relations, as 
well as the polaritonic band structure of the crystal.

To concretize the non-ideal polaritonic system, let’s consider 
the case of the system containing only one type of atoms with the 
concentration C1 and vacancies with concentration  Cv C1 + Cv=1. In 
this case we obtain:

( ) ( ) ( ) ( ) ( )2
1, , , ,
2 at ph Rk C k C k C k k Cν ν ν νω ω ω Ω ≡ Ω = + −  .           (14)

Here the dispersion relations for the atomic and photonic 
subsystems in a neighbor-hood dot Kl = 0 defined as follows:

( ) 2 2 2 2, ba ba
at k C k l C k lν νω ω γ ω γ   + − +    ,   ( ) ( )

, , 2b aba
n at n atω ω ω γ= − − ,    (15)

( ) 2 2
ph Lk k lω ω α+

,    , 2L n phω ω α= − ,		                 (16)

and the Rabi frequency ( ),R k Cνω  and atomic-optical detuning are:

( ) ( ) ( ) ( ) ( )22 2, 4 1 , , ,ν ν ν νω δ δ δ ω ω= − + ≡ = −R ph atk C g C k C k k C       (17)

In expression (15) appeared term baCνω , which is extremely large 
in comparison, for example, with the average frequency of transition 
for rubidium D-line which is 2 382ba THzω π≈ × . This term, even for 
a very small concentration of vacancies ( 4~ 10Cν

− ) amounts to several 
THz. For comparison, the parameter  α characterizing the photon 
tunneling, is from a few hundred GHz to THz, and the parameter of 
atomic-optic communication g  consists of from tens to hundreds of 
GTz. It are these parameters,  α and g , even in the absence of vacancies 
are the main contributors to the features of the dispersion curve. The 

expression for the mass of polaritons has the form:

( ) ( ) ( )
( )( ) ( ) ( )( ) ( )2

2 at ph R

at ph R at ph

m C m C
m C

m C m C m C m C
ν ν

ν
ν ν ν ν

ω
ω

=
+ − − ∆

,     (18)

where

( ) ( ) ( ) ( )2 22
0

, 4 1R R k
C k C C g Cν ν ν νω ω

=
≡ = ∆ + −          (19)

In formulas (21) and (22): ( ) ( )
0

, ba
v v vk

C k C Cδ ω
=

∆ ≡ = ∆ + ,

( ) 0
0

, ba
k L
C

k C
ν

νδ ω ω=
=

∆ ≡ = − , 2/ 2phm lα=  , ( ) ( ) ( )2/ 2 1 / 1at atm C C l M Cν ν νγ= − = −

.

Figure 5 shows the dependence of the mass m2 of the polariton on 
concentration of vacancies Cv introduced by the method described above. 
In this case, we used the following numerical values of the parameters: 
the size of the resonators is 3l mµ= , the effective mass of the atoms in the 
lattice without vacancies is 251.44 10atM kg−= × , the effective mass of the 
photon is 362.8 10phm kg−= × , the atom-optical the detuning 0∆ =  is 
independent on the wave vector, the average frequency of the rubidium 
D-line is 2 382ba THzω π= × , the parameter of atomic-optic coupling is 

2 12.2g GHzπ= × . In the case of a lattice without vacancies the mass of 
polaritons is 35

2 2 5.6 10phm m −≈ ≈ × .

Analysis of the graph shows that even for small number of 
vacancies in the lattice (one vacancy on 10-4 of resonators) the mass 
of polaritons increases by an order. The last circumstance testifies an 
essential role vacancies in effectively reducing of excitation velocity 
jumping between cavities.

Conclusion
A number of recent experimental works indicate that microcavity 

supercrystals may have interesting applications, in particular for 
creating of optical clockworks of unprecedented accuracy [23-25]. 
In [26] authors considered  spectrum of exciton-like electromagnetic 
excitations in a quasi-2D binary lattice of coupled microcavities. Here 
we have used the virtual crystal approximation to model the effect of 
lattice point defects (vacancies) on the spectrum and the photonic gap 
width dependence on the vacancies concentration for the specific case. 
Based on the representations of the ideal photonic structures, the non-
ideal systems of this class-polaritonic crystal, which is a set of spatially 
ordered cavities containing atomic clusters, is considered in the paper. 
The cflculations show that even a minute presence of vacancies (one 

Figure 5: The dependence of polaritonic mass m2on vacancies Cv in the 
imperfect superlattice of coupled microresonators.
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per 104 of resonators) increases the mass of polaritons by an order. 
This illustrates the crucial role of vacancies in reducing the effective 
excitation velocity in chains of microcavities. Obtained here dispersions 
of electromagnetic excitations are noticeably more complex than 
those of primitive lattices. This complexity is due to the non-ideality 
of the structure and to the presence of two sublattices. The latter 
entails multiple manifestations in experimentally observable integral 
characteristics of optical processes. Evaluation of excitation spectra in 
more complex photonic systems requires the use of more sophisticated 
computational methods. Depending on particular cases such can be the 
one- or multiple-node coherent potential method [16], the averaged 
T-matrix method [27] as well as their various modifications. Our
study contributes to the modeling of novel functional materials with
controllable propagation of electromagnetic excitations.
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