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Introduction
Pancreatic adenocarcinoma is the second most common malignant 

tumor of the gastrointestinal tract and the fourth leading cause of 
cancer-related mortality accounting for 5% of cancer-related deaths in 
the United States [1]. It is estimated that 46,420 new cases of pancreatic 
adenocarcinoma and 39,950 deaths from pancreatic adenocarcinoma 
occurred in 2014 [2]. The prognosis is dismal with only 10% to 30% 
of pancreatic adenocarcinomas resectable at the time of presentation, 
a 5-year survival of 10% to 20%, and median survival of only 10 to 20 
months [3]. Pancreatic adenocarcinoma commonly metastasizes to 
the liver and patients with metastatic disease have a median survival of 
only 3 to 6 months. Thus, early diagnosis, accurate staging and curative 
resection offers the best chance of survival [4].

CT is the most common imaging modality of choice in staging and 
follow-up of unresectable pancreatic cancer. Tumor treatment response 
at CT is commonly assessed by tumor size [5-7] or attenuation changes 
[8-10]. Positron Emission Tomography (PET), however, has been 
shown to be more accurate for detection of pancreatic cancer in many 

studies, with overall accuracy of 91% versus 78% for contrast-enhanced 
CT [11] with comparable sensitivity [12]. PET is generally more 
accurate and sensitive for distant metastases and also has prognostic 
value [13], with higher values correlating with more aggressive disease. 
Thus, a co-registered PET-CT combines optimally both the metabolic 
information from PET and the good spatial resolution of CT. 

Pancreatic cancer is a lethal disease and more precise pretreatment 
assessment could determine the optimal therapy or identify early 
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Abstract
Pancreas adenocarcinoma is one of the most common malignant tumors and the fourth leading cause of cancer-

related mortality. While Computed Tomography (CT) has been commonly used clinically for the cancer staging and 
follow-up, Positron Emission Tomography (PET) is known to be generally more accurate and sensitive for metastases 
and thus has great prognostic value. However, PET is more expensive and less accessible. This research is to explore 
the use of multivariate models to extract valuable information from CT to mimic the effects of PET. Based on the original 
6 CT measures, 10 CT biomarkers are derived. The strongest correlation with PET SUV in the multivariate regression 
on the 6 original measures is r2=0.41 (r=0.64), on the 10 derived biomarkers is r2=0.55 (r=0.74). We developed a two-
stage hybrid model, where a multivariate classifier was developed to first separate the patients into the group with high 
SUV values vs. low SUV values, then the regression model was developed for each group respectively. The overall 
performance of this two-stage model is more promising with an r2=0.81 (r=0.90). We conclude advanced CT analytics 
has the potential to extract valuable information that correlates with PET SUV.

Rationale and objectives: Pancreatic adenocarcinoma is commonly studied by CT and PET. We aimed to see if 
information from CT could be used to simulate the results of PET. 

Materials and methods: A retrospective study of 24 patients with pancreatic cancer who had both CT and PET in 
close temporal proximity was conducted. Measurements of the aorta, normal pancreatic tissue, solid and cystic portions 
of pancreatic tumors were performed resulting in 6 biomarkers. Ten more biomarkers were derived including the ratios 
of solid and cystic tumor mean and standard deviation to normal pancreas (and to each other), as well as signal-to-noise 
ratios of solid and cystic tumors to normal pancreas. Univariate analysis and multivariate regression were conducted 
on the original measures (6 biomarkers) and derived measures (10 biomarkers). A two-stage hybrid model integrating 
machine learning model with multivariate regression analysis was also studied. 

Results: The best results were obtained using the two-stage hybrid model. The regression model for low SUV (≤5) 
used cystic tumor mean (r2=0.68, r=0.83). The regression model for high SUV(>5) used tumor mean, the ratios of tumor 
mean to pancreas mean, tumor mean to aorta mean, standard deviation of tumor to aorta mean and signal-to-noise 
ratio of difference between the normal pancreas mean and solid tumor mean to standard deviation of pancreas (r2=0.86, 
r=0.93). The overall performance of the two-stage model is r2=0.81(r=0.90). 

Conclusion: Two-stage multivariate analysis of CT parameters can mimic the effects of PET to a reasonable extent, 
and signal-to-noise and standard deviation ratios may capture the essential nonlinearity of these relationships.
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response or non-response. If this information was reliably obtained, it 
could allow rapid treatment changes to improve patient outcomes. In 
a 2006 study of 102 patients, PET had higher diagnostic accuracy than 
CT (95% vs 76%) for pancreatic adenocarcinoma and was also superior 
in detecting treatment response (5 vs 0/15 cases) [14]. Both Friess et 
al. [15] and Van Heertum et al. [16] report that for lesions less than 
2-cm in diameter, the sensitivity of PET is far superior to that of CT,
especially for hypermetabolic tumors. Yet in the cases where the tumor 
is greater than 4cm in diameter, CT outperforms PET. Although some
studies indicate that PET may provide superior information than CT
for pancreatic adenocarcinoma, CT is most commonly used to detect
and follow patients with pancreatic cancer. PET-CT is less commonly
used due the higher cost and lower access compared to CT alone.

Given the higher cost and lower access of PET, it would be ideal 
if one could derive accurate metabolic information with CT alone as 
is derived at PET. To date, the most commonly used CT biomarkers 
for pancreatic cancer are the tumor density (i.e., attenuation), tumor 
size and signal-to-noise ratio (SNR). Prior attempts to correlate specific 
imaging biomarkers (in both MR and CT) with PET have been done in 
non-pancreatic tumors such as non-small-cell lung cancer (r= 0.786) 
[17], rectal cancer (r= 0.587) [18], nasopharyngeal cancer (r= -0.372) 
[19], and head and neck tumors (r= -0.538) [20]. A stronger correlation 
with PET in the case of pancreatic cancer would be useful in assessment 
of pancreatic tumor pathology and response, and might even allow for 
substitution of CT for PET-CT in some cases. The goal of this study was 
to identify the CT biomarker(s) of pancreatic cancers which correlates 
best with PET.

Materials and Methods
This retrospective study was performed in accordance with 

institutional review board guidelines and approval. Informed consent 
was waived due to the minimal risk of this retrospective review.

Patient selection

A registry of pancreatic adenocarcinoma patients was reviewed 
to identify those with PET-CT scans performed within one week of a 
contrast-enhanced abdominal CT. A total of 24 patients were identified 
that fit study criteria, 17 males and 7 females. Average age was 65 years, 
with standard deviation of 9.8 and range of 47 to 86. Average tumor 
size was 4.2 cm, with standard deviation of 1.9 and range of 1.5 to 8.4 
cm. Average PET SUVmax was 5.3, with standard deviation of 2.4 and
range of 1.7 to 12. Pancreatic cancers were located in the following
regions: uncinate process (n=4), head (n=7), neck/body (n=10) and
tail (n=8) (some cancers were present in more than one region). All
patients had unresectable or metastatic disease at the time of the CT. Of 
the 24 patients, 13 had hepatic metastases, 12 nodal metastases, and 21
vascular involvement of the mesenteric vessels or portal vein. All were
pathologically proven to be pancreatic adenocarcinoma. 13 patients
had had prior chemotherapy and 11 were baseline studies. Twelve of
24 patients (50%) had cystic areas of the tumor.

CT protocol

All CTs were performed on a 64-slice CT scanner (CT750 HD, 
GE Healthcare, Milwaukee, WI) as part of a standard biphasic 
pancreatic CT protocol. This protocol consisted of a pancreatic phase 

(approximately 40 sec after contrast injection) and a portal venous 
phase (approximately 70 sec after contrast injection) after injection 
of a body-weight-based volume (1 cc/kg) of low-molecular-weight 
nonionic iodinated contrast medium (Omnipaque 350, General 
Electric, Milwaukee, WI) at 4 cc/second. Specific imaging parameters 
are shown in (Table 1).

PET protocol

All PET imaging was performed on a combined 16 slice PET/
CT scanner (Discovery PET Scanner, GE Healthcare, Milwaukee, 
WI) within one week of the enhanced CT scan. The PET (18F-FDG) 
scan used 3.27 mm slices and a 3D acquisition with the VUE Point 
HD reconstruction filter. Imaging matrix was 192 by 192 pixels. Seven 
to nine 15-cm bed positions were acquired, at 2 minutes per bed 
position if BMI (body mass index) was less than 35, 3 minutes per bed 
position was applied otherwise. A simultaneous non-contrast CT was 
performed at 129 kVp, 100-120 mA, non-helical, with slice thickness 
being 3.75mm. Corregistration between PET and non-contrast CT 
was performed using MIMvista software (MIMvista 5.2.3, by MIM 
Software Inc., Cleveland, OH). The PET SUVmax value within the tumor 
was used for analysis.

CT and PET measurements and derived variables 

The location and maximal axial tumor size was recorded. The 
presence and location of metastatic disease was noted. Circular regions 
of interest (ROI) were placed to include as much of the designated 
region as possible (Figure 1). Six measures were initially obtained from 
the ROIs (Table 2a): the mean CT attenuation of the normal pancreas, 
solid tumor, upper abdominal aorta, cystic tumor, and the standard 
deviation of the CT attenuation of normal pancreas, solid tumor. Note 
for cystic tumor, if no cystic tumor area existed, the cystic variable 
was set equal to the non-cystic tumor variable. All measurements 
were obtained by a board-certified radiologist on a commercially 
available offline computer workstation (GE Advantage Workstation, 
GE Healthcare, version 4.4). The original 6 measurements were used to 
derive 10 more biomarkers representing different combination ratios 
and SNR measurements (Table 2b). Two of the derived biomarkers 
used the originally measured aortic mean attenuation to normalize the 
enhancement values of the pancreas, i.e. to minimize the effect of scan 
timing on the enhancement values. Other derived biomarkers included 
two different SNR techniques using either the solid or cystic tumor 

Series Speed (mm/rot) Pitch Collimation (mm) Slice Thickness (mm) Reconstruction Interval (mm) kVp min/max mA
Pancreatic

39.375 0.984 .625
2.5 2 120 150-450

Portal venous 3.75 3 120 630

Table 1: CT imaging protocol.

 Figure 1: Red, pink, cyan, and blue circles denote ROIs of aorta, pancreas, 
solid tumor, and cystic tumor respectively.
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portions. 

The response variable, instead of SUVmean, SUVmax from PET was 
measured since in medical practices, SUVmax has been the standard and 
SUVmean is not generally used because of its dependence on volume. 
Indeed. The tumor was identified using registered and fused images on 
the workstation and the most FDG-avid portion of the tumor identified 
by visual inspection. Please note in PET, SUVmax was calculated as local 
concentration (g/mCi) divided by injected dose (mCi) over weight (g). 

Correlation analysis
Two experiments were conducted: (1) the first experiment was 

to explore the correlation between PET SUVmax and the 6 original 
biomarkers and the 10 derived biomarkers on all patients. Both 
univariate analysis (one parameter at a time) and multivariate analysis 
were conducted. Since the derived biomarkers already captured some 
nonlinearities between the original biomarkers, first order regression 
model was studied only; (2) the second experiment was to study the 
applicability of a two-stage hybrid model to identify the correlations. 
A multivariate classifier was first developed to group the patient into 
two cohorts. To identify the appropriate cut-off point from SUVmax 

to group the patients, we extensively evaluate the performance of the 
model with SUVmax varied from 2 to 8. The results indicated SUVmax 
5 has the best predictive power. The following experiment was then 
conducted with two patients cohorts formed based on 5 SUVmax as the 
cut-off point, which resulted 12 in low and high cohorts, respectively. 
Next, a multivariate regression analysis was then conducted for each 
cohort. For both experiments, the statistical modeling was developed 
using Minitab 16 [Minitab, Inc. (State College, PA)]. The classifier 
in the second experiment was developed using WEKA [21]. In the 
multivariate regression analysis, to address the issue of potential 
multicollinearity among the selected features, the model was developed 
adding features one at a time. The variance inflation factor (VIF) 
was then calculated to assess the possible correlations between the 
features. According to literature [22], VIF>10 indicates the model has 
multicollinearity issue. 

Results
Experiment I: Single stage statistical modeling 

The objective of this experiment was to evaluate the predicative 
power of simple statistical models using original biomarkers or derived 

Variables Measured Description
Solid tumor Mean HU value of tumor Direct measurement
Cystic tumor Mean HU value of cystic tumor Direct measurement

Aorta Mean HU value of aorta Direct measurement
Normal pancreas Mean HU value of pancreas Direct measurement

Normal pancreas SD Standard deviation of HU value at pancreas Direct measurement
Solid tumor SD Standard deviation of HU value at tumor Direct measurement

 *SD=standard deviation 
Table 2a: CT measurement–6 Original Readings as Imaging Biomarkers.

Variables Derived 
Ratio I Mean HU value of tumor/mean HU value of pancreas
Ratio II Mean HU value of cystic tumor/mean HU value of normal pancreas
Ratio III Mean HU value of solid tumor /mean HU value of cystic tumor
SD Ratio I Standard deviation of HU value at solid tumor/mean HU value at normal pancreas
SD Ratio II Standard deviation of HU value at solid tumor/standard deviation of pancreas
SD Ratio III Standard deviation of HU value at solid tumor/mean HU value at aorta
Normalized enhancement I Mean HU value of solid tumor/ mean HU value of aorta 
Normalized enhancement II Mean HU value of cystic tumor/mean HU value of aorta
Signal to Noise Ratio I (Mean HU value of normal pancreas–mean HU value at solid tumor mean)/Standard Deviation at normal pancreas
Signal to Noise Ratio II (Mean of HU value of normal pancreas–mean HU value at cystic tumor)/Standard Deviation of HU value at normal pancreas

*SD=standard deviation 
Table 2b:  CT measurement–10 Derived Readings as Imaging Biomarkers.

Figure 2a: Univariate analysis on the original 6 measures.
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biomarkers. For the original 6 biomarkers, univariate analysis was 
conducted. As shown in Figure 2a, the correlation (r value) ranges 
from 0.08 to 0.34. For the 10 derived biomarkers, the correlation (r 
value) has wider ranges from 0 to 0.54. The multivariate analysis 
identified stronger correlations for both two types of biomarkers. 
Specifically, the first order regression on the original 6 biomarker has 
an r 0.64 and on the derived biomarker has an r 0.74. (The regression 
model reports r2, and so we report r-its square root here for a fair 
comparison.) The details of the regression models are summarized in 
Table 3. As aforementioned, p<0.05 is used as the threshold to identify 
the significant factors. In addition, to avoid multicollinearity, VIF<10 
[22] is used as the guideline to ensure the model has no factors raising 
multicollinearity issues. Therefore as a result, only 4 out of 6 factors 
from original CT biomarkers and 2 out of 10 derived factors are 
selected to build the regression models respectively.

From this experiment, our key findings are three. First, for the 
original 6 biomarkers, the univariate analysis indicates that the 
biomarker with the least predictor with SUVmax is normal pancreas 
(r=0.08), the strongest predictor is cystic tumor (r=0.34). The 
multivariate regression model (first order) identifies r as 0.64. The key 
predictors are cystic tumor (with negative correlation), solid tumor 
SD, normal pancreas and aorta (with negative correlation). Second, for 
the 10 derived biomarkers, the univariate analysis indicates signal to 
noise ratio I has no correlation with SUVmax. Among the remaining 
9 biomarkers, the one with the least correlation with SUVmax is Ratio 
I with an r=0.17, the one with the strongest correlation is Ratio III 
with an r=0.54. The first order multivariate regression model identifies 
r as 0.74. The key predictors are SD Ratio III and Signal to Noise 
Ratio II, both with positive correlation. Thirdly, all models present no 
multicollinearity issue as VIF is <10 for all predictors. All predictors are 
significant with p<0.05.

In summary, the first experiment identified some correlations. As 
expected, derived biomarkers took advantage of domain knowledge 
(from CT) did show better correlation outcomes. This motivated us to 
further explore the domain knowledge from PET, for example, SUV is 
considered to be high when it is higher than 5 and vice versa, to help 
the correlation identification. This was done in the second experiment.

Experiment II: Two-stage model on all biomarkers

All measures including 6 original and 10 derived were considered 
in this experiment. Initially, there are 6 original factors: Solid tumor, 
Cystic tumor, Aorta, Normal pancreas, Normal pancreas SD, Solid 
tumor SD. Since aorta is commonly used to remove the effect of time 

delay, it was chosen as a denominator. To compare with the normal 
pancreas, normal pancreas was also chosen as a denominator. This 
resulted seven factors being investigated in correlation with the 
SUVmax: tumor, cyst, tumor/panc, cyst/panc, tumor/cyst, tumor/aorta, 
cyst/aorta (the panc, aorta are used in the ratio, thus there is no need 
of them). Similarly, additional six factors are also necessary and are 
correlated to SUVmax: SNR (P-T/SDP), SNR (P-C/SDP), SDTumor/
panc, SDtumor/SDPanc, SDtumor/aorta, tumor SD (only tumor SD is 
needed since panc SD is used in the derived variables as denominator). 
As a result, there were total 13 independent biomarkers (3 original 
and 10 derived). First, the patients were grouped into two cohorts 
using SUV value 5 as the cut-off point. By using those 13 features as 
inputs, Naïve Bayesian classifier [21] was trained to predict the patients 
belonging to the group with high SUV value (SUVmax>5) or low SUV 
value (SUVmax<=5). To avoid overfitting, 10 fold cross validation was 
implemented. In each of the 10 cross validation run, 10% of the patients 
(randomly) were put aside to test the model performance, and the 
remaining 90% of the patients were used to develop the classifier. The 
average performance of the 10 runs was collected and reported. In this 
study, the classification accuracy was 91% (2 out of 24 patients were 
wrongly classified). Next, for each group, first order regression model 
was developed with an r2=0.86 (r=0.93) for the high SUV cohort and 
an r2=0.68 (r=0.82) for the low SUV cohort. Considering the two stage 
together, for all the 24 patients, the overall prediction performance is 
r2=0.81 (r=0.90). 

Discussions
The goal of our study was to determine correlation of single energy 

CT measurements with PET SUVmax. If there was a high correlation, CT 
could then potentially be used as an imaging surrogate or complement 
to PET, saving costs, radiation and inconvenience to the patient. The 
results of our study found that multivariate analysis using several CT 
imaging biomarkers correlated better with PET SUVmax compared to 
univariate correlations such as tumor attenuation or SNR. We also 
found the derived imaging biomarkers showed stronger correlation 
compared with the original biomarker.

Overall, tumors with a higher SUVmax tend to have a more 
‘aggressive’ CT appearance, but this itself may differ from tumor to 
tumor, and different characteristics of an ‘aggressive’ appearance 
(necrosis, angiogenesis, heterogeneity, hyperenhancement) may 
be salient in each case. It is quite possible that each tumor type may 
have its own characteristics that correlate with tumor aggressiveness. 
Generally, a higher SUVmax is a poor prognostic indicator as well, as it 

  Figure 2b:  Univariate analysis on the derived 10 biomarkers.
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is associated with higher probability of recurrence [23], unresectable 
disease [24] and lower survival [25-27]. As described previously, in 
GI stromal tumors [28], an interval decrease in tumor attenuation 
has correlates with improved prognosis using new targeted therapies, 
and decreases in enhancement are also important in evaluating 
hepatocellcular cancer response [29]. Thus, it is possible that some of 
these new parameters may be of prognostic importance in monitoring 
pancreatic adenocarcinoma therapy as well.

Since pancreatic tumors with higher SUV may have a different CT 
appearance compared to those with lower SUV, a machine learning 
classifier was developed to separate the patients into two cohorts and 
different regression models were developed for each cohort. Much 
stronger correlations (overall r2=0.81, r=0.90) were identified with this 
two-stage process. We note that to date, most CT studies have relied 
on simplistic univariate measurements (i.e., tumor density or SNR) to 
derive prognostic or diagnostic information. The results of our study 
suggest that more complex CT analytics on these simple measures may 
still be able to identify good correlation with PET. This has important 
clinical implications as it implies that valuable information about 
pancreatic tumors is present at CT but not being optimally analyzed to 
derive the greatest information. 

In the two-stage model, the multivariate classifier (on the 13 
biomarkers) was able to group 22 out of 24 into the correct groups 
(high SUV vs. lower SUV). For the high SUV cohort, the regression 

model was r2=0.86 (r=0.93). The key variables with highest PET SUVmax 
all involved measurements of the solid portion of the tumor. These 
included normalized enhancement (the ratio of solid tumor to aorta), 
solid tumor, ratio of solid tumor to pancreas and signal to noise (mean 
pancreas–mean solid tumor/standard deviation of pancreas). It appears 
in the high SUV cases, normalized enhancement which minimizes the 
effect of scan timing is crucial. In addition, solid tumor density is a key 
factor, negatively correlating to the SUVmax.

For the low SUV cohort, the regression model was r2=0.68 (r=0.83). 
There was only one key variable with high PET SUVmax correlation: 
the mean attenuation of the cystic tumor (negative correlation). This 
negative correlation implies that more metabolically active tumors 
may result in more necrosis. This has also been implied in prior studies 
where the ratio of metabolism (as measured by FDG-PET) to blood 
flow (as measured by oxygen-18-water PET) was higher in malignant 
tumors [30]. Therefore, decreased blood flow leading to necrosis is a 
feature of metabolically active pancreatic cancers. It is interesting that 
the attenuation of the solid portion of the tumor was not identified as 
a key variable in this low SUV group although this is commonly used 
to assess response in clinical practice. In addition, various ratios or 
calculated values such as SNR did not improve PET SUVmax correlation. 
These results suggest that for patients with lower SUV measures, cystic 
rather than solid tumor density is the key factor to correlate to the PET 
SUV.

While promising, we do note that one of the principal limitations 
of our study is a relatively small sample size. A larger sample size would 
allow us to detect more subtle correlations and assert with greater 
confidence the correlations we have found. Another limitation is the 
retrospective nature of the study; a fair amount of heterogeneity exists 
and it would be interesting to see if patients with prior chemotherapy 
had different relationships between PET and CT parameters than the 
patients measured at baseline. Additionally, cystic tumor components 
were present in only 50% of cases. Finally, the multivariate analysis was 
done manually, using non-commercial methods [31].

Our study indicates that with more advanced CT analytics, a 
two-stage model integrating multivariate machine learning with 
multivariate regression results in better correlation with PET SUVmax 
than a univariate approach. These techniques have the potential to 
provide prognostic or treatment information for patients undergoing 
single energy CT for pancreatic adenocarcinoma that correlate better 
with PET results. Further studies are needed to confirm these results.  
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