Pharmacogenomics and Pharmacoproteomics Studies of Phosphodiesterase-5 (PDE5) Inhibitors and Paclitaxel Albumin-Stabilized Nanoparticles as Sandwiched Anti-Cancer Nano Drugs between Two DNA/RNA Molecules of Human Cancer Cells

A Heidari*

Faculty of Chemistry, California South University, USA

*Correspondence author: A Heidari, Faculty of Chemistry, California South University (CSU), 14731 Comet St. Irvine, CA 92604, USA, E-mail: Scholar.Researcher.Scientist@gmail.com

Received date: June 20, 2016; Accepted date: June 21, 2016; Published date: June 27, 2016

Copyright: © 2016 Heidari A. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Editorial

One of the most important goals in the medicine, pharmacology, pharmaceutical, physiological, clinical, biological, medical and medicinal sciences, biochemistry, pharmacogenomics and pharmacoproteomics of anti-cancer Nano drugs such as phosphodiesterase-5 (PDE5) inhibitors and paclitaxel albumin-stabilized nanoparticles is the treatment. The present methods and techniques of Nano-structuring anti-cancer Nano drugs, especially phosphodiesterase-5 (PDE5) inhibitors and paclitaxel albumin-stabilized nanoparticles, are expected to reach their limitations in the next decades. The smallest anti-cancer Nano drugs are of about five nanometers wide and hundreds of millions of them maybe integrated on a single molecule. Below this size the controlled doping becomes more and more difficult. The next important step in the treatment might be done by reducing the anti-cancer Nano drugs such as phosphodiesterase-5 (PDE5) inhibitors and paclitaxel albumin-stabilized nanoparticles to the scale of DNA/RNA molecules of human cancer cells (Figures 1 and 2). This new filed of medicine, pharmacology, pharmaceutical, physiological, clinical, biological, medical and medicinal sciences, biochemistry, pharmacogenomics and pharmacoproteomics is called pharmachemotherapy. Recently, several researchers have measured electron transport in single or small groups of bioorganic molecules such as DNA/RNA of human cancer cells connected to metal such as Cadmium or Ruthenium (Figure 3) [1-29].

Phosphodiesterase-5 (PDE5) inhibitors and paclitaxel albumin-stabilized nanoparticles are two of the molecular systems and anti-cancer Nano drugs that have been studied extensively due to their ability to form a robust Self-Assembled Monolayer (SAM) on DNA/RNA surfaces of human cancer cells (Figure 3) and are useful for synthesizing insulating layers. Recently, tunneling has been identified as the main conduction mechanism for Self–Assembled Monolayers (SAMs) formed in a nanometer scale junction. However, the corresponding biochemical mechanisms governing the electron transport phenomenon in most of this experimental and computational investigation are scarcely mentioned. In this editorial, we report a first-principle study of electron transport in a single molecular conductor consisting of phosphodiesterase-5 (PDE5) inhibitors and paclitaxel albumin-stabilized nanoparticles sandwiched between two DNA/RNA molecules of human cancer cells (Figure 2). We show that the current was increased by increasing the external voltage biases.

Figure 1: Reducing phosphodiesterase-5 (PDE5) inhibitors to the scale of DNA/RNA molecules of human cancer cells [14,30].


30. Heidari A (2012) A Thesis submitted to the Faculty of the Chemistry, California South University (CSU), Irvine, California, The United States of America (USA) in Fulfillment of the Requirements for the Degree of Doctor of Philosophy (PhD) in Chemistry.