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Abstract

We present the classical Poisson-Lichnerowicz cohomology for the Poisson algebra of
polynomials C[X1, . . . , Xn] using exterior calculus. After presenting some non-homoge-
nous Poisson brackets on this algebra, we compute Poisson cohomological spaces when
the Poisson structure corresponds to a bracket of a rigid Lie algebra.
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1 Introduction

The first Poisson structures appeared in classical mechanics. In 1809, D. Poisson introduced
a bracket of functions, which permits to write Hamilton’s equations as differential equations.
This leaded to define a Poisson manifold, that is, a manifold M whose algebra of smooth
functions F (M) is equipped with a skew-symmetric bilinear map:

{ , } : F (M)F (M) −→ F (M),

satisfying the Leibniz rule:

{FG,H} = F{G,H}+ {F,H}G,

and the Jacobi identity. In [7], A. Lichnerowicz has also introduced a cohomology, associated
to a Poisson structure, called Poisson cohomology.

In this paper, we study in terms of exterior calculus the Poisson structures on the as-
sociative algebra of complex polynomials in n variables. We apply this approach to the
determination of non-homogenous quadratic Poisson brackets and to the computation of the
Poisson cohomology. The linear Poisson structures are naturally related to the n-dimensional
Lie algebras. Recall that a complex Lie algebra g is rigid when its orbit in the algebraic variety
of n-dimensional complex Lie algebra defined by the Jacobi relations is Zariski open. Such an
algebra admits a nontrivial Malcev torus and it is graded by the roots of the torus. We study
the Poisson structure on C[X1, . . . , Xn] whose Poisson brackets correspond to a solvable rigid
Lie bracket with non-zero roots. In a generic example, we compute the corresponding Poisson
cohomology.
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2 Poisson structures on C[X1, . . . , Xn] and exterior calculus

2.1 Poisson brackets and differential forms

Let An be the commutative associative algebra C[X1, . . . , Xn] of complex polynomials in
X1, . . . , Xn. We define a Poisson structure on An as a bivector:

P =
∑

1≤i<j≤n
Pij∂i ∧ ∂j ,

where ∂i = ∂
∂Xi

and Pij ∈ An, satisfying the axiom:

[P,P]S = 0,

where [, ]S denotes Schouten’s bracket. If P is a Poisson structure on An, then

{P,Q} = P(P,Q)

defines a Lie bracket on An which satisfies the Leibniz identity:

{PQ,R} = P{Q,R}+Q{P,R}

for any P,Q,R ∈ An.
We denote by Shp,q the set of unshuffles, where a (p, q)-shuffle is a permutation σ of the

symmetric group Σp+q of degree p + q such that σ(1) < σ(2) < · · · < σ(p) and σ(p + 1) <
σ(p+ 2) < · · · < σ(p+ q). For any bivector P we consider the (n− 2)-exterior form:

Ω =
∑

σ∈S2,n−2

(−1)ε(σ)Pσ(1)σ(2)dXσ(3) ∧ · · · ∧ dXσ(n),

where (−1)ε(σ) is the signature of the permutation σ. If n > 3, we consider the Pfaffian form
αi1,...,in−3 given by

αi1,...,in−3(Y ) = Ω
(
∂i1 , ∂i2 , . . . , ∂in−3 , Y

)
with Y =

∑n
i=1 Yi∂i, Yi ∈ An.

Theorem 2.1. A bivector P on An satisfies [P,P]S = 0 if and only if:

• for n > 3,

dαi1,...,in−3 ∧ Ω = 0

for every i1, . . . , in−3 such that 1 ≤ i1 < · · · < in−3 ≤ n.

• for n = 3,

dΩ ∧ Ω = 0.

Proof. The integrability condition [P,P]S = 0 writes

n∑
r=1

Pri∂rPjk + Prj∂rPki + Prk∂rPij = 0
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for any 1 ≤ i, j, k ≤ n. But

αi1,...,in−3 =
∑

(−1)NPjkdXl

summing over all triples (j, k, l), such that (j, k, i1, . . . , l, . . . in−3) is a permutation of S2,n−2

and N = ε(σ) + p− 3, where (−1)ε(σ) is the signum of σ. Then

dαi1,...,in−3 =
∑

(−1)NdPjk ∧ dXl,

and dαi1,...,in−3 ∧ Ω = 0 corresponds to [P,P]S = 0. The proof is similar if n = 3.

2.2 Lichnerowicz-Poisson cohomology

We denote by AnP the algebra An = C[X1, . . . , Xn] provided with the Poisson structure P.
For k ≥ 1, let χk(AnP) be the vector space of k-derivations that is of k-skew linear maps on
AnP satisfying

ϕ
(
P1Q1, P2, . . . , Pk

)
= P1ϕ

(
Q1, P2, . . . , Pk

)
+Q1ϕ

(
P1, P2, . . . , Pk

)
for all Q1, P1, . . . , Pk ∈ AnP . For k = 0, we put χ0(AnP) = AnP . Let δk be the linear map:

δk : χk
(
AnP
)
−→ χk+1

(
AnP
)

given by

δkϕ
(
P1, P2, . . . , Pk+1

)
=
k+1∑
i=1

(−1)i−1
{
Pi, ϕ

(
P1, . . . , P̂i, . . . Pk+1

)}
+

∑
1≤i<j≤k+1

(−1)i+jϕ
({
Pi, Pj

}
, P1, . . . , P̂i, . . . , P̂j , . . . Pk+1

)
,

where P̂i means that the term Pi does not appear. We have δk+1◦δk = 0 and the Lichnerowicz-
Poisson cohomology corresponds to the complex (χk(AP), δk)k. Let us note that χk(AnP) is
trivial as soon as k > n. A description of the cocycle δkϕ is presented in [11] for n = 3 using
the vector calculus. We will describe these formulae using exterior calculus for n > 3. Let us
begin with some notations.

• To any element P ∈ AnP = χ0(AnP), we associate the n-exterior form:

Φn(P ) = PdX1 ∧ · · · ∧ dXn.

• To any ϕ ∈ χk(AnP) for 1 ≤ k < n, we associate the (n− k)-exterior form:

Φn−k(ϕ) =
∑

σ∈Sk,n−k

(−1)ε(σ)ϕ
(
Xσ(1), . . . , Xσ(k)

)
dXσ(k+1) ∧ · · · ∧ dXσ(n).

• To any ϕ ∈ χn(AnP), we associate the function Φ0(ϕ) = ϕ.

Finally, if θ is an k-exterior form and Y =
∑n

i=1 Yi∂i is a vector field with Yi ∈ AnP , then
the inner product i(Y )θ is the (k − 1)-exterior form given by

i(Y )θ
(
Z1, . . . , Zk−1

)
= θ
(
Y,Z1, . . . , Zk−1

)
for every vector fields Z1, . . . , Zk−1.
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Theorem 2.2. Assume that n = 3. Then we have

(1) for all P ∈ A3
P ,

Φ2

(
δ0P

)
= −Ω ∧ dP ;

(2) for all f ∈ χ1(A3
P),

Φ1

(
δ1f
)

=− i
(
∂1, ∂2

)[
Ω ∧ d

(
i
(
∂3

)
Φ2(f)

)
+ d
(
i
(
∂3

)
Ω
)
∧ Φ2(f)

]
+ i
(
∂1, ∂3

)[
Ω ∧ d

(
i
(
∂2

)
Φ2(f)

)
+ d
(
i
(
∂2

)
Ω
)
∧ Φ2(f)

]
− i
(
∂2, ∂3

)[
Ω ∧ d

(
i
(
∂1

)
Φ2(f)

)
+ d
(
i
(
∂1

)
Ω
)
∧ Φ2(f)

]
,

where i(X,Y ) denotes the composition i(X) ◦ i(Y );

(3) for all ϕ ∈ χ2(A3
P),

Φ0

(
δ2ϕ
)

= i
(
∂1, ∂2, ∂3

)(
dΩ ∧ Φ1(ϕ) + Ω ∧ dΦ1(ϕ)

)
.

Proof. If n = 3, we have

Ω = P12dX3 − P13dX2 + P23dX1.

Then the integrability of P is equivalent to Ω ∧ dΩ = 0. The theorem results of a direct
computation and of the following general formula:

∀ϕ ∈ χk
(
AnP
)
, ϕ

(
P1, . . . , Pk

)
=

∑
1≤i1≤···≤ik≤n

ϕ
(
Xi1 , . . . , Xik

)
∂i1P1 · · · ∂ikPk.

Example 2.3. We consider the Poisson algebra AnP1
= (C[X1, X2, X3],P1), where P1 is

given by
P1

(
X1, X2

)
= X2,

P1

(
X1, X3

)
= 2X3,

P1

(
X2, X3

)
= 0.

Then

dimH0
(
AnP1

)
= 1, dimH1

(
AnP1

)
= 3, dimH2

(
AnP1

)
= 2, H3

(
AnP1

)
= {0}.

In this case, Ω = X2dX3 − 2X3dX2 and dΩ = 3dX2 ∧ dX3. Let us compute dimH2(AnP1
).

Let ϕ ∈ χ2(AnP1). Then Φ0(δ2ϕ) = 0 implies

dΩ ∧ Φ1(ϕ) + Ω ∧ dΦ1(ϕ) = 0,

that is

X2

(
∂1ϕ

(
X1, X3

)
+ ∂2ϕ

(
X2, X3

))
+ 2X3

(
− ∂1ϕ

(
X1, X2

)
+ ∂3ϕ

(
X2, X3

))
+ 3ϕ

(
X2, X3

)
= 0.

Now, if f ∈ χ1(AnP1
), then

Φ1(δf) =
[
X2

(
− ∂2f

(
X2

)
− ∂1f

(
X1

))
− 2X3

(
∂3f
(
X2

))
+ f

(
X2

)]
dX3
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−
[
2X3

(
∂1f
(
X1

)
+ ∂3f

(
X3

))
+X2

(
∂2f
(
X3

))
− 2f

(
X3

)]
dX2

−
[
X2

(
− ∂1f

(
X3

))
− 2X3

(
∂1f
(
X2

))]
dX1.

Comparing these two relations, we obtain that H2(AnP1
) is generated by the two cocycles:{

Φ1

(
ϕ1

)
= X3dX2,

Φ1

(
ϕ2

)
= X2

2dX2.

Now consider the general case. Let A = C[X1, . . . , Xn] be provided with the Poisson
structure P.

Theorem 2.4. Let ϕ ∈ χk(AP). Then, we have

Φn−k−1

(
δkϕ

)
= ε

∑
i
(
∂σ(1), . . . , ∂σ(k+1)

)[
d
(
i
(
∂σ(k+2), . . . , ∂σ(n)

)
Ω
)
∧ Φn−k(ϕ)

+ Ω ∧ d
(
i
(
∂σ(k+2), . . . , ∂σ(n)

)
Φn−k(ϕ)

)]
for all σ ∈ Sk+1,n−k−1, where ε = ε(n, k) = (−1)

(n−k)(n−k+1)
2 .

Proof. To simplify, we write di in place of dXi. We have seen that for every P ∈ AP , we
have δ0P = −Ω ∧ dP . But

Φn−1(δP ) =
n∑
k=1

(−1)k−1
{
Xk, P

}
d1 ∧ · · · ∧ d̂k ∧ · · · ∧ dn,

where d̂i means that this factor does not appear with {P,Xi} =
∑n

j=1 Pji∂jP with Pji = −Pij
when j > i. But

i
(
∂1

)
[Ω ∧ d

(
i
(
∂2, . . . , ∂n

)
Φn(P )

)
+ d
(
i
(
∂2, . . . , ∂n

)
Ω
)
∧ Φn(P )

= i
(
∂1

)[
Ω ∧ d

(
i
(
∂2, . . . , ∂n

)
Φn(P )

)]
= (−1)

n(n−1)
2 i

(
∂1

)[
Ω ∧ dP ∧ d1

]
= −(−1)

n(n−1)
2

n∑
i=2

P1i∂iPd2 ∧ · · · ∧ dn = (−1)
n(n−1)

2 Φn−1(P )
(
∂2, . . . , ∂n

)
.

Similarly,

i
(
∂j
)[

Ω ∧ d
(
i
(
∂1, . . . , ∂̂j , . . . , ∂n

)
Φn(P )

)
+ d
(
i
(
∂1, . . . , ∂̂j , . . . , ∂n

)
Ω
)
∧ Φn(P )

]
= i
(
∂j
)[

Ω∧ d
(
i
(
∂1, . . . , ∂̂j , . . . , ∂n

)
Φn(P )

)]
=(−1)j−1+

n(n−1)
2 i

(
∂j
)[

Ω∧ dP ∧ dXj

]
= (−1)j−1+

n(n−1)
2 i

(
∂j
)( l=j−1∑

l=1

P1j∂lP −
l=n∑
l=j+1

Pjl∂lP

)
d1 ∧ · · · ∧ dn

= (−1)
n(n−1)

2

(
l=j−1∑
l=1

P1j∂lP −
l=n∑
l=j+1

Pjl∂lP

)
d1 ∧ · · · ∧ d̂j · · · ∧ dn

= (−1)
n(n−1)

2
{
P,Xi

}
d1 ∧ · · · ∧ d̂i ∧ · · · ∧ dn.

We deduce

Φn−1

(
δ0P

)
= (−1)

n(n−1)
2

n∑
j=1

(−1)j−1i
(
∂j
)[

Ω ∧ d
(
i
(
∂1, . . . , ∂̂j , . . . , ∂n)Φn(P )

)]
,

which proves the theorem for k = 0. The proof is similar for any k.
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Application 2.5. We consider the n-dimensional complex Lie algebra defined by the brack-
ets: [

X1, Xi

]
= (i− 1)Xi

for i = 2, . . . , n. Let P2 be the corresponding Poisson bracket on C[X1, . . . , Xn]. Let χk2(AP2)
be the subspace of χk(AP2) whose elements are homogenous of degree 2. We denote by
H2

2 (AP2) = Z2
2/B

2
2 the corresponding subspace of H2(AP2). Define N := n(n−1)

2 .

• If n is even, then

dimB2
2 = N + (N − 1) + · · ·+N − n/2 + 1 =

n
(
2n2 − 3n+ 2

)
8

.

• If n is odd,

dimB2
2 = N + (N − 1) + · · ·+

(
N − (n− 1)/2

)
=

(
n2 − 1

)
(2n− 1)

8
.

In fact, if f ∈ χ1
2(AP), then f(Xi) = Pi = Σaii1,...,inX

i1
1 X

i2
2 · · ·Xin

n is homogenous of degree
2, then:

(1) in δf(X1, X2l), we find N − l independent coefficients of P2l. The coefficients which do
not appear are

a2l
1,0,0,...,0,1,0,...,0, a

2l
0,1,0,...,0,1,0,...,0, . . . , a

2l
0,0,...,1,1,0,...,0,

where the second 1 in the sequences of indices is, respectively, in the place 2l, 2l −
1, . . . , l + 1;

(2) in δf(X1, X2l+1), we find N − l − 1 independent coefficients of P2l+1. The coefficients
which do not appear are

a2l+1
1,0,0,...,0,1,0,...,0, a

2l+1
0,1,0,...,0,1,0,...,0, . . . , a

2l+1
0,0,...,0,2,0,...,0,

where the second 1 in the sequences of indices is in place 2l+ 1, 2l, . . . , l+ 2 and in the
last case the 2 is in place l + 1;

(3) for i ≥ 2 and j > i, δf(Xi, Xj) is defined by the (n− 2) coefficients ai1,0,0,...,0,1,0,...,0.

Now we can find the generators of H2
2 (AP). We can choose φ ∈ χ2

2 such that

φ
(
X1, X2

)
= 0,

φ
(
X1, X3

)
= a1,3

1,3X1X3 + a2,2
1,3X

2
2 ,

· · ·
φ
(
X1, X2l

)
= a1,2l

1,2lX1X2l + a2,2l−1
1,2l X2X2l−1 + · · ·+ al,l+1

1,2l XlXl+1,

φ
(
X1, X2l+1

)
= a1,2l+1

1,2l+1X1X2l+1 + a2,2l
1,2l+1X2X2l + · · ·+ al,l1,2l+1X

2
l ,

· · ·
φ
(
X1, Xn

)
= a1,n

1,nX1Xn + a2,n−1
1,n X2Xn−1 + · · · ,

φ
(
Xi, Xj

)
= Ai,j ,
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where Ai,j is a degree 2 homogenous polynomial without monomial of types X1Xk and XiXj .
By solving Φn−2(δφ) = 0, we obtain the generators of H2

2 (AP). They are given by

φ
(
X1, X2

)
= 0,

φ
(
X1, X3

)
= a2,2

1,3X
2
2 ,

· · ·
φ
(
X1, X2l

)
= a2,2l−1

1,2l X2X2l−1 + · · ·+ al,l+1
1,2l XlXl+1,

φ
(
X1, X2l+1

)
= a2,2l

1,2l+1X2X2l + · · ·+ al+1,l+1
1,2l+1 X2

l+1,

· · ·
φ
(
X1, Xn

)
= a2,n−1

1,n X2Xn−1 + · · ·+ am,m+1
1,n XmXm+1, if n = 2m,

φ
(
Xi, Xj

)
= Ai,j ,

or φ(X1, Xn) = a2,n−1
1,n X2Xn−1 + · · ·+ am+1,m+1

1,n XmXm+1, if n = 2m+ 1. For example:

– if n = 2, dimH2
2 (AP2 ,AP2) = 1;

– if n = 3, dimH2
2 (AP2 ,AP2) = 3;

– if n = 4, dimH2
2 (AP2 ,AP2) = 8;

– if n = 5, dimH2
2 (AP2 ,AP2) = 16.

3 Poisson structures of degree 2 on C[X1, X2, X3]

Let P be a Poisson structure on A3 = C[X1, X2, X3] with Pij of degree 2. Then P writes

P = P0 + P1 + P2,

where Pi is homogenous of degree i. The associated form Ω is decomposed in homogenous
parts Ω = Ω0 + Ω1 + Ω2 and, since dΩ0 = 0, the condition Ω ∧ dΩ = 0 is equivalent to

Ω2 ∧ dΩ2 = 0,
Ω0 ∧ dΩ1 + Ω1 ∧ dΩ0 = 0,
Ω0 ∧ dΩ2 + Ω2 ∧ dΩ0 + Ω1 ∧ dΩ1 = 0,
Ω1 ∧ dΩ2 + Ω2 ∧ dΩ1 = 0.

(3.1)

If Ω2 = 0, then P is a linear Poisson structure on A3 ([1]). If Ω2 6= 0 and Ω0 = Ω1 = 0,
then P is a quadratic homogenous Poisson structure, and the classification is given in [9]. In
this section, we will study the remaining cases Ω0 6= 0 or Ω1 6= 0. The associative algebra
A3 admits a natural grading A3 = ⊕n≥0Vn, where Vn is the space of degree n homogenous
polynomial of A3.

Definition 3.1. A linear isomorphism:

f : ⊕n≥0Vn −→ ⊕n≥0Vn

is called equivalence of order 2 if it satisfies

• f(V1) ⊂ V1 ⊕ V2,
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• f(V0) = V0,

• f |⊕n≥2Vn= Id.

Moreover, if V1 is provided with a Lie algebra structure, then

• π1 ◦ f is a Lie automorphism of V1,

where π1 is the projection on V1.

Such a map writesf
(
Xi

)
=

n∑
j=1

ajiXj +
n∑

j,k=1

bjki XjXk,

f
(
XiXj

)
= XiXj .

Thus, if P is a degree 2 Poisson structure on A3, putting Yi = f(Xi) and{
Yi, Yj

}
= f−1

({
f
(
Xi

)
, f
(
Xj

)})
,

we obtain a new Poisson structure of degree 2. These two Poisson structures are called
equivalent. In the following, we classify the non-homogenous Poisson structure of degree 2
up to an equivalence of order 2. Note that the quadratic homogenous Poisson structures
are classified in [6]. We assume also that these Poisson structures are not trivial extensions
of Poisson structures on A2, that is, Poisson structures which do not depend only on two
variables.

3.1 First case: Ω = Ω2 + Ω1, Ω1 6= 0

The integrability condition of Ω reduces to
Ω1 ∧ dΩ1 = 0,
Ω1 ∧ dΩ2 + Ω2 ∧ dΩ1 = 0,
Ω2 ∧ dΩ2 = 0.

(3.2)

As Ω1 ∧ dΩ1 = 0, Ω1 defines on A3 a linear Poisson structure, then this form is isomorphic
to one of the following:

Ω1
1 = X3dX3,

Ω2
1 = X2dX3 +X3dX2 +X1dX1,

Ω3
1 = X2dX3 − αX3dX2,

Ω4
1 =

(
X2 +X3

)
dX3 −X3dX2.

Consider Ω2 = A3dX3 −A2dX2 +A3dX1 with
A1 = a1X

2
1 + a2X

2
2 + a3X

2
3 + a4X1X2 + a5X1X3 + a6X2X3,

A2 = b1X
2
1 + b2X

2
2 + b3X

2
3 + b4X1X2 + b5X1X3 + b6X2X3,

A3 = c1X
2
1 + c2X

2
2 + c3X

2
3 + c4X1X2 + c5X1X3 + c6X2X3.
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3.1.1 dΩ2 = 0

If Ω1 = Ω1
1 or Ω2

1, then dΩ1 = 0, and (3.2) is satisfied. An equivalence of order 2 of type
Y1 = X1, Y2 = X2, Y3 = X3 + B, where B is an homogenous polynomial of degree 2, allows
to reduce the form Ω2 to a form with A1 = 0. We obtain the following Poisson structure
associated to

Ω(1) =
(
aX2

1 −
b

2
X2

2 − 2cX1X2

)
dX1 −

(
cX2

1 + eX2
2 + bX1X2

)
dX2 +X3dX3, (3.3)

corresponding to Ω1 = Ω1
1, and

Ω(2)=
(
X1+aX2

1−
b

2
X2

2−2cX1X2

)
dX1+

(
X3−cX2

1−eX2
2−bX1X2

)
dX2+X3dX3, (3.4)

corresponding to Ω1 = Ω2
1. If Ω1 = Ω3

1 or Ω4
1, then dΩ1 = kdX2∧dX3 with k 6= 0. Then (3.2)

implies Ω2 ∧ dX2 ∧ dX3 = 0 that is A3 = 0. Such a structure is a Poisson structure on A2.

3.1.2 dΩ2 6= 0, Ω1 = Ω1
1

As dΩ1 = 0, then (3.2) is equivalent to{
Ω1 ∧ dΩ2 = 0,
Ω2 ∧ dΩ2 = 0.

This implies PdΩ2 = Ω1 ∧ Ω2, where P is an homogenous polynomial of degree 2. The
equivalence of order 2 given by Yi = Xi for i = 1, 2 and Y3 = X3 + B with B ∈ V2 enables
to consider A1 = 0. In this case, Ω1 ∧ Ω2 = PdΩ2 is equivalent to

∂1A2 + ∂2A3 = 0,
P∂3A3 = X3A3,

P∂3A2 = X3A2.

If X3 is not a factor of P , then ∂3A2 = αX3 and ∂3A3 = βX3. If α = β = 0, then Ω2 = 0.
The case αβ 6= 0 reduces by a change of variables to the case α 6= 0 and β = 0, then A3 = 0.
Thus, we obtain

Ω = X3dX3 −
(
aX2

2 + bX2
3

)
dX2.

This structure is a trivial extension of a Poisson structure on C[X2, X3]. If P = X3Q and Q
is a degree 1 homogenous polynomial, then Q satisfies

Q
(
∂1A2 + ∂2A3

)
= 0,

Q∂3A3 = A3,

Q∂3A2 = A2.

We deduce the following structures:

Ω =
(
aX2

1 + bX1X3

)
dX1 +X3dX3,

Ω =
(
aX1 +X3/2

)2
dX1 +X3dX3,

Ω =
(
aX1X3 + bX2X3

)
dX1 +

(
bX1X3 + cX2X3

)
dX2 +X3dX3,

The first two equations depend only on X1 and X3. Then we obtain the following Poisson
structure:

Ω(3) =
(
aX1X3 + bX2X3

)
dX1 +

(
bX1X3 + cX2X3

)
dX2 +X3dX3. (3.5)
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3.1.3 dΩ2 6= 0, Ω1 = Ω2
1

By an equivalence of degree 2, we can consider that A3 = 0. Then PdΩ2 = Ω1 ∧ Ω2 gives
P∂1A2 = X1A2,

P∂1A1 = X1A1,

P
(
∂2A1 + ∂3A2

)
=
(
A2X2 +A1X3

)
.

Solving these equations, we obtain

Ω(4) = X1dX1 +
(
X3 − aX1X3

)
dX2 +

(
X2 + aX1X2

)
dX3,

Ω(5) = X1dX1 +
(
X3 − aX2

1 − 2aX2X3

)
dX2 +X2dX3.

(3.6)

3.1.4 dΩ2 6= 0, Ω1 = Ω3
1 = X2dX3 − αX3dX2

Assume that α 6= 0 and α 6= −1. The equivalence given by Y2 = X2 +B2, Yi = Xi for i = 1, 3
and B2 ∈ V2 shows that the structure corresponding to Ω = Ω1 is equivalent to a structure
of degree 2 defined as follow:

A1 = a2X
2
2 + a3X

2
3 +

c6
α
X1X2 + c3X1X3,

A2 = 0,
A3 = c3X

2
3 + c5X1X3 + c6X2X3.

Thus we can assume that in Ω2, we have c3 = c5 = c6 = a2 = a3 = a6 = 0. The new
equivalence of degree 2 given by Y3 = X3 + B3, Yi = Xi for i = 1, 2 and B3 ∈ V2 gives a
Poisson structure of degree 2 equivalent to the structure of degree 1 with

A1 = 0,

A2 = b2X
2
2 + b3X

2
3 − c2X1X2 +

c6
α
X1X3,

A3 = c2X
2
2 + c4X1X2 + c6X2X3.

Thus we can assume that

Ω2 =
(
a1X

2
1 + a4X1X2 + a5X1X3

)
dX1 +

(
b1X

2
1 + b4X1X2 + b5X1X3

)
dX2 + c1X

2
1dX3.

As Ω1 ∧ dΩ2 + Ω2 ∧ dΩ1 = 0, we obtain the following Poisson structure:

Ω(6) = aX1X3dX1 − αX3dX2 +
(
X2 −

a

2α
X2

1

)
dX3 (3.7)

with α 6= 0 and α 6= −1.
If α = −1, then dΩ1 = 0, and this case has already been studied. If α = 0, by equivalence

of degree 2 we can assume that
A1 = a1X

2
1 + a3X

2
3 + a4X1X2 + a5X1X3,

A2 = b1X
2
1 + b3X

2
3 + b5X1X3,

A3 = c1X
2
1 + c3X

2
3 + c5X1X3.

Then we have A3 = 0, and the Poisson structure concerns only two variables.
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3.1.5 dΩ2 6= 0, Ω1 = Ω4
1 = (X2 +X3)dX3 −X3dX2

By equivalence of degree 2, we can assume that A1 = 0, c5 = 0, and b4 = 0. The equation
Ω1 ∧ dΩ2 + Ω2 ∧ dΩ1 = 0 implies that c1 = c4 = b1 = 0, c6 = −b5 = 2c2. The equation
Ω2 ∧ dΩ2 = 0 implies that c2 = 0 and b2c3 = b6c3 = 0. Then we obtain the following Poisson
structure:

Ω(7) = aX2
3dX1 −

(
X3 + bX2

3

)
dX2 +

(
X2 +X3

)
dX3 (3.8)

with a 6= 0.

3.2 Second case: Ω = Ω2 + Ω1 + Ω0, Ω0 6= 0

The form Ω0 ⊕ Ω1 provides the vector space V0 ⊕ V1 with a linear Poisson structure. Then
V0 ⊕ V1 is a Lie algebra such that V0 is in the center. This implies Ω1 ∧ dΩ1 = 0. We deduce
that Ω0 + Ω1 is equivalent to

dX3 −X3dX2,

X3dX3 − dX2,

X2dX3 +X3dX2 + dX1.

(3.9)

3.2.1 Ω0 + Ω1 = dX3 −X3dX2

By equivalence, we can assume that a3 = a5 = b3 = c5 = 0. The equation Ω0∧dΩ2 = 0 implies
b4 = −2c2, c4 = −2b1, c6 = −b5, Ω1∧dΩ2 +Ω2∧dΩ1 = 0 implies that c1 = c2 = c3 = c4 = 0,
a1 = a4 = 0, and Ω2 ∧ dΩ2 = 0 gives b5b2 = b5a2 = b5a6 = 0. Thus we obtain the following
Poisson structures given by

Ω(8) = aX2X3dX1 −
(
X3 − aX1X3 + bX2X3

)
dX2 + dX3 (3.10)

with a 6= 0.

3.2.2 Ω0 + Ω1 = −dX2 +X3dX3

We can assume that A2 = b2X
2
2 + b4X1X2. As dΩ1 = 0, the system reduces to Ω0 ∧ dΩ2 =

Ω1 ∧ dΩ2 = 0. This gives c4 = c6 = a4 = 0 and b4 + 2c2 = a5 − 2c3 = 2a1 − c5 = 0.
Thus, Ω2 ∧ dΩ2 = 0 is equivalent to (2a2X2 + a6X3)A3 = 0. We obtain the following Poisson
structures:

Ω(9) = −
(
X2 + aX2

2 + bX1X2

)
dX2 +

(
1 + cX2

1 + eX2
3 + fX1X3

)
dX3

+
(
gX2

1 −
b

2
X2

2 +
f

2
X2

3 + 2cX1X3

)
dX1.

(3.11)

3.2.3 Ω0 + Ω1 = dX1 +X3dX2 +X2dX3

By equivalence, we can assume b5 = b2 = a3 = a5 = c2 = c5 = 0. As dΩ1 = 0, the equation
Ω0 ∧ dΩ2 = Ω1 ∧ dΩ2 = 0 implies that b6 + 2a2 = a6 + 2b3 = a4 = a1 = b1 = b4 = c3 = 0. In
this case, Ω2 ∧ dΩ2 = 0 is equivalent to c6(X2A2 +X3A1) = 0. We obtain

Ω(10) =
(
1 + aX2

1

)
dX1 +X3dX2 +X2dX3, (3.12)

and

Ω(11) =
(
1 + aX2

1

)
dX1 +

(
X3 + bX2

3 + cX2X3

)
dX2 +

(
X2 +

c

2
X2

2 + 2bX2X3

)
dX3.

(3.13)
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4 Poisson algebras associated to rigid Lie algebras

4.1 Rigid Lie algebras

Let us fix a basis of Cn. With respect to this basis, a multiplication µ of a n-dimensional
complex Lie algebra is determined by its structure constants Ckij . We denote by Ln the
algebraic variety C[Ckij ]/I, where I is the ideal generated by the polynomials:


Ckij + Ckji = 0,

n∑
l=1

C lijC
s
lk + C ljkC

s
li + C lkiC

s
li = 0

for all 1 ≤ i, j, k, s ≤ n. Then every multiplication µ of a n-dimensional complex Lie algebra
is identified to one point of Ln. We have a natural action of the algebraic group Gl(n,C) on
Ln whose orbits correspond to the classes of isomorphic multiplications:

O(µ) =
{
f−1 ◦ µ ◦ (f × f), f ∈ Gl(n,C)

}
.

Let g = (Cn, µ) be a n-dimensional complex Lie algebra. We denote also by µ the corre-
sponding point of Ln.

Definition 4.1. The Lie algebra g is rigid if its orbit O(µ) is open (for the Zariski topology)
in Ln.

Among rigid complex Lie algebras, there are all simple and semi-simple Lie algebras, all
Borel algebras and parabolic Lie algebras. Concerning the classification of rigid Lie algebras,
we know the classification up the dimension 8 ([2]), the classification in any dimension of
solvable rigid Lie algebras whose nilradical is filiform ([2]). Recall two interesting tools to
study rigidity of a given Lie algebra.

Theorem 4.2. Let g = (Cn, µ) be a n-dimensional complex Lie algebra. Then:

(1) g is rigid if and only if any valued deformation g′ is (K∗)-isomorphic to g, where K∗

is the fraction field of the valuation ring R containing the structure constants of g′;

(2) (Nijenhuis-Richardson theorem) if H2(g, g) = 0, then g is rigid.

The notion of valued deformation, which extends in a natural way the classical notion
of Gerstenhaber deformations, is developed in [4]. In the Nijenhuis-Richardson theorem, the
second cohomological space H2(g, g) of the Chevalley cohomology of g is trivial. Let us recall
that the converse of this theorem is not true. There exists solvable rigid Lie algebras with
H2(g, g) 6= 0 (see for example [2]). In this case, there exists a 2-cocycle ϕ1 ∈ H2(g, g) which
is not the first term of a valued (or formal) deformation:

µt = µ+
∑
i≥1

tiϕi

of the Lie multiplication µ of g.
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4.2 Finite dimensional Poisson algebras whose Lie bracket is rigid

We recall in this section some results of [5] which precise the structure of a finite dimensional
complex Poisson algebra with rigid underlying Lie bracket. Let P = (Cn,P) be a finite
dimensional complex Poisson algebra. We denote by {X,Y } and X · Y the corresponding
Lie bracket and associative multiplication, by gP the Lie algebra (P, {, }), and by AP the
associative algebra (P, ·).

Proposition 4.3 ([5]). If the Lie algebra gP is a simple complex Lie algebra, then the
associative product is trivial that is X · Y = 0 for every X, Y in P.

Let us assume now that gP is a complex rigid solvable Lie algebra. Then g is written as
follows:

g = t⊕ n,

where n is the nilradical of g and t is a maximal abelian subalgebra such that the adjoint
operators adX are diagonalizable for every X ∈ t. This subalgebra t is usually called a
Malcev torus. All these maximal tori are conjugated and their common dimension is called
the rank of g.

Lemma 4.4. If there is a non-zero vector X ∈ gP , such that adX is diagonalizable with 0
as a simple root, then AP · AP = {0}.

Proof. Let {e1, . . . , en} be a basis of gP , such that ade1 is diagonal with respect to this
basis. By assumption, {e1, ei} = λiei with λi 6= 0 for i ≥ 2. Since {e21, e1} = 2e1 · {e1, e1} =
0, it follows that e21 = ae1. But for any i 6= 1, {e21, ei} = 2e1 · {e1, ei} = 2λie1 · ei and
{e21, ei} = aλiei, thus e1 · ei = a

2ei. The associativity of the product X · Y implies that
(e1 · e1) · ei = ae1 · ei = a2

2 ei = e1 · (e1 · ei) = a2

4 ei. Therefore, a = 0 and e21 = 0 = e1 · ei for
any i. Finally, 0 = {e1 · ej , ei} = e1 · {ej , ei}+ ej · {e1, ei} = λiej · ei, which implies ei · ej = 0,
∀i, j ≥ 1.

Proposition 4.5. Let g be a rigid solvable Lie algebra of rank 1 with non-zero roots. Then,
there is only one Poisson algebra P such that gP = g. It corresponds to

X · Y = 0

for any X,Y ∈ P.

Proof. By hypothesis, we have dim t = 1 and for X ∈ gP , X 6= 0, as the roots of g are
non-zero, the restriction of the operator adX on n is invertible (all known solvable rigid Lie
algebras satisfy this hypothesis). By the previous lemma, the associated algebra AP satisfies
AP · AP = {0}.

Theorem 4.6. Let P a complex Poisson algebra, such that gP is rigid solvable of rank 1
(i.e dim t = 1) with non-zero roots. Then P is a rigid Poisson algebra.

Proof. See [5].
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4.3 Linear Poisson structures on An+1 = C[X0, X1, . . . , Xn] given by a rigid
Lie bracket

In this section, we consider a linear Poisson bracket on C[X0, . . . , Xn], such that the brackets
{Xi, Xj} = P(Xi, Xj) correspond to a solvable rigid Lie algebra g of rank 1. We assume that
the roots (see [2]) of this rigid Lie algebras are 1, . . . , n. In this case, we have

{
X0, Xi

}
= iXi, i = 1, . . . , n,{

X1, Xi

}
= Xi+1, i = 2, . . . , n− 1,{

X2, Xi

}
= Xi+2, i = 3, . . . , n− 2.

We denote this (n+ 1)-dimensional Poisson algebra by P(g). This algebra is a deformation
of the Poisson algebra studied in Section 2.2. The corresponding (n− 1)−exterior form is

Ω =
n∑
i=1

(−1)i−1Xid1 ∧ · · · ∧ d̂i ∧ · · · ∧ dn +
n−1∑
i=2

(−1)iXi+1d0 ∧ d2 ∧ · · · ∧ d̂i ∧ · · · ∧ dn

+
n−2∑
i=3

(−1)i+1Xi+2d0 ∧ d1 ∧ d3 ∧ · · · ∧ d̂i ∧ · · · ∧ dn,

where di denotes dXi, and d̂i means that this term does not appear. Let ϕ be a 2-cochain.
We denote by ϕ(i, j) the vector ϕ(Xi, Xj). Then ϕ is a 2 cocycle if and only if

Φn−1(ϕ) = (−1)n−2ϕ(1, i)d0 ∧ d2 ∧ · · · ∧ d̂i ∧ · · · ∧ dn

+
n∑
i=3

(−1)i−1ϕ(2, i)d0 ∧ d1 ∧ d3 ∧ · · · ∧ d̂i ∧ · · · ∧ dn

+
∑

3≤i<j≤n
(−1)j−i−1ϕ(i, j)d0 ∧ · · · ∧ d̂i ∧ · · · ∧ d̂j ∧ · · · ∧ dn

satisfies

d
[
i
(
∂σ(1), . . . , ∂σ(n−2)

)
Ω
]
∧ Φn−1(ϕ) + Ω ∧ d

[
i
(
∂σ(1), . . . , ∂σ(n−2)

)
Φn−2(ϕ)

]
= 0 (4.1)

for any σ ∈ S3,n−2. As g = t⊕n, we have the decomposition P(g) = P(t)⊕P(n), where P(t)
and P(n) are the Poisson algebras (C[X0],P) and (C[X1, . . . , Xn],P). From the Hochschild-
Serre factorization theorem, we assume that the cocycles are t-invariant and with values in
P(n). We denote this space by χk(P(g),P(g))t. If f ∈ χ1(P(g),P(g))t, then{

X0, f
(
Xi

)}
= if

(
Xi

)
,

and we obtain

f
(
X1

)
= a1

1X1, f
(
X2

)
= a11

1 X
2
1 + a2

2X2, . . . , f
(
Xi

)
=

∑
l1+···+lk=i

al1···lki X l1
1 · · ·X

lk
k .

Thus, δf(X1, Xi) = a1
1{X1, Xi} + {X1, f(Xi)} − f(Xi+1) and we can reduce any element

ϕ ∈ Z2(P(g),P(g))t to a 2-cocycle satisfying

ϕ
(
X1, Xi

)
= 0 for i = 2, . . . , n− 1.

We denote by Z∗k(P(g),P(g))t the subspace of homogenous cocycles of degree k. Let us have
look the system at the ϕ(i, j) which is deduced from equation (4.1).
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– If (σ(1), . . . , σ(n− 2)) = (3, 4, . . . , n), then condition (4.1) is trivial.

– If (σ(1), . . . , σ(n − 2)) = (2, 3, . . . , l̂, . . . , n), then condition (4.1) is trivial as soon as
l 6= n. If l = n, we obtain

nϕ
(
X1, Xn

)
+ (−1)n−1

∑
iXi∂iϕ

(
X1, Xn

)
= 0,

and ϕ(X1, Xn) is of weight n+ 1.

– If (σ(1), . . . , σ(n− 2)) = (1, 2, . . . , î, . . . , ĵ, . . . , n), we obtain

(i+ j)ϕ
(
Xi, Xj

)
=
∑

kXk∂kϕ
(
Xi, Xj

)
,

and ϕ(Xi, Xj) is of weight i+ j.

Other relations show that the space of cocycles of degree 2 is generated by ϕ(X1, Xn)
and ϕ(X2, X2k+1) with k = 1, . . . , l where n = 2l+ 1 or n = 2l. The relations between these
generators lead to study two cases: k = 1 and k = 2.

Case k = 1. As ϕ(X1, Xn) is of weight n+1, then ϕ(X1, Xn) = 0. We have also ϕ(Xi, Xj) =
ai+jij Xi+j if i+ j ≤ n.

If (σ(1), . . . , σ(n− 2)) = (1, 2, . . . , î, . . . , ĵ, . . . , n), we obtain

(i+ j)ϕ
(
Xi, Xj

)
=
∑

kXk∂kϕ
(
Xi, Xj

)
,

and ϕ(Xi, Xj) is of weight i+ 1. Then,

ϕ
(
Xi, Xj

)
= ai+jij Xi+j ,

if i+ j ≤ n.
If (σ(1), . . . , σ(n − 2)) = (0, 1, 2, . . . , î, . . . , ĵ, . . . , k̂, . . . , n) with i ≥ 3, then the related

conditions are always satisfied.
If (σ(1), . . . , σ(n− 2)) = (0, 3, . . . , î, . . . , n), i ≥ 3, we obtain relation between ϕ(3, l) and

ϕ(2, l + 1). We deduce that

a3,i = −a2,i+1 + a2,i,

and a2,3 = a2,4.
If (σ(1), . . . , σ(n− 2)) = (0, 1, 2, . . . , î, . . . , ĵ, . . . , k̂, . . . , n) with i ≥ 3, then

a4,i = a2,i+2 − 2a2,i+1 + a2,i,

and

a3,4 = a3,5.

If (σ(1), . . . , σ(n− 2)) = (0, 2, 3, . . . , î, . . . , ĵ, . . . , n), i ≥ 4, then we have

ai+1,j = −ai,j+1 + ai,j ,

and

ai,i+2 = ai,i+1.
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If (σ(1), . . . , σ(n− 2)) = (0, 1, 3, . . . , î, . . . , ĵ, . . . , n), i ≥ 4, then we have

ai+2,j = −ai,j+2 + ai,j ,

and

a3,j = a2,j − a2, j + 1.

If we solve this linear system, we obtain the following.

Proposition 4.7. If n ≥ 7, then H2
1 (Ap, Ap) is of dimension 1 and generated by the cocycle

given by
ϕ
(
X2, Xi

)
= (4− i)X2+i i = 5, . . . , n− 2,

ϕ
(
X3, Xi

)
= X3+i i = 4, . . . , n− 3,

ϕ
(
Xi, Xj

)
= 0, in other cases.

Case k = 2. The set of generators is of dimension p2+5p
2 if n = 2p + 1 and p2+3p−2

2 if
n = 2p. The number of independent relations concerning these parameters is greater than
the dimension of the set of generators as soon as n ≥ 6. For n = 5, the dimension is equal
to 2, and for n = 6, this dimension is 0. We deduce that dimH2

2 = 0 when n ≥ 7.

Remark 4.8 (deformations of the enveloping algebra of a rigid Lie algebra). Let g be a
finite dimensional complex Lie algebra. We denote by U(g) its enveloping algebra. One of
the most important problems in this time is to look at the deformations of the associative
algebra U(g). The theory of quantum groups comes from the deformation of U(sl(2)). In this
case, g = sl(2) is a rigid Lie algebra, and U(sl(2)) is a rigid associative algebra. Thus, we
have to look upon what happens for any rigid Lie algebra. The aim of this section is to study
the deformations of U(g) when g is the rigid Lie algebras studied in the previous section.

We denote by S(g) the symmetric algebra on the vector space g. This associative com-
mutative algebra is interpreted as the algebra of polynomials on the dual vector space g∗

of g that is C[α1, . . . , αn] where {α1, . . . , αn} is a basis of g∗. But the Lie structure of g

induces a linear Poisson structure (or of degree 1), P, on g∗. In fact, if {X1, . . . , Xn} is
the (dual) basis of g, this Poisson structure corresponds to the Poisson structure of degree
1 on C[X1, . . . , Xn] associated to g. From the formality theorem of Kontsevich, U(g) is a
deformation of the Poisson algebra (C[X1, . . . , Xn],P). In his thesis, Toukaidine Petit ([10])
shows that every nontrivial deformation of the Poisson structure P on C[X1, . . . , Xn] induces
a nontrivial deformation of the associative algebra U(g). As a consequence, we have that if
g is a nonrigid Lie algebra, then there is a nontrivial deformation of U(g).

If we consider the rigid Lie algebra gn+1 studied in the previous section, we have de-
terminate a nontrivial cocycle of degree one for the corresponding Poisson algebra which is
not integrable. Thus, we cannot define a deformation of its enveloping algebra. But the Lie
algebra gn+1 admit a deformation in the following nonLie algebra which is written as follows:

µ
(
X0, Xi

)
= iXi, i = 1, . . . , n,

µ
(
X1, Xi

)
= Xi+1, i = 2, . . . , n− 1,

µ
(
X2, X3

)
= X5,

µ
(
X2, Xi

)
= (5− i)X2+i, i = 4, . . . , n− 2,

µ
(
X3, Xi

)
= X3+i, i = 4, . . . , n− 3.



Poisson structures 17

References

[1] J.-P. Dufour, Formes normales de structures de Poisson. In “Symplectic Geometry and Math-
ematical Physics (Aix-en-Provence, 1990)”, pp. 129–135, Progr. Math. 99, Birkhäuser Boston,
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