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Abstract
It is a general belief that low-density lipoprotein (LDL) enters from the lumen into the vessel wall and oxidized 

(oxLDL) and acts as an important pro-atherogenic role in atherosclerosis and the anti-atherogenic substances such 
as high-density lipoprotein (HDL) and its component apolipoprotein A1 (ApoA1), also enters from the lumen. However, 
definite in vivo clinical evidence is lacking. We have demonstrated immunohistochemically that native oxLDL, HDL and 
ApoA1 co-saved in adipocytes in the majority of human pericoronary adipose tissue (PCAT) samples, and obtained 
marks that they are conveyed by either CD68(+) macrophages or vasa vasorum to the adjacent coronary. These 
results recommended the existence of before unrecognized storing and supply site of these proteins and that therapies 
directing the PCAT could be active in stopping human coronary atherosclerosis.
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Introduction
It is a general belief that low-density lipoprotein (LDL) and 

monocytes enters the vascular wall from the lumen, the previous ends 
up noticeably oxidized low-density lipoprotein (oxLDL) and the last 
macrophages and accumulate oxLDL, after which oxLDL-containing 
macrophages develop foam cells, while producing collagen-degrading 
enzymes such as metalloproteases and collagenases which destroy 
collagen fibers and hypochlorous acid that destroy endothelial cells, 
resulting in vulnerable plaques [1-6]. It is also generally understood that 
anti-atherogenic substances like high-density lipoprotein (HDL) [7,8] 
and its module apolipoprotein A1(ApoA1) [9-12] arrive the vascular 
intima from the vessel lumen either straight or thru vasa vasorum. 
Based on these generally thought mechanisms and by the plasma levels 
of lipoproteins and apolipoproteins as markers, lipid-lowering therapies 
are ordered in the clinical setting, but with narrow preventive effects on 
ischemic cardiovascular events.

Hypothesis
We hypothesized that there are further hitherto unrecognized 

storage site(s) and supply route(s) for pro-atherogenic and anti-
atherogenic lipoproteins and their components, which are not replicated 
in their plasma levels.

OxLDL
1-1.	 OxLDL in human PCAT (Pericoronary Adipose Tissue):

By immunohistochemical techniques, we demonstrated that oxLDL is 
kept in adipocytes of epicardial PCAT, together cytoplasm and plasma 
membrane (Figures 1-3) [13]. 

1-2.	 Supply routes of oxLDL to adjacent coronary intima
(plaque): OxLDL deposits showed either a diffuse (Figure 1B-1) 
or dotted pattern in intima (plaque) (Figure 1A-1) [13]. Double 
immunohistochemical staining showed that CD68(+) –macrophages 
contained dotted oxLDL deposits. CD68(+) -macrophages which 
contain oxLDL were present in interstitial spaces of PCAT (Figures 4B-
4B-2), adventitia, media and intima (Figure 2). They appeared to cross 
the adventitia, and external and internal elastic laminae, migrating 
from the PCAT to intima [13,14]. 

1-3.	 OxLDL in plaques: In normal segments, the incidence was
low, increased in thegrowth and mature stages and in the end stage of 
maturation gets decreased [13,15]. 

1-4.	 OxLDL Co-localized with intimal vasa vasorum: Co-
localization of vasa vasorum with diffuse oxLDL deposits was observed 
very frequently in the outer half (medial side) of the intima in plaques at 
growth stage than in normal segments, whereas more frequently in both 
the luminal (inner half) and medial (outer half) side of the intima in 
plaques at mature stage, indicating spread of oxLDL with development 
of vasa vasorum [13,14]. After these findings it was suggested that 
oxLDL was regularly carried to the intima by either neovascularized 
vasa vasorum or macrophages.

HDL
HDL co-depositions with oxLDL in PCAT: We found that HDL 

and oxLDL co-deposit in human PCAT [14]. HDL deposited in a diffuse 
pattern in the intima and dotted HDL deposits or HDL-containing 
CD68(+)-macrophages were not found (Figure 1C-1). Different to 
oxLDL, the HDL incidence in the coronary intima expanded further 
with plaque growth and expanded further with plaque maturation 
[14]. HDL co-localized with intimal vasa vasorum as with diffuse 
oxLDL deposits, suggesting that HDL in the PCAT was conveyed by 
neovascularized vasa vasorum to the intima.

ApoA1
ApoA1 Co-depositions with oxLDL in PCAT: ApoA1 placed in 

PCAT similarly to oxLDL and HDL. It deposited in either diffuse pattern 
or a dotted pattern in the intima (Figures 3B-1, 3B-2, 3C-1 and 3C-2) and 
contained in CD68(+)-macrophages or co-localized with an intimal vasa 
vasorum as with oxLDL. In typical normal coronary segments, the rate of 
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Figure 1: Localization and deposition patterns of oxidized low-density lipoprotein (OxLDL) and high-density lipoprotein (HDL) in human pericoronary adipose 
tissues (PCAT) and the coronary arterial wall. Yellow plaque by angioscopy [28] (arrow in A). Immunohistochemical staining shows, the plaque (arrow in A) contains 
dotted oxLDL deposits (arrow in A-1) and diffuse or dotted oxLDL deposits in the PCAT (arrowhead in A-1). Under magnification, oxLDL deposits not only in the cytoplasm 
(arrow in A-2) but also in the plasma membrane of adipocytes (arrowhead in A-2). White plaque by angioscopy [28] (arrow in B). Immunohistochemical staining shows 
diffuse oxLDL deposits in the intima (arrow in B-1) and PCAT (arrowhead in B-1). Under magnification, oxLDL deposits in the cytoplasm (arrow) and plasma membrane 
of the adipocytes (arrowhead in B-2). Yellow plaque by angioscopy28 (arrow in C). Immunohistochemical staining shows diffuse HDL deposits in the intima (arrow in C-1) 
and PCAT (arrowhead in C-1). Under magnification, HDL deposits in both the cytoplasm (arrow in C-2) and plasma membrane of the adipocytes (arrowhead in C-2). The 
cytoplasm is partially lost during preparation of the slide. White plaque by angioscopy [28] (arrow in D). Immunohistochemical staining shows, LDL deposits in the intima 
(arrow in D-1) but not in PCAT (arrowhead in D-1), under magnification, LDL is not observed in the cytoplasm or plasma membrane (arrowhead in D-2). AC: adipocyte, 
I: intima, M: media. Ad: adventitia. Bar in A-1 to D-1=100 µm. Bar in A-2 to D-2=5 µm. Partially modified with permission of Uchida et al. [14].  

PCAT

Media Intima

OxLDL

OxLDL

OxLDL

OxLDL

CD68(+)-macrophages

CD68(+)-macrophages

CD68(+)- macrophage

CD68(+)-macrophages

Adventitia

Bar=20µm

Bar=20µm
Figure 2: Oxidized Low-density Lipoprotein (OxLDL) containing CD68(+) macrophages. Ox-LDL is observed in CD68(+)-macrophages in PCAT (arrows in A, 
A-2), adventitia (arrows in B, B-1), media (arrows in C, C-1) and intima (arrows in D, D-1). Bar=5 µm. Reproduced with permission of Uchida et al. [13].
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Figure 3: Localization and deposition patterns of low-density lipoprotein (LDL) and apolipoprotein A1 (ApoA1) in human pericoronary adipose tissues 
(PCAT) and the coronary arterial wall. White plaque on angioscopy [28] (arrow in A). Immunohistochemical staining shows, LDL deposits in the intima (arrow in A-1) 
but not in PCAT (arrowhead in A-1), under magnification, LDL is not observed in the cytoplasm or plasma membrane (arrowhead in A-2). White plaque on angioscopy 
(arrow in B). Immunohistochemical staining shows dotted ApoA1 deposits in the intima (arrow in B-1). Under magnification, diffuse ApoA1 deposits were found in PCAT 
(arrow in B-2). Yellow plaque on angioscopy (arrow in C). Diffuse ApoA1 deposits are observed in the plaque (arrow in C-1) and PCAT (arrow in C-2). AC: adipocyte, I: 
intima, M: media. Ad: adventitia. Bar in A-1 to C-1=100 µm. Bar in A-2 to C-2=5 µm. Partially modified with permission of Uchida et al. [14,16].  

OxLDL

PC
AT

In
tim

a

CD11c(+)-Macrophage Merge

Bar= 5µm
Figure 4: CD11c (+) macrophages (M1- Macrophage) that contain oxidized low-density lipoprotein (OxLDL). A – A2: CD11c(+)-macrophages which contain 
oxLDL in PCAT (arrows). B – B-2: CD11c(+) – macrophages which contain oxLDL in intima (arrows). Bar=5 µm. 
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ApoA1 was low, expanded with plaque growth and expanded further with 
plaque maturation as with HDL. This finding demonstrated that, despite 
an anti-atherogenic substance as with HDL, ApoA1 looked like oxLDL in 
the supply courses to the intima yet contrasted from oxLDL and resembled 
HDL in its connection to plaque morphology[16].

LDL
LDL deposits: Diffuse LDL deposits were found in the intima 

but not in PCAT (Figures 3A-1 and 3A-2). LDL co-localized with 
intimal vasa vasorum and its incidence in intima was low and had no 
undeniable connection to plaque morphology.

Macrophage Phenotypes
There are a number of macrophage phenotypes. Among them, M1-

macrophages are considered as atherogenic whereas M2- macrophages 
as anti-atherogenic, based mostly on the findings in animals or cultured 
cells.[17] To our knowledge, there are no reports on storage of oxLDL, 
HDL or ApoA1 in human PCAT. In our unpublished study, a certain 
group of CD11c (+) -macrophages (M1- macrophages) contained 
oxLDL or ApoA1 but not HDL (Figure 4). CD 206(+) - macrophages 
(M2-macrophages) that contain oxLDL or ApoA1 but not HDL were also 
found. The findings suggested that there are subspecies in both M1 and 
M2 macrophages in respect to lipoprotein or apolipoprotein carrying 
capacity and that there are no definite differences in carrying capacity 
of lipoproteins and apolipoproteins between M1 and M2 macrophages. 
Switching of M2 to M1 macrophages, which was demonstrated in 
animals [18], might have occurred in human macrophages and caused 
such phenomena. Further studies are necessitated to clarify the role of 
individual macrophage phenotypes in carrying these proteins.

Supply of OxLDL, HDL and ApoA1 from PCAT to 
Coronary Plaques 

Figures 5 represents our speculation on the capacity and conceibable 

supply routes of oxLDL, HDL and ApoA1. Imbalanced content in the 
PCAT and their supply to the intima may decide the destiny of plaques.

Other Reports
Perivascular adipocytes (PVA) deliver substantial quantities of 

metabolically dynamic substances with both endocrine and paracrine 
actions [19]; PVA of human internal thoracic artery release NO 
[20]; PVA discharges nicotinamide adenine dinucleotide phosphate-
oxidase in mice [21]; rat PVA discharge compliment [23,22]; rat PVA 
discharge metylpalmitate ester [23]; different substances, for example, 
plasminogen activator inhibitor-1 and interleukin-6 are contained in 
epicardial adipose tissue in patients with acute coronary syndrome 
[24]; cultured human epicardial adipose tissues release glutation 
S-transferase P and ApoA1 [25]. But, reports depicting release and 
storage of lipoproteins from human PVA, including PCAT, to the 
nearby vessel wall were not found. Expanded volume of epicardial 
adipose tissue is a hazard factor for coronary heart disease [26,27]. 
Increased supply of pro-atherogenic lipoproteins from thick PCAT to 
coronary intima may quicken coronary atherosclerosis.

Clinical Implications
Our findings proposed that molecular therapy targeting lipoproteins 

in the PCAT could be successful in preventing coronary atherosclerosis.
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