Perinatal Arterial Ischemic Stroke: An Unusual Causal Mechanism

Francesca Maria Russo1,*, Giuseppe Paterlini2 and Patrizia Vergani1

1 Department of Obstetrics and Gynecology, University of Milano-Bicocca, Monza, Italy
2 Department of Pediatrics and Neonatal Intensive Care Unit, University of Milano-Bicocca, Monza, Italy

Abstract

Perinatal Arterial Ischemic Stroke (AIS) is an important cause of neurological morbidity in infants. Some risk factors have been identified, but its pathogenesis remains unclear. We present a case of perinatal in which macroscopic examination of the placenta revealed the presence of a vasa praevia. We hypothesize that compression of the vasa praevia during labor could have determined the formation of thrombi, which were subsequently embolized into the fetal circulation causing perinatal AIS.

Background

Perinatal arterial ischemic stroke (AIS) is estimated to occur in 1/1600 to 1/5000 births [1]. Even if rare, it is an important cause of mortality and morbidity in neonates. A meta-analysis showed that 57% of infants who suffer perinatal AIS develop motor and/or cognitive deficits, and 3% die [2]. Risk factors proposed for perinatal AIS include maternal prothrombotic conditions and pre-eclampsia, chorioamnionitis, fetal distress, and placental disorders, such as thrombosis and placental chorioangiomas [1-4]. Although clinical and imaging findings of AIS are now well delineated, its causative mechanisms remain unclear. In the absence of documented pathogenic mechanisms, preventive strategies cannot be implemented. We report a case of perinatal AIS which we correlated to the presence of undiagnosed vasa praevia.

Case Report

A 41 year old nulliparous woman delivered a female newborn after spontaneous labor at 39.6 weeks gestation. Pregnancy was achieved by in vitro fertilization and intra-cytoplasmic sperm injection. An ultrasound scan at 20 weeks had revealed a low-lying placenta, which migrated to a normal insertion at follow-up scans. During labor the fetal heart rate tracing remained reassuring. The baby’s Apgar scores were 9 and 10 at 1 and 5 minutes, respectively. Umbilical artery gas-analysis was normal, with a pH of 7.30; and birth weight was 3060 grams.

Five minutes after birth the newborn presented marked pallor, coldness and hyponobility of the right upper limb, with no right brachial pulse and normal axillary pulse. Color doppler ultrasound of the right arm documented absent flow in the humeral artery and increased resistance index in the right axillary artery. After 4 hours the arm spontaneously recovered normal temperature and motility. No cardiac anomalies, congenital malformations, or brain hypoperfusion were noted. The MRI performed at 24 hours of life showed: ischemic lesion in the superficial territory of the sylvian artery, reduced NAA/choline (Cho) ratios at spectroscopy (B), compensatory increase in the flow in sylvian and posterior left arteries; MRI performed at 2 months of life (D-G) showing parenchymal malacia of the left cerebral hemisphere, affecting much of the frontal lobe in the territories of the superficial branches of the middle cerebral artery. In addition, the images showed the presence of: residual haemosiderin at the posterior margins, likely related to undiagnosed vasa praevia.

Follow-up neuroimaging monitoring with ultrasound showed occurrence of hemorrhage in the previously identified ischemic area, with development of malacic areas over time. At color doppler ultrasound at 2 weeks of life, the flow in the subclavian, humeral, and ulnar arteries were normal.

Figure 1: MRI performed at 24 hours of life (A-C) showing: ischemic lesion in the superficial territory of the left sylvian artery (A), reduced NAA/choline (Cho) ratios at spectroscopy (B), compensatory increase in the flow in sylvian and posterior left arteries; MRI performed at 2 months of life (D-G) showing parenchymal atrophic evolution of the lesion.

*Corresponding author: Francesca Maria Russo, Department of Obstetrics and Gynecology, University of Milano-Bicocca, via Pergolesi 33, 20052 Monza, Italy, E-mail: f.russo7@campus.unimib.it

Received July 29, 2014; Accepted August 20, 2014; Published August 22, 2014


Copyright: © 2014 Russo FM, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
emboli could have then travelled through the ascending aorta, lodging in the right subclavian artery, thus causing the transient hemural artery occlusion observed at birth. Other emboli, through the common left carotid artery, could have reached the cerebral circulation causing AIS in the region of the left middle cerebral artery (Figure 3). As shown by Miller [5], perinatal AIS is usually a consequence of thromboembolic events arising in either intracranial or extracranial vessels, the heart or the placenta. Thrombotic abnormalities are more often observed in the distribution of the middle cerebral artery then in the anterior and posterior cerebral arteries, and involve in most cases the left cerebral hemisphere [5]. This observation provides support to our pathogenetic hypothesis outlined above.

Factors contributing to an increased risk of perinatal AIS include complications that occur before, during, and after delivery. Atherosclerosis, one of the most important risk factors in adult AIS, has not been proven to be significant in the pathophysiology of either childhood or perinatal AIS [4]. Even if it has been recently demonstrated that maternal and fetal factors can be responsible for an early endothelial dysfunction and vascular damage [6,7], several studies have revealed that the neonatal brain is unique with a peculiar responsiveness to hypoxia–ischemia. Thus, causes of perinatal AIS differs from those seen in older children and may include maternal problems and other issues related to pregnancy and delivery [4-8]. Indeed, several conditions associated with perinatal AIS are determinants of vasculo-placenta pathology (e.g. diabetes, pre-eclampsia, chorioamnionitis, maternal or fetal hypercoagulability) [1]. Therefore, the main etiological hypothesis addresses the role of the mater-no-fetal vascular interface, i.e. the placenta and its vessels. Some Authors postulated that cord length, shape or insertion anomalies can induce a fetal thrombotic vasculopathy, most frequently in umbilical vein, which can extend to fetal organs [9,10]. Since 60% of the infants with AIS present early symptoms, as in our case, it is reasonable to suppose that labor is one of the moments at highest risk of placento-fetal emboli. In our case, the compression of the vasa praeivia by the descending fetal head during labor could have been the determinant factor, or at least a co-factor, for the formation of vascular thrombi.

In a case-control study addressing the association between maternal and infant complications and the risk of perinatal AIS, Lee et al. [3] demonstrated that infertility is one of the independent risk factors of this event. Infertility was indeed present in our case and possibly conditioned the abnormal placental implantation. The anomalous course of the vasa praeivia could have been suspected prenatally, since both in vitro fertilization and presence of low lying placenta in mid-gestation are known risk factors. Regrettably, no transvaginal sonographic exams were done in third trimester and the diagnosis was missed.

Our report shows that vasa praeivia is an extremely dangerous obstetric complication, not only for the risk of rupture and for the consequent fetal hemorrhage, but also for the risk of thrombosis and ischemic accidents [3]. Attention to the placenta and cord insertion at prenatal ultrasonography may play an important role in the prevention of perinatal AIS.

References


