Perivascular Adipose Tissue can be Considered a Risk Factor for Atherosclerosis?

Leonardo Roever1*, Elmo Santos Resende1 and Antonio Carlos Palandri Chagas2,3

1Department of Clinical Research, Federal University of Uberlândia, Brazil
2Heart Institute (InCor), HCFMUSP- University of Sao Paulo Medical School, Sao Paulo, Brazil
3Faculty of Medicine ABC, Santo Andre, Brazil

Corresponding author: Leonardo Roever, Department of Clinical Research, Av. Para, 1720 - Bairro Umuarama Uberlândia - MG - CEP 38400-902, Brazil, Tel: 553488039878; E-mail: leonardoroever@hotmail.com

Received date: October 01, 2015; Accepted date: May 02, 2016; Published date: May 08, 2016

Copyright: © 2016 Roever L et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Introduction

Perivascular adipose tissue (PV AT) is an ectopic deposition of adipose tissue surrounding the vasculature and your influence on the vasculature changes with increasing adiposity. PV AT involves coronary arteries, aorta, mesenteric, and small arteries in the body, and its likely function differs in each of these anatomical regions [1-4].

PVAT secretes a wide variety of adipocytokines and other substances, including hormones, cytokines, chemokines, oxygen radicals, angiotensinogen, leptin, resistin and fatty acids [5]. The rate of secretion of various adipocytokines varies in different places in the vascular tree, adipocytokines as TNF-α, IL-6 and others. Adiponectin can affect insulin sensitivity, inflammatory responses, hemostasis, appetite and atherosclerosis [6-10]. The factors secreted by PVAT that act in the regulation of vascular function are presented in Table 1.

Cytokines/Chemokines	Vasoactive agents	Hormones and Fatty acids
IL-6 IL-8 | H2S C2 | Adiponectin Visfatin
IL-10 IL-1β | ADRF NO | Leptin Oestrogen
IL-1β MCP-1 | Ang (1–7) Ang II | FFA Androgen
TNFα MIP-1α | ROS H2O2 | Resistin HGF
MIF RANTES | Angiotensinogen | FABP4 Adrenomedullin Glucocorticoids
PAI-1 HB-EGF | Methyl-palmitate | |

Table 1: Product of PVAT involved in the regulation of vascular function.

PVAT is related to the vascular contractility, endothelial dysfunction, neointima formation, arterial stiffness, aeurysm formation, and produce substances that can interfere in the process of atherosclerosis and contribute to the pathogenesis of type 2 diabetes and cardiovascular diseases [11-16].

An understanding of the pathophysiology of PVAT and its potential role in cardiovascular morbidity and mortality can be significant in preventing and treating of atherosclerosis.

References

