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Editorial

Western medicine depends on science to create and evaluate drugs 
at the molecular level. In Asia, there is a commonly held belief that there 
is an art to healing too, and that both art and science should cooperate 
to help eradicate illness and relieve suffering [1]. The term systems 
pharmacology now describes a field of study that combines with 
reductionism (West) and holism (East) to develop an understanding 
of drug actions across multiple scales rooted in molecular interactions 
between the drug and its targets in the context of such targets 
interacting with and regulating other cellular components. This paper 
aims at understanding the antioxidation of herbal medicines from 
systems pharmacology point of view in the following three layers.

How to Screen Antioxidant Molecules?
Herbal medicine is a multifaceted system consisting of manifold 

components [2]. However, only a few of them act as active ingredients. 
Obtaining valid entities become a crucial step in drug discovery and 
herb mechanism revelation. Approaches to screen effective molecules 
in herbs count on experimental or in silico tools. 

The traditional separation, purification and structure elucidation 
way is labor intensive, time-consuming and prone to error [3]. Owing 
to these reasons, in silico approaches appear to be a good alternative 
to the prediction of active components, such as ADME (absorption, 
distribution, metabolism, and excretion) evaluation. Various studies 
have developed their own models of ADME and, consequently, 
practices in drug molecular discovery [4-6]. Current ADME models 
commonly used mainly consist of human oral bioavailability (OB) 
prediction model [7], drug-likeness (DL) evaluation method [8], 
blood brain barrier (BBB) [9], Caco2 [10], half-life (HL) prediction, 
and so forth. For example, to achieve more promising drugs, Huang, 
et al. defined the filtering criteria as DL ≥ 0.18; OB ≥ 30%; BBB ≥ 0 or 
Caco2 ≥ -0.4 (2). With the aid of in silico models, a global number of 
compounds are boiled down to better suit subsequent analysis.

In particular, with the continuous advance of -omics technologies, 
pharmaceutical chemists are interested in hybrid molecules consisting 
of two distinct drug entities covalently linked in a single molecule [11]. 
The two distinct drug entities were purified from plant cell culture or 
chemical synthesis.

How to Detect Antioxidant Targets?
Target discovery, which involves the identification and early 

validation of disease modifying targets, is an essential first step in 
the drug discovery pipeline [12]. The ‘front-loading’ of this topic 
makes for tackling the issues related to failures of on-target biological 
hypotheses and on- and off-target safety concerns. Indeed, the drive to 
determine antioxidation targets has made substantial progress, both in 
industry and academia, with the ever-increasing number of novel and 
innovative technologies for target discovery. We critically examine the 
front methodologies used for both the identification and validation of 
disease-relevant proteins and provide a comparative review in the three 
broad target discovery strategies: genetic interaction and genomic 

methods; computational inference methods; and high-throughput 
screening.

Genetic interaction methods 

Genetic interaction is an interaction between multiple genes that 
impacts the expression of the phenotype (positive or negative). This 
method provides a productive avenue for expanding target sets and 
tackling core issues in drug development. Global genetic networks 
would identify numerous pairs of nonessential genes that can be 
targeted in combination to reveal pharmacological effects, and thus 
the target space is expanded well beyond that of the subset of essential 
genes. In addition, interactions with conditional alleles of essential 
genes also enable the identification of genes and pathways that buffer 
the activity of an essential cellular function and thereby predict targets 
whose cognate inhibitors might show strong synergistic activity with 
the existing drugs [13]. As illustrated above, the genetic interaction 
strategy provide a landscape to rationally expand the existing target 
space address the issue of target identification in early stages of drug 
discovery. 

Computational inference methods 

Computational inference methods have been introduced to 
predict true interacting drug-target pairs with high accuracy. These 
methods are motivated by the observation that similar drugs tend to 
target similar proteins [14,15]. A desirable property of these methods 
is that it does not require the 3D structure information of the target 
proteins, which is needed in traditional methods based on docking 
simulations [16]. This property, for instance, chemical similarity 
[17], has already successfully applied to the prediction of drug-target 
interaction for herbal medicines [18,19]. Comparing with the non-
in silico approaches, computational inference methods make a huge 
amount of data accessible and processable, which can help not only to 
avoid animal testing but also for screening purposes and significantly 
decrease drug development costs [20].

High-throughput screening

High-throughput screening (HTS) has become an important part 
of drug discovery at most pharmaceutical and many biotechnology 
companies worldwide, and use of HTS technologies is expanding into 
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target validation [21]. The advent of powerful genomics technologies 
has uncovered many fundamental aspects of biology. Particularly, 
chemical genomics, which seeks to identify the functional relationship 
between specific genes and compounds via a systematic analysis of all 
genes in a genome, allows the genomewide identification of potential 
drug targets [22]. In summary, HTS is a powerful technology that holds 
great promise for advancing pharmacologically relevant targets. 

How to Bridge Antioxidant and Diseases?
The tremendous amount of the data extracted from the study of 

complex biological systems changes our view on the pathogenesis 
of human diseases. Instead of staring at individual components of 
biological processes, systems pharmacology focuses our attention 
more on the interaction and dynamics of biological systems. A network 
representation and analysis of the physiology and pathophysiology of 
biological systems is an effective way to study their complex behavior 
[23]. Understanding diseases in the context of network principles 
allows us to address some fundamental properties of the antioxidant 
that are involved in disease. In the following, we briefly discuss the most 
studied network maps and their limitations, but we warn the reader to 
exercise caution as we are describing a promptly altering domain.

Molecular-level network
A network is defined as a series of entities connected to one another 

on the basis of a defined criterion [24]. The entities in a network are 
named nodes, which represent different types of molecules such as 
DNA, RNA, targets, and drugs. In the context of studying relationships 
of antioxidant and diseases, edges between nodes may represent DNA-
RNA or RNA-RNA interactions [25], protein-protein interactions [26], 
drug-target interactions [27], target-target interactions [28], and drug-
drug interactions [29]. Typically, both the nodes and the interactions 
discussed above need to be evaluated in the context of tissue specificity, 
as they may exert a functional role on the context of only selected 
tissues [30]. Still, human interactome maps remain incomplete and 
noisy, a fact that needs to be taken into account when using them to 
study diseases and systematic efforts should be paid to increase the 
coverage of human interactome maps.

Cellular/ tissue-level network
As evolution evolved more complex multicellular organisms and 

biological behaviors, cells are capable of interacting with one another 
through diverse biological and physical mechanisms. A depiction of 
cell-cell network is absolutely necessary for an understanding of how 
cellular activity is coordinated in information exchange and functional 
entities (such as tissues) recognition. Describing such systems has 
always been restricted by the barrier of experimenting on living tissues. 
And computer modelling appears actually compelling to characterize 
the performance of multicellular systems. A generic model dedicated to 
the analysis and modelling of plant morphogenesis was constructed by 
describing the plant as a multi-scale structure [30]. However, modelling 
studies remain have not been integrated into life-like systems, there is 
still a great potential to develop in terms of computer modelling.

Organ-level network
One important goal in systems pharmacology is to develop 

molecular diagnostics that can accurately and comprehensively report 
health and disease states of an organ system [31]. To address this issue, 
a number of sophisticated networks of organ-level were built. On the 
basis of the fact that some therapeutic targets are highly and selectively 
expressed in specific tissues, network, to announce the relationship 

of target location and disease, among heart, brain, liver and so forth 
was constructed [32,33]. On the other hand, the discovery of organ-
level molecular signatures from global biomolecule expression 
measurements would mark a significant advance toward this goal 
[34]. In summary, developing networks at various scales allows us 
to explicitly track drug effects from molecule level interactions to 
organismal physiology.
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