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Introduction
In this article recent advance on pre and postnatal stem cells, stem 

cells in adult life, transdifferentiation of anterior pituitary (AP) cells, 
folliculostellate cells (FSCs) and stemness markers and biomarkers 
of pituitary cytogenesis were reviewed. In each subtitle impact of the 
specific markers and cellular reactions of stem cells were addressed in 
the light of recent cellular and molecular researches.

Pre and postnatal stem cells 

Pituitary gland plays an important role in such vital physiological 
processes as growth, reproduction, metabolism, and immune response. 
The adenohypophysis, the secretory anterior lobe of the gland, 
contains 5 different types of hormone-secreting cells: Lactotropes 
(prolactin secreting cells), Somatotropes (growth hormone secreting 
cells), Corticotropes (adrenocorticotropic hormone secreting cells), 
Gonadotropes (follicle-stimulating hormone/luteinizing hormone 
secreting cells), and Thyrotropes (thyroid stimulating hormone 
secreting cells) [1]. Pituitary gland of newborns already presents a 
full set of terminally differentiated hormone-producing cells [1,2]. 
Surprisingly, how these hormonal cells are formed or renewed during 
postnatal life remains largely unsolved [3]. However, postnatal gland 

undergoes extensive remodeling during one’s lifetime. Soon after 
birth, adenohypophysis enters a phase of growth that results in a 
dramatic increase in the size of the gland [4]. Adult pituitary gland has 
the ability to adapt its cellular composition in response to changing 
physiological conditions, and this ability is thought to be mediated via 
the hypothalamus. For instance, the total number of GH-secreting cells 
doubles during puberty, where as the number of PRL-secreting cells 
expands and contracts several-fold during pregnancy, lactation, and 
weaning [4]. The pituitary gland also appears to repopulate cells after 
tissue loss [5,6]. Proposed mechanisms include mitoses of differentiated 
cells, transdifferentiation between phenotypes, and the differentiation 
of pituitary stem cells [7]. However, there is no conclusive in vivo 
evidence that any of these processes actually occur. The existence 
of pituitary stem cells in the adult pituitary gland is supported by 
such findings as postnatal proliferation, differentiation based on 
environmental alterations, and development of hormone-producing 
cells after specific lesions in the pituitary [5,6]. Stem cell characteristics, 
including renewal, proliferation abilities, and the presence of stem cells 
markers, have been demonstrated in adult pituitary cells of mammals 
[6]. However, the proliferation ability observed so far is limited, and 
the potential of differentiation into hormone-secreting cells remains to 
be conclusively proven [6,8] (Figure 1).

Pituitary stem cells only come into play under more extreme 
conditions such as injury (so-called facultative stem cells). From the 
currently available data, embryonic developmental programs seem to be 
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pituitary gland and its alterations during adult life may be secondary 
to the activity of adult stem cells present in the gland [5,16-22]. Stem 
cell markers such as Sox-2 [20], nestin [21], Sca-1 [21], and CD133 [23] 
have been identified in subpopulations of cells in the adult pituitary 
gland of animal models [23,24]. In addition, “pituispheres” have been 
generated in vitro in these models [17,19]. These findings support a 
potential role for pituitary stem cells in adult pituitary plasticity. It is 
clear that the proposed models are still hypothetical on many points, 
and will need further thorough investigation and experimental support. 
So far the distinctive problem is the topographic network of newborn 
cells in addition to their functional incorporation into the presented 
homo- and/or heterotypic cell networks [3]. Pituitary stem cells express 
several stemness markers (such as Sox2) and pituitary-embryonic 
factors (such as Prop1), and that they prominently occupy the marginal 
zone around the cleft, the residual lumen of the adenohypophyseal 
primordium Rathke’s pouch (RP) [25]. Concisely pituitary stem cells, 
studies are only now beginning to address their role and participation, 
particularly in processes of postnatal pituitary maturation, repair and 
pathology [3] (Table 1). 

Apart from hormone producing cells of adenohypophysis, there is 
a substantial cohort of cells that lack hormonal markers [2,4,7,23]. This 
group of cells with non–hormone-secreting properties are referred as 
chromophobes. They are non reactive with periodic acid–Schiff stain 
since they are devoid of secretory hormone containing granules. In the 
late sixties the pioneer experimental studies by Yoshimura et al. showed 
the chromophobes acting as pituitary stem cells [7,23].  In this study, 
chromophobes were purified from 1-year-old mice and transplanted 
in the hypophysiotrophic area of the hypothalamus after surgical 
resection of the animal’s own pituitary gland. The authors reported that 

re-used during postnatal stem cell differentiation [3]. Stem cell markers 
have also been detected in animal models of pituitary tumorigenesis 
[8]. However a direct connection has not been demonstrated so 
far. Upcoming research about the capacity of “pituitary stem cells” 
to differentiate in vitro and in vivo will clarify the mechanisms for 
regulation of these cells. Recent stem cell researches shed light on 
molecular and physiologic mechanisms which most likely to be used in 
management of pituitary adenomas and the implantation of pituitary 
stem cells for hormonal deficiencies [9]. Alternatively stem cells may 
offer life-long cures for genetically, environmentally and/or surgically 
induced pituitary deficiencies [3].

Stem cells in adult life 

Recent data supports the role of stem cells in the repair and plasticity 
of different organs in the human body such as the heart and brain  
[10,11,12]. These specific cells in these organ systems have displayed the 
fundamental characteristics of a stem cell. Among the characteristics 
include self-renewal capacity, lack of specialization, and pluripotency 
with the ability to differentiate into different cell phenotypes [3,6,11]. 
Stem cells possess multipotent differentiation capacity to generate the 
desired tissue cell types [11,13]. Initially stem cells give rise to daughter 
(progenitor) cells that proliferate to expand as a pool of transit-
amplifying cells, which further perpetrate to precursor cells those of 
which differentiate and specialize to compensate pituitary cells [14,15]. 
Besides these cells characteristically form into sphere like structures 
and, in the example of neural stem cells (NSCs), are called neurospheres. 
In culture, the stem cells form colonies of undifferentiated, pluripotent 
cells that contain unique stem cell surface, cytoplasmic, and nuclear 
markers. Similar to these other organ systems, the plasticity of the 
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Figure 1: Distribution of hormonal and stemness markers (SM) in different topographic areas of pituitary gland. Anterior pituitary and its specific 
topographic site marginal zone bear different cell types including hormone secreting and non-hormone-secreting (chromophobes) cells. (AP, anterior 
pituitary IL, intermediate lobe; MZ, marginal zone; PP, posterior pituitary; RP, Rathke’s pouch).



Citation: Sav A (2014) Pituitary Stem/Progenitor Cells: Their Enigmatic Roles in Embryogenesis and Pituitary Neoplasia - A Review Article. J Neurol 
Disord 2: 146. doi:10.4172/2329-6895.1000146

Page 3 of 9

Volume 2 • Issue 2 • 1000146
J Neurol Disord
ISSN: 2329-6895   JND, an open access journal Frontiers in Stem cells for Neurological Disorders

pituitary like structures formed via proliferation and differentiation of 
chromophobes into acidophils and basophils [7,23].

In a follow-up study by Otsuka et al., [26] chromophobes 
differentiated in vitro into mature acidophils and basophils after the 
addition of hypothalamic hormones. However, the authors were unable 
to demonstrate one of the fundamental characteristics of a stem cell: the 
capacity of one single cell to originate more than one lineage of cells. 
The failure to demonstrate pluripotency may be partially explained by 
the heterogeneity of the cell group classified as chromophobes. This 
group includes agranular cells such as folliculostellate cells [FSC], 
follicular cells, marginal zone cells, degranulated hormonal cells, and 
mesenchymal and immune cells [5] (Figure 1). 

Agranular cells have the ability to differentiate into acidophils 
and basophils [7,23,26] supports the hypothesis that chromophobes 
might display stem cell characteristics [5]. However, only a small 
subpopulation of chromophobes actually displays these characteristics 
[5,6,7,23]. Therefore, the individual study of such cells as FS cells, 
follicular cells, or marginal cells represents the current trend in pituitary 
stem cell research in an attempt to identify this subpopulation [5,23].

The presence of minimal mitotic activity in occurrence of 
plurihormonal and null cell–type adenomas and in the hyperplastic 
pituitary gland support the hypothesis that pituitary stem cells are 
potential cellular source for pituitary adenomas [27]. Alterations in 

the hormonal environment might be associated with changes in the 
normal pattern of growth/differentiation of these cells and therefore 
promote pituitary tumorigenesis.

The majority of the pituitary pathophysiology data have been 
obtained in animal models. The study of human pituitary tissue still 
presents several limitations, including lack of functional human cell 
lines in culture, the anatomic inaccessibility of the pituitary gland, 
unique murine tumor growth characteristics and paucity of reliable 
animal models, and [23,27]. For instance, the higher mitotic activity 
and expansion of murine pituitary tissue must be considered before 
the results are analyzed and extrapolated as a representation of the 
human pituitary gland [23,28]. However, animal studies have provided 
important information about pituitary physiology and the mechanisms 
of pituitary tumorigenesis. It is discussed which adult pituitary 
cell lineages might have a pituitary stem cell role and the potential 
participation of these cells in pituitary tumorigenesis. In addition, 
some researchers propose possible future clinical applications like the 
development of new treatment strategies for pituitary adenomas and 
hormone deficiencies [23,27].

Transdifferentiation of anterior pituitary (AP) cells 

The majority of anterior pituitary is formed by chromophobes 
those of which have differentiation capacity into mature acidophils and 
basophils after the addition of hypothalamic hormones. This group 
includes agranular cells such as folliculostellate cells, follicular cells, 
marginal zone cells, degranulated hormonal cells, and mesenchymal 
and immune cells [6]. The heterogeneous ability of agranular cells 
to differentiate into acidophils and basophils [7,26] supports the 
hypothesis that chromophobes might display stem cell characteristics 
[6]. However only a small subpopulation of chromophobes actually 
display these characteristics [5,6,7]. Therefore, the individual studies of 
these cells such as folliculostellate cells, follicular cells, or marginal cells 
represent the current trend in pituitary stem cell research in an attempt 
to identify these subpopulations [29].

Folliculostellate cells (FSCs) 

Ultrastructural features of follicular structures reveal elongate or 
stellate cells (folliculo-stellate cells) attached to each other via terminal 
bars at their apical surface and by desmosomes at their lateral cell 
membranes that form major parts of the adenohypohyseal parenchyma 
[30,31]. FSCs occupy an approximately central position within every 
acinus in the adult human gland. Electron microscopically, these 
specific cells are furnished with a small nucleus and inconspicuous 
nucleolus, numerous free cytoplasmic polyribosomes but scant rough 
endoplasmic reticulum (RER), small Golgi apparatus. Additionally 
there might be a few intermediate filaments, and/or glycogen particles. 
Immunohistochemically, they are immunoreactive for S-100 and for 
GFAP [32-34]. Unfortunately, these immunoreactivity patterns are not 
coexisting and are only temporary as related to phases of the FSC life 
cycle. Lately, it was found that these cells are also immunoreactive with 
EMA and galectin-3 [35,36].

Due to a wide variety of perplexing capacities of stem cells from 
hormone production to immune roles, coupled with morphologic 
variations some investigators supposed dual derivation of FSC: 
pituitary and hemopoetic (dendritic cells) [23,37]. In a detailed study in 
which electron microscopic and ultrastructural immunocytochemical 
analyses were used, it was well documented formation of follicles within 
the pituitary primordium with stubby villi filling most of small lumina 
were noticeable as early as 6 weeks of gestation [38]. Later (8-10 weeks 

SMs in Embryonic Phase 

Marker References 
Oct-4 5,6,50,51
Sox2 5,6,50,51

Nanog 5,6,50,51

Wnt/ b-beta-catenin 69 

Pax6 70-75 

Lhx4 70-75 

Prop1 25,70-75 

Otx2 55,70-75 

Notch2 70-75 

Notch3 70-75,78 

Non Sca1 high 70-75 

SMs in Adult Pituitary 

Marker References 
CD133 22 

Oct-4 22 

Nanog 22 

Nestin 22 

Bmi-1 22 

Jag1 25,41,76 

Notch2/3 79 

Hes1 25,41,76 

Hey1 25,41,76 

Pit-1 3,54,83 
Prop1 54 
P57 25 
P27 25 

Table 1: Distribution of stemness markers in embryonic and adult phases of 
pituitary gland. Various stemness markers in different phases of pituitary gland are 
depicted in pertinent references within the manuscript.
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of gestation), the morphology of the follicles is not much different from 
that of what is seen in the adult gland. In the fetal gland the follicles 
may contain FSC possessing a few small secretory granules, fulfilling 
the criteria of endocrine differentiation, but not more differentiated 
forms [23,38].

Structural evolution of pituitary acinus is incessantly ongoing in 
distinctive developmental phases of antenatal and postnatal life [23,30]. 
The newborn adenohypophysis contains no cells immunoreactive for 
S-100 or GFAP. Soon after a number of GFAP-positive cells appear 
in the cleft area, within the small embryonic remnants of the Rathke’s 
pouch. The late appearance of S-100 and GFAP immunoreactivities 
most likely results from the previously described mechanism [30]. 
Follicles are not static structures: new FSC are formed by glandular cells 
around single-cell necroses by forming terminal bars and desmosomes, 
in this manner isolating the debris [30]. Subsequently, they dismantle 
their endocrine machinery, taking up the non-endocrine phenotype of 
FSC. This process was interpreted to be ubiquitous as well as reversible 
[39]. This particular reversibility most probably may be explained 
as both becoming a progenitor null cell followed by differentiation 
to participate in tissue repair or in hyperplastic processes, and 
tumorigenesis [23,39].

As for extensive use of immunohistochemistry, EM, and 
immunoelectron microscopy enlightened the concept of inflexible one 
cell–one hormone, thus 5-cell-type model. Therefore, using of modern 
techniques and new horizons in understanding of new adenoma types 
and previously undisclosed cell types belonging to or resident in the 
human adenohypophysis [23,40]. So far, not only morphologic, in vitro 
biochemical, and genetic data but neoplastic potential make the small 
FSC more than just an equal member of the pituitary cell population: 
it emerges into a pluripotent pituitary-specific adult stem cell [23,39].

Stemness markers and biomarkers of pituitary cytogenesis 

Numerous biomarkers of having different effects either in pituitary 
embryogenesis and tumor development are designated as stemness 
markers. This perplexing group consists of several constituents, i.e. 
nestin, Sca1, Sox2+/E-cadherin, S100 proteins, Prop-1, GFRa2, Oct-4, 
Bmi-1, CD133, beta-catenin, SOX2, Pax6, Notch2, Notch3, Pit1, p57 
and cancer stem cells.

Nestin has been found expressed in some stem (Sox2+) cells in 
situ (marginal zone) and in culture (pituispheres) by a number of 
investigators [20,21,41] but not by others [42]. Certainly, nestin is 
not restricted to the pituitary stem cells but shows a heterogeneous 
expression pattern in the pituitary’s non-hormonal cell population, 
including in some pericytes [5,6,43]. 

Sca1–(Stem Cell Antigen 1) another marker that seems contentious 
is Sca1, not or only modestly expressed in the stem cell-enriching side 
population (SC-SP) fraction [41] but immunodetected in pituispheres 
[20] and in a subpopulation of colony-forming cells [44]. However, the 
role of Sca1 expressivity in the pituitary and its tumors remains to be 
shown. 

Sox2+/E-cadherin+ stem cells start to express Sox9, nestin and/
or S100 as well as Prop1 during their transition to the progenitor 
phase, and subsequently loose expression of these markers before or 
during terminal differentiation to the  hormonal cells. E-cadherin 
is a tumor suppressor gene [45,46] and a classical member of the 
cadherin superfamily. Cadherins act so structural cell glue, regulate 
signaling pathways that organize cell proliferation and motility which 
is fundamentally driven by the process of epithelial–mesenchymal 

transition (EMT) [3]. Loss of E-cadherin function or expression has 
been implicated in cancer progression and metastasis [47]. Marginal 
cells facing the Rathke’s cleft and hormone negative but S100+ cells 
within AP lobe strongly express E-cadherin (Cdh1)[20]. E-Cadherins 
promote coordinated actions to changing endocrine needs and 
conditions [48]. 

S100 proteins have been implicated in a variety of intracellular and 
extracellular functions [49]. S100 proteins are involved in regulation of 
transcription factors, Ca++ homeostasis, protein phosphorylation, the 
dynamics of cytoskeleton constituents, cell growth and differentiation, 
enzyme activities, and the inflammatory response. S100A7 (psoriasin) 
and S100A15 have been found to act as cytokines in inflammation, 
particularly in autoimmune skin conditions such as psoriasis [49]. 
Follicostellate cells of pituitary display diverse nuclear and cytoplasmic 
S100 reactivity FSCs are presumed to be the analogs of brain glial cell 
lineage [5,6,50,51]. 

Prop1:  Homeobox protein prophet of PIT-1 is a protein that in 
humans is encoded by the PROP1 gene [52]. PROP1 has both DNA-
binding and transcriptional activation ability. Its expression leads 
to ontogenesis of pituitary gonadotropes, as well as somatotropes, 
lactotropes, and caudomedial thyrotropes. Inactivating mutations in 
PROP1 result in deficiencies of luteinizing hormone (LH), follicle-
stimulating hormone (FSH), growth hormone (GH), prolactin (PRL), 
and thyroid-stimulating hormone (TSH) [52]. In pituitary genetic 
inactivation of Prop1 results in failure of embryonic progenitors to 
leave the dorsal proliferative region of RP for further differentiation and 
colonization of the developing AP [53]. One of the optional functions 
of Prop1 is playing a pivotal role for cells differentiating from the stem 
cell cohort into the differentiating zone of the gland. It is a compulsive 
marker for transition of stem cells from the in-gland Sox2+ cell clusters 
to the neighboring pituitary parenchyma [54]. 

GFRa2 protein is a glycosylphosphatidylinositol (GPI)-linked cell 
surface receptor. It is a part of the GDNF receptor family. Glial cell 
line-derived neurotrophic factor (GDNF) and neurturin (NTN) are 
two structurally related, potent neurotrophic factors that play key roles 
in the control of neuron survival and differentiation. They both bind 
the GFRA2 receptor [55]. 

Oct-4 (Octamer-binding transcription factor 4) is a homeodomain 
transcription factor of the POU family [56]. This protein is critically 
involved in the self-renewal of undifferentiated embryonic stem cells 
(ESC). It has often been used as a marker of stemness, as differentiated 
cells show reduced expression of this marker. Several studies suggest a 
role for Oct-4 in sustaining self-renewal capacity of adult somatic stem 
cells (i.e. stem cells from epithelium, bone marrow, liver, pituitary, etc.) 
[57]. Oct-4 has also been implicated as a marker of cancer stem cells 
(CSCs). Oct-4, Sox2, and Nanog, and Klf4 constitutes the pluripotency 
transcription-factor core of embryonic stem (ES) cells [5,6,50,51]. 

Bmi-1: The Polycomb group transcriptional repressor Bmi-1 
was discovered as a common oncogene activated in lymphoma [58], 
specifically regulate HSCs [59] and neural stem cells [60]. Human 
pituitary adenomas also show Bmi-1 overexpression in about half of 
the cases so the stem cell marker Bmi-1 could be included in pituitary 
neoplasia [61]. 

CD133 originally known as AC133 [62]. CD133 is a glycoprotein 
also known in humans and rodents as Prominent 1 (PROM1) 
[63]. It is a member of pentaspan transmembrane glycoproteins 
(5-transmembrane, 5-TM), which specifically localize to cellular 
protrusions. CD133 is expressed in hematopoietic stem cells [64], 
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endothelial progenitor cells [65], glioblastoma, neuronal and glial stem 
cells [66], various pediatric brain tumors [66] as well as adult kidney, 
mammary glands, trachea, salivary glands, placenta, digestive tract, 
testes, and some other cell types [67]. After analyzing isolated stem/ 
progenitor-like cells from pituitary adenoma by the sphere method, 
the presence of expression of neuronal progenitor markers including 
CD133 supported CD133+ cells existence in pituitary adenomas [68]. 

Beta-catenin (or β-catenin) is a dual function protein, regulating 
the coordination of cell–cell adhesion and gene transcription. Its 
role in stem cell renewal is being one of the most important results 
of Wnt signaling and the elevated level of beta-catenin in certain 
cell types is the maintenance of pluripotency [69]. In other cell types 
and developmental stages, β-catenin may promote differentiation, 
especially towards mesodermal cell lineages. β-catenin constitutes an 
integral constituent of the classic cadherin complexes. Widespread 
membranous β-catenin is dispersed in AP extensively. It is intensely 
expressed in somatotropes as well as marginal zone [42]. β-catenin is 
not only accumulated in the nucleus and cytosol (nucleocytoplasmic 
beta-catenin or β-catnc) only in small clusters of cells during the pre-
tumoral stage of late-embryonic and early-postnatal life, but in the 
subsequent phases virtually all tumor cells exhibits accumulation of 
β-catenin in the nucleus, cytoplasm or both [3]. 

Sox2: SRY (sex determining region Y)-box 2, also known as 
Sox2, is a transcription factor that is essential for maintaining self-
renewal, or pluripotency, of  undifferentiated embryonic stem cells. 
Co-expression of nestin and Sox2+ in some stem cells (marginal zone) 
and in culture (pituispheres) was documented [20,21,41]. Prop1 is 
probably downregulated before stem cell differentiation enhances [3]. 
Sox2 expression and side population (SP) phenotype assessed stem 
cell population is more profuse throughout the postnatal first week 
than in the next phases. Thereby higher proliferation rate and quicker 
differentiation capacity show an activated status as obtained from 
pituisphere cultures [48]. 

Pax6 serves as a regulator in the coordination and pattern 
formation required for differentiation and proliferation to successfully 
take place, ensuring that the processes of neurogenesis and oculogenesis 
are carried out successfully. As a transcription factor, Pax6 acts at the 
molecular level in the signaling and formation of the central nervous 
system. Pax6 as being a member of transcriptional regulators and 
signaling factors those have critical roles in early embryogenesis of 
the pituitary, (viz. Hesx1, Lhx4, Prop1, Pax6, Otx2, and specific Notch 
pathway components). Pax6 is also climaxes it expressivity in the non-
Sca1high SP [70-75]. 

Notch 2 a member of the notch family. Notch family members 
play a role in a variety of developmental processes by controlling 
cell fate decisions. Notch signaling pathway has been identified in 
the embryonic periluminal progenitor zone [73,75] as well as in the 
adult pituitary SC-SP (in particular Jag1, Notch2, Notch3, Hes1 and 
Hey1) [25,41,76]. Adult pituitary cells present prominent expression 
of several transcriptional, signaling and growth-regulatory factors 
previously thought to be restricted to the pituitary embryonic phase 
(such as Hesx1, Lhx4, Pax6, Prop1, Otx2, Notch2, Notch3 [25,41]. 
Notch receptors Notch1 and Notch2, and ligands Jag1 and Jag2 are not 
co localized with hormones but with S100 (except for Jag2) in about 
half of the (S100+) marginal cells [77]. 

Notch 3 gene encodes the third discovered human homologue 
of the Drosophilia melanogaster type I membrane protein notch. 
Transgenically activated Notch pilots to amplify Sox2 immunoreactivity 

in the embryonic pituitary [78]. Suppression of Notch signaling results 
in a drop off in Sox2 expression and an increase in differentiated cells 
in other developing systems [79]. Notch signaling system in adult 
pituitary stem cells intensifies Prop1 and Sox2 expression. It sustains 
self-renewal/proliferation of stem cells likewise in other adult tissues 
[80,81]. 

Pit-1 is a pituitary-specific transcription factor responsible for 
pituitary development and hormone expression in mammals and 
is a member of the POU family of transcription factors that regulate 
mammalian development. The POU family is so named because the 
first 3 members identified were Pit-1 and Oct1 (MIM 164175) of 
mammals, and Unc-86 of C. elegans. Pit1 contains 2 protein domains, 
termed POU-specific and POU-homeo, which are both necessary for 
high affinity DNA binding on genes encoding growth hormone (GH) 
and prolactin (PRL). Pit1 is also important for regulation of the genes 
encoding prolactin and thyroid-stimulating hormone beta subunit 
(TSHB) by thyrotropin-releasing hormone (TRH) and cyclic AMP 
[82,83]. In embryonic rat pituitary Pit-1 and Prop1 are co-localized in 
pituitary in as small percentage of cells (1-10%) but in postnatal life 
Pit-1+ cells decline in number whereas no Prop1 cells are in present in 
adult pituitary [54]. Prop1 is probably downregulated before stem cell 
differentiation enhances [3]. 

P57 is a cyclin-dependent kinase inhibitor 1C (p57,Kip2), also 
known as CDKN1C, is protein which in humans is encoded by the 
CDKN1C imprinted gene. This cyclin-dependent kinase inhibitor 1C 
is a tight-binding inhibitor of several G1 cyclin/Cdk complexes and 
a negative regulator of cell proliferation. Mutations of CDKN1C are 
implicated in sporadic cancers and Beckwith-Wiedemann syndrome 
suggesting that it is a tumor suppressor candidate. CDKN1C is a tumor 
suppressor human gene on chromosome 11 (11p15) and belongs to 
the cip/kip gene family. It encodes a cell cycle inhibitor that binds to 
G1 cyclin-CDK complexes [84]. Thus p57KIP2 causes arrest of the cell 
cycle in G1 phase. P57 expression causes cell arrest of progenitor cells 
and the switch to another cyclin-dependent kinase inhibitor, p27, to 
some extent heralding the manifestation of differentiation markers to 
preclude re-entry of differentiated cells into the cell cycle [85]. High 
levels of p57 (CDKN1C) mRNA has also been found in the adult SC-SP 
which may point to a similar role for p57 in the stem cell compartment 
of the adult pituitary gland [25]. 

Cancer stem cells (CSCs) are cancer cells (found within tumors 
or hematological cancers) that possess characteristics associated with 
normal stem cells, specifically the ability to give rise to all cell types 
found in a particular cancer sample. Therefore CSCs are tumorigenic 
(tumor-forming), conceivably in contrast to other non-tumorigenic 
cancer cells. CSCs may produce tumors through the stem cell processes 
of self-renewal and differentiation into multiple cell types. Such cells 
are proposed to persist in tumors as a distinct population and cause 
relapse and metastasis by giving rise to new tumors. Therefore, 
development of specific therapies targeted at CSCs holds hope 
for improvement of survival and quality of life of cancer patients, 
especially for sufferers of metastatic disease. As CSCs would form 
a very small proportion of the tumor, this may not necessarily select 
for drugs that act specifically on the stem cells. The theory suggests 
that conventional chemotherapies kill differentiated or differentiating 
cells, which form the bulk of the tumor but are unable to generate 
new cells. A population of CSCs, which gave rise to it, could remain 
untouched and cause a relapse of the disease. In experimental pituitary 
models mice bearing mutations affecting–catenin proteolysis in 
the pituitary and leading to constitutive activation of the WNT/β-
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catenin pathway (obtained by crossing a Hesx1-cre knock-in strain 
to a β-catenin strain that produces degradation-resistant β-catenin 
mutant, upon recombination), developed tumors resembling, as far as 
histological appearance and marker expression are concerned, human 
adamantinomatous craniopharyngiomas [86]. Based upon this data, it 
could be hypothesized that beta-catenin, which controls the balance 
between self-renewal and differentiation, is inactivated in normal 
pituitary through altered epigenetic mechanisms may cause sustained 
progenitor proliferation and eventually tumor development [87]. 
Importantly, these data strongly support the hypothesis that genetic 
alterations in pituitary stem/progenitor cells may results in pituitary 
tumors [88]. 

Pituitary Stem Cells and Pituitary Neoplasia 
The identification of a classic pituitary stem cell could have major 

contributions to basic and clinical science. It is hypothesized aberrant 
proliferation of pituitary stem cells occurs after an abrupt change in 
the pituitary environment directing to the formation of pituitary 
adenomas [12,27]. Hitherto only one animal study has explored the 
role of potential stem cells in pituitary tumorigenesis by using genetic 
techniques to examine the role that nestin+ cells in tumorigenesis. Mice 
having one functional retinoblastoma allele (Rb+/-) were crossed with 
nestin and GFP-positive (Green Protein Fluorescent) mice [21]. The 
offspring of the cross mice with predominantly produces and releases 
melanocyte stimulating hormone (MSH) tumors. Unexpectedly 
none of the tumor cells reacted with nestin; however, nestin+ cells 
that expressed Lhx3 and SOX-2 in encapsulated the tumors. Based 
on anatomical propinquity, the authors concluded that nestin+ cells 
contribute to the initiation of MSH-positive adenomas [21]. In regard 
to this compelling hypothesis of pituitary tumorigenesis if it would be 
correct so the suggestions for pituitary adenoma treatment would have 
been substantial. The other suggestion is if aberrant pituitary stem cells 
are removed then an indefinite risk subsists for tumor recurrence even 
though near total resection of adenoma is surgically accomplished. 
Moreover, if only a unique cell surface marker of aberrant stem cell is 
identified, then it would be possible to identify the cells with a specific 
antibody by using immunohistochemical analysis to make certain that 
the stem cell cohort is removed [89] (Table 2).

Concisely the pituitary is a dynamic organ which undergoes a 
number of changes in response to physiological stimuli and pituitary 
microenvironment changes. These subtle changes are thought to be 
mediated by differentiation of pituitary stem cells. Unlike neural stem 
cells, pituitary stem cells have not been clearly delineated to a certain 
cell type, therefore many potential candidates exist. Among this great 

deal candidates include the chromophobes, folliculostellate cells and 
marginal cells, the side population cells, SOX2+/SOX9- cells, and GPS 
cells (GFRa2/Prop1/stem cells). Some authors suppose the current 
evidence implies that FSCs are the apparently cell type to represent 
pituitary stem cells. Contribution of pituitary stem cells to pituitary 
tumorigenes is remains to be further clarified. Due to a large scale of 
proliferative biomarkers and growth factors involved in proliferation, 
survival, cell migration and tumorigenesis, cells harboring prominent 
intracellular signal transducing systems may proceed as paracrine 
signaling alliance [90]. Hitherto numerous studies confirm the 
existence of multipotent stem/progenitor cells in the adult pituitary. 
Even though there is no consensus some characteristics, i.e., Sox2/
SOX-9 expression, SC-SP appear to illustrate identifiable phenotype 
of these cells. So the upcoming step ahead ought to be corroborating 
these items in human pituitary pathologies [88]. Unfortunately there is 
scant support to emphasize that a specific cell type is definitive of a true 
pituitary stem cell. There has been a considerable amount of studies 
investigating the potential of folliculostellate cells to act as pituitary 
stem cells. Nonetheless, forthcoming studies need to undoubtedly 
clarify the pluripotent capacity of FSCs. Moreover, emerging evidence 
about the contention of GPS cells and SOX2+/SOX9- cells needs to 
be investigated further. The implications of the discovery of pituitary 
stem cells are considerable, and could possibly help improve not only 
basic information but clinical diagnosis and medical management of 
pituitary adenomas.

Conclusion 
Discovery of pituitary stem/progenitor cells indisputably expand 

our understanding of organ specific physiology and pathology. The 
stem cell data in relation with pituitary neoplasia, cell replacement 
due to damaging of non-neoplastic conditions and aging of pituitary 
tissue will undeniably be used in the specific treatment modalities. 
Currently it is formidable that by using different approaches to stratify 
and extract intersecting putative stem cells will allow us to manage 
brand new treatment modalities of diverse pituitary physiologic and 
pathologic circumstances. Consequently as this miniature magic gland 
plays a pivotal role in a wide variety of key physiological processes, 
continuously expanding and fundamental stem cell studies will lead to 
specific substitution of pituitary stem cells as an incentive step in the 
regenerative medicine.
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