Percutaneous Extraction of a Catheter Fragment of Totally Implantable Venous Device Migrating into the Left Pulmonary Artery

Bouzelmat H, Kheyi J, Raissuni Z, Chaib A and Moustaghfir A

Department of Cardiac Intensive Care Unit, Mohammed V Military Hospital, Rabat, Morocco

Abstract

Totally implantable venous devices (TIVDs) are usually utilized for venous access for chemotherapy of cancers. Fracture and migration into the left pulmonary artery of catheter fragment are a potentially severe and rare complication. We present a case of an asymptomatic patient who had this complication. Percutaneous retrieval is now the standard of care. We discuss, through this observation, the usefulness of this technique used an intravascular snare to capture and secure the catheter fragment and we concluded that it is generally advisable to retrieve this foreign body even in asymptomatic patients.

Keywords: Totally implantable venous devices; Catheter complications; Catheter migration; Left pulmonary artery; Snare technique

Introduction

Totally implantable venous devices (TIVDs) are usually utilized for venous access for chemotherapy of cancers. The use of these systems has improved the quality of life of patients. However, despite the great usefulness of TIVDs, their insertion is not free of complications. We present a case of a patient who had a rare and potentially serious complication secondary to catheter disconnection and migration into the left pulmonary artery.

Case Report

A 50-year-old female patient had breast cancer. She underwent placement of a TIVDs via the right subclavian vein, for the infusion of chemotherapeutic agents. The procedure was simple, and a routine chest XR showed no complication. After two months, the patient was seen for her third cycle of treatment. Blood aspiration was impossible, and a saline injection of the port caused pain over the superior aspect of the right anterior chest wall. She was stable, with normal clinical signs of catheter embolization as follows: catheter malfunction, perforation, catheter leakage, dislodgment, subintimal entrapment [2, 3]. Catheter fracture and migration are rare complications and may occur in up to 1% of TIVDs used for long-term treatment [4]. The mechanism of catheter fracture is thought by many authors to be an anatomic mechanical compression of a catheter as it passes between the clavicle and first rib at the costoclavicular space [5]. Most often the intravascular fragment becomes lodged within the right heart where it may produce an arrhythmia or compromise a valve. Less frequently, the intravascular fragment lodges more distally within a pulmonary artery with the risk of causing a pulmonary infarction. A very rare migration site is the left pulmonary artery. A French study has divided clinical signs of catheter embolization as follows: catheter malfunction (56.3%), arrhythmia (13%), pulmonary symptoms (4.7%), and septic syndromes (1.8%), but 24.2% of cases were asymptomatic [6]. Richardson et al. followed 76 cases of retained catheter emboli and found a complication rate of 45% and a mortality rate of 23.7% [7]. Despite these reviews, there exist in the literature arguments for conservative management of catheter emboli particularly asymptomatic patient [8, 9]. However, even patients without symptoms may have actively mobile catheter in the future that could provoke life-threatening complications [10]. Until 1964, thoracotomy was the only method to retrieve catheter emboli [11]. Percutaneous retrieval is now through the tricuspid valve, right atrium, and into the inferior vena cava (IVC). The vascular sheath and snared catheter fragment were then withdrawn as a unit out through the skin of the right groin (Figure 1D). Fluoroscopic examination of the IVC, heart and pulmonary arteries revealed no residual catheter fragments. The entire procedure, from the initial access of the femoral vein to extraction of the fragment through the skin, was 43 minutes in duration with no complication.

Discussion

TIVDs constitute a convenient access for long-term intravenous chemotherapy [1]. Several large studies have demonstrated the safety and low rate of complication associated with TIVDs. These complications include infection, thrombosis, venous perforation, catheter leakage, dislodgment, subintimal entrapment [2, 3]. Catheter fracture and migration are rare complications and may occur in up to 1% of TIVDs used for long-term treatment [4]. The mechanism of catheter fracture is thought by many authors to be an anatomic mechanical compression of a catheter as it passes between the clavicle and first rib at the costoclavicular space [5]. Most often the intravascular fragment becomes lodged within the right heart where it may produce an arrhythmia or compromise a valve. Less frequently, the intravascular fragment lodges more distally within a pulmonary artery with the risk of causing a pulmonary infarction. A very rare migration site is the left pulmonary artery. A French study has divided clinical signs of catheter embolization as follows: catheter malfunction (56.3%), arrhythmia (13%), pulmonary symptoms (4.7%), and septic syndromes (1.8%), but 24.2% of cases were asymptomatic [6]. Richardson et al. followed 76 cases of retained catheter emboli and found a complication rate of 45% and a mortality rate of 23.7% [7]. Despite these reviews, there exist in the literature arguments for conservative management of catheter emboli particularly asymptomatic patient [8, 9]. However, even patients without symptoms may have actively mobile catheter in the future that could provoke life-threatening complications [10]. Until 1964, thoracotomy was the only method to retrieve catheter emboli [11]. Percutaneous retrieval is now...
the standard of care. It is inexpensive, of relatively low risk, and is almost always successful [11-13].

There are several endovascular techniques available for retrieving intravascular foreign bodies including endovascular forceps and retrieval baskets similar to those used in the biliary system and urinary tract. However, the most commonly used devise for intravascular catheter fragment retrieval is an endovascular snare introduced via a catheter as originally described by Curry [14]. Snare s have an advantage because when opened they fill the cross section of the vessel. These devices require that one end of the catheter fragment remains in a vessel and not in a chamber. In our case, the location in left artery full-filled this condition. Consequently, the procedure was not difficult. In rare cases, surgical intervention is needed [15].

Conclusion

Fracture and migration into the left pulmonary artery of catheter fragment are a potentially severe and rare complication. Patients might be asymptomatic or may develop severe systemic clinical signs. The Decision of the intervention should depend essentially on the clinical tolerance and on the patient choice. However, it is generally advisable to retrieve this foreign body percutaneous even in asymptomatic patients because of the possible mobility of this fragment in the future.

References