Poisson structures on $\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ associated with rigid Lie algebras

Nicolas GOZE
Laboratory of Mathematics (LMIA), Faculty of Sciences, University of Haute Alsace, 4, rue des Frères Lumière, 68093 Mulhouse Cedex, France
E-mail: nicolas.goze@uha.fr

Abstract

We present the classical Poisson-Lichnerowicz cohomology for the Poisson algebra of polynomials $\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ using exterior calculus. After presenting some non-homogenous Poisson brackets on this algebra, we compute Poisson cohomological spaces when the Poisson structure corresponds to a bracket of a rigid Lie algebra.

2000 MSC: 17B-XX

1 Introduction

The first Poisson structures appeared in classical mechanics. In 1809, D. Poisson introduced a bracket of functions, which permits to write Hamilton's equations as differential equations. This leaded to define a Poisson manifold, that is, a manifold M whose algebra of smooth functions $F(M)$ is equipped with a skew-symmetric bilinear map:

$$
\{,\}: F(M) F(M) \longrightarrow F(M),
$$

satisfying the Leibniz rule:

$$
\{F G, H\}=F\{G, H\}+\{F, H\} G
$$

and the Jacobi identity. In [7], A. Lichnerowicz has also introduced a cohomology, associated to a Poisson structure, called Poisson cohomology.

In this paper, we study in terms of exterior calculus the Poisson structures on the associative algebra of complex polynomials in n variables. We apply this approach to the determination of non-homogenous quadratic Poisson brackets and to the computation of the Poisson cohomology. The linear Poisson structures are naturally related to the n-dimensional Lie algebras. Recall that a complex Lie algebra \mathfrak{g} is rigid when its orbit in the algebraic variety of n-dimensional complex Lie algebra defined by the Jacobi relations is Zariski open. Such an algebra admits a nontrivial Malcev torus and it is graded by the roots of the torus. We study the Poisson structure on $\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ whose Poisson brackets correspond to a solvable rigid Lie bracket with non-zero roots. In a generic example, we compute the corresponding Poisson cohomology.

2 Poisson structures on $\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ and exterior calculus

2.1 Poisson brackets and differential forms

Let \mathcal{A}^{n} be the commutative associative algebra $\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ of complex polynomials in X_{1}, \ldots, X_{n}. We define a Poisson structure on \mathcal{A}^{n} as a bivector:

$$
\mathcal{P}=\sum_{1 \leq i<j \leq n} P_{i j} \partial_{i} \wedge \partial_{j},
$$

where $\partial_{i}=\frac{\partial}{\partial X_{i}}$ and $P_{i j} \in \mathcal{A}^{n}$, satisfying the axiom:

$$
[\mathcal{P}, \mathcal{P}]_{S}=0,
$$

where $[,]_{S}$ denotes Schouten's bracket. If \mathcal{P} is a Poisson structure on \mathcal{A}^{n}, then

$$
\{P, Q\}=\mathcal{P}(P, Q)
$$

defines a Lie bracket on \mathcal{A}^{n} which satisfies the Leibniz identity:

$$
\{P Q, R\}=P\{Q, R\}+Q\{P, R\}
$$

for any $P, Q, R \in \mathcal{A}^{n}$.
We denote by $\mathrm{Sh}_{p, q}$ the set of unshuffles, where a (p, q)-shuffle is a permutation σ of the symmetric group Σ_{p+q} of degree $p+q$ such that $\sigma(1)<\sigma(2)<\cdots<\sigma(p)$ and $\sigma(p+1)<$ $\sigma(p+2)<\cdots<\sigma(p+q)$. For any bivector \mathcal{P} we consider the ($n-2$)-exterior form:

$$
\Omega=\sum_{\sigma \in S_{2, n-2}}(-1)^{\varepsilon(\sigma)} P_{\sigma(1) \sigma(2)} d X_{\sigma(3)} \wedge \cdots \wedge d X_{\sigma(n)},
$$

where $(-1)^{\varepsilon(\sigma)}$ is the signature of the permutation σ. If $n>3$, we consider the Pfaffian form $\alpha_{i_{1}, \ldots, i_{n-3}}$ given by

$$
\alpha_{i_{1}, \ldots, i_{n-3}}(Y)=\Omega\left(\partial_{i_{1}}, \partial_{i_{2}}, \ldots, \partial_{i_{n-3}}, Y\right)
$$

with $Y=\sum_{i=1}^{n} Y_{i} \partial_{i}, Y_{i} \in \mathcal{A}^{n}$.
Theorem 2.1. A bivector \mathcal{P} on \mathcal{A}^{n} satisfies $[\mathcal{P}, \mathcal{P}]_{S}=0$ if and only if:

- for $n>3$,

$$
d \alpha_{i_{1}, \ldots, i_{n-3}} \wedge \Omega=0
$$

for every i_{1}, \ldots, i_{n-3} such that $1 \leq i_{1}<\cdots<i_{n-3} \leq n$.

- $\operatorname{for} n=3$,

$$
d \Omega \wedge \Omega=0
$$

Proof. The integrability condition $[\mathcal{P}, \mathcal{P}]_{S}=0$ writes

$$
\sum_{r=1}^{n} P_{r i} \partial_{r} P_{j k}+P_{r j} \partial_{r} P_{k i}+P_{r k} \partial_{r} P_{i j}=0
$$

for any $1 \leq i, j, k \leq n$. But

$$
\alpha_{i_{1}, \ldots, i_{n-3}}=\sum(-1)^{N} P_{j k} d X_{l}
$$

summing over all triples (j, k, l), such that $\left(j, k, i_{1}, \ldots, l, \ldots i_{n-3}\right)$ is a permutation of $S_{2, n-2}$ and $N=\varepsilon(\sigma)+p-3$, where $(-1)^{\varepsilon}(\sigma)$ is the signum of σ. Then

$$
d \alpha_{i_{1}, \ldots, i_{n-3}}=\sum(-1)^{N} d P_{j k} \wedge d X_{l}
$$

and $d \alpha_{i_{1}, \ldots, i_{n-3}} \wedge \Omega=0$ corresponds to $[\mathcal{P}, \mathcal{P}]_{S}=0$. The proof is similar if $n=3$.

2.2 Lichnerowicz-Poisson cohomology

We denote by $\mathcal{A}_{\mathcal{P}}^{n}$ the algebra $\mathcal{A}^{n}=\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ provided with the Poisson structure \mathcal{P}. For $k \geq 1$, let $\chi^{k}\left(\mathcal{A}_{\mathcal{P}}^{n}\right)$ be the vector space of k-derivations that is of k-skew linear maps on $\mathcal{A}_{\mathcal{P}}^{n}$ satisfying

$$
\varphi\left(P_{1} Q_{1}, P_{2}, \ldots, P_{k}\right)=P_{1} \varphi\left(Q_{1}, P_{2}, \ldots, P_{k}\right)+Q_{1} \varphi\left(P_{1}, P_{2}, \ldots, P_{k}\right)
$$

for all $Q_{1}, P_{1}, \ldots, P_{k} \in \mathcal{A}_{\mathcal{P}}^{n}$. For $k=0$, we put $\chi^{0}\left(\mathcal{A}_{\mathcal{P}}^{n}\right)=\mathcal{A}_{\mathcal{P}}^{n}$. Let δ^{k} be the linear map:

$$
\delta^{k}: \chi^{k}\left(\mathcal{A}_{\mathcal{P}}^{n}\right) \longrightarrow \chi^{k+1}\left(\mathcal{A}_{\mathcal{P}}^{n}\right)
$$

given by

$$
\begin{aligned}
\delta^{k} \varphi\left(P_{1}, P_{2}, \ldots, P_{k+1}\right)= & \sum_{i=1}^{k+1}(-1)^{i-1}\left\{P_{i}, \varphi\left(P_{1}, \ldots, \widehat{P}_{i}, \ldots P_{k+1}\right)\right\} \\
& +\sum_{1 \leq i<j \leq k+1}(-1)^{i+j} \varphi\left(\left\{P_{i}, P_{j}\right\}, P_{1}, \ldots, \widehat{P}_{i}, \ldots, \widehat{P}_{j}, \ldots P_{k+1}\right),
\end{aligned}
$$

where \widehat{P}_{i} means that the term P_{i} does not appear. We have $\delta^{k+1} \circ \delta^{k}=0$ and the LichnerowiczPoisson cohomology corresponds to the complex $\left(\chi^{k}\left(\mathcal{A}_{\mathcal{P}}\right), \delta^{k}\right)_{k}$. Let us note that $\chi^{k}\left(\mathcal{A}_{\mathcal{P}}^{n}\right)$ is trivial as soon as $k>n$. A description of the cocycle $\delta^{k} \varphi$ is presented in [11] for $n=3$ using the vector calculus. We will describe these formulae using exterior calculus for $n>3$. Let us begin with some notations.

- To any element $P \in \mathcal{A}_{\mathcal{P}}^{n}=\chi^{0}\left(\mathcal{A}_{\mathcal{P}}^{n}\right)$, we associate the n-exterior form:

$$
\Phi_{n}(P)=P d X_{1} \wedge \cdots \wedge d X_{n}
$$

- To any $\varphi \in \chi^{k}\left(\mathcal{A}_{\mathcal{P}}^{n}\right)$ for $1 \leq k<n$, we associate the $(n-k)$-exterior form:

$$
\Phi_{n-k}(\varphi)=\sum_{\sigma \in S_{k, n-k}}(-1)^{\varepsilon(\sigma)} \varphi\left(X_{\sigma(1)}, \ldots, X_{\sigma(k)}\right) d X_{\sigma(k+1)} \wedge \cdots \wedge d X_{\sigma(n)}
$$

- To any $\varphi \in \chi^{n}\left(\mathcal{A}_{\mathcal{P}}^{n}\right)$, we associate the function $\Phi_{0}(\varphi)=\varphi$.

Finally, if θ is an k-exterior form and $Y=\sum_{i=1}^{n} Y_{i} \partial_{i}$ is a vector field with $Y_{i} \in \mathcal{A}_{\mathcal{P}}^{n}$, then the inner product $i(Y) \theta$ is the $(k-1)$-exterior form given by

$$
i(Y) \theta\left(Z_{1}, \ldots, Z_{k-1}\right)=\theta\left(Y, Z_{1}, \ldots, Z_{k-1}\right)
$$

for every vector fields Z_{1}, \ldots, Z_{k-1}.

Theorem 2.2. Assume that $n=3$. Then we have
(1) for all $P \in \mathcal{A}_{\mathcal{p}}^{3}$,

$$
\Phi_{2}\left(\delta^{0} P\right)=-\Omega \wedge d P
$$

(2) for all $f \in \chi^{1}\left(\mathcal{A}_{\mathcal{P}}^{3}\right)$,

$$
\begin{aligned}
\Phi_{1}\left(\delta^{1} f\right)= & -i\left(\partial_{1}, \partial_{2}\right)\left[\Omega \wedge d\left(i\left(\partial_{3}\right) \Phi_{2}(f)\right)+d\left(i\left(\partial_{3}\right) \Omega\right) \wedge \Phi_{2}(f)\right] \\
& +i\left(\partial_{1}, \partial_{3}\right)\left[\Omega \wedge d\left(i\left(\partial_{2}\right) \Phi_{2}(f)\right)+d\left(i\left(\partial_{2}\right) \Omega\right) \wedge \Phi_{2}(f)\right] \\
& -i\left(\partial_{2}, \partial_{3}\right)\left[\Omega \wedge d\left(i\left(\partial_{1}\right) \Phi_{2}(f)\right)+d\left(i\left(\partial_{1}\right) \Omega\right) \wedge \Phi_{2}(f)\right],
\end{aligned}
$$

where $i(X, Y)$ denotes the composition $i(X) \circ i(Y)$;
(3) for all $\varphi \in \chi^{2}\left(\mathcal{A}_{\mathcal{P}}^{3}\right)$,

$$
\Phi_{0}\left(\delta^{2} \varphi\right)=i\left(\partial_{1}, \partial_{2}, \partial_{3}\right)\left(d \Omega \wedge \Phi_{1}(\varphi)+\Omega \wedge d \Phi_{1}(\varphi)\right) .
$$

Proof. If $n=3$, we have

$$
\Omega=P_{12} d X_{3}-P_{13} d X_{2}+P_{23} d X_{1} .
$$

Then the integrability of \mathcal{P} is equivalent to $\Omega \wedge d \Omega=0$. The theorem results of a direct computation and of the following general formula:

$$
\forall \varphi \in \chi^{k}\left(\mathcal{A}_{\mathcal{P}}^{n}\right), \quad \varphi\left(P_{1}, \ldots, P_{k}\right)=\sum_{1 \leq i_{1} \leq \cdots \leq i_{k} \leq n} \varphi\left(X_{i_{1}}, \ldots, X_{i_{k}}\right) \partial_{i_{1}} P_{1} \cdots \partial_{i_{k}} P_{k} .
$$

Example 2.3. We consider the Poisson algebra $\mathcal{A}_{\mathcal{P}_{1}}^{n}=\left(\mathbb{C}\left[X_{1}, X_{2}, X_{3}\right], \mathcal{P}_{1}\right)$, where \mathcal{P}_{1} is given by

$$
\left\{\begin{array}{l}
\mathcal{P}_{1}\left(X_{1}, X_{2}\right)=X_{2}, \\
\mathcal{P}_{1}\left(X_{1}, X_{3}\right)=2 X_{3}, \\
\mathcal{P}_{1}\left(X_{2}, X_{3}\right)=0 .
\end{array}\right.
$$

Then

$$
\operatorname{dim} H^{0}\left(\mathcal{A}_{\mathcal{P}_{1}}^{n}\right)=1, \quad \operatorname{dim} H^{1}\left(\mathcal{A}_{\mathcal{P}_{1}}^{n}\right)=3, \quad \operatorname{dim} H^{2}\left(\mathcal{A}_{\mathcal{P}_{1}}^{n}\right)=2, \quad H^{3}\left(\mathcal{A}_{\mathcal{P}_{1}}^{n}\right)=\{0\} .
$$

In this case, $\Omega=X_{2} d X_{3}-2 X_{3} d X_{2}$ and $d \Omega=3 d X_{2} \wedge d X_{3}$. Let us compute $\operatorname{dim} H^{2}\left(\mathcal{A}_{\mathcal{P}_{1}}^{n}\right)$. Let $\varphi \in \chi^{2}\left(\mathcal{A}_{\mathcal{P} 1}^{n}\right)$. Then $\Phi_{0}\left(\delta^{2} \varphi\right)=0$ implies

$$
d \Omega \wedge \Phi_{1}(\varphi)+\Omega \wedge d \Phi_{1}(\varphi)=0
$$

that is

$$
\begin{aligned}
& X_{2}\left(\partial_{1} \varphi\left(X_{1}, X_{3}\right)+\partial_{2} \varphi\left(X_{2}, X_{3}\right)\right) \\
& \quad+2 X_{3}\left(-\partial_{1} \varphi\left(X_{1}, X_{2}\right)+\partial_{3} \varphi\left(X_{2}, X_{3}\right)\right)+3 \varphi\left(X_{2}, X_{3}\right)=0 .
\end{aligned}
$$

Now, if $f \in \chi^{1}\left(\mathcal{A}_{\mathcal{P}_{1}}^{n}\right)$, then

$$
\Phi_{1}(\delta f)=\left[X_{2}\left(-\partial_{2} f\left(X_{2}\right)-\partial_{1} f\left(X_{1}\right)\right)-2 X_{3}\left(\partial_{3} f\left(X_{2}\right)\right)+f\left(X_{2}\right)\right] d X_{3}
$$

$$
\begin{aligned}
& -\left[2 X_{3}\left(\partial_{1} f\left(X_{1}\right)+\partial_{3} f\left(X_{3}\right)\right)+X_{2}\left(\partial_{2} f\left(X_{3}\right)\right)-2 f\left(X_{3}\right)\right] d X_{2} \\
& -\left[X_{2}\left(-\partial_{1} f\left(X_{3}\right)\right)-2 X_{3}\left(\partial_{1} f\left(X_{2}\right)\right)\right] d X_{1} .
\end{aligned}
$$

Comparing these two relations, we obtain that $H^{2}\left(\mathcal{A}_{\mathcal{P}_{1}}^{n}\right)$ is generated by the two cocycles:

$$
\left\{\begin{array}{l}
\Phi_{1}\left(\varphi_{1}\right)=X_{3} d X_{2} \\
\Phi_{1}\left(\varphi_{2}\right)=X_{2}^{2} d X_{2}
\end{array}\right.
$$

Now consider the general case. Let $\mathcal{A}=\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ be provided with the Poisson structure \mathcal{P}.
Theorem 2.4. Let $\varphi \in \chi^{k}\left(\mathcal{A}_{\mathcal{P}}\right)$. Then, we have

$$
\begin{aligned}
\Phi_{n-k-1}\left(\delta^{k} \varphi\right)=\varepsilon \sum i\left(\partial_{\sigma(1)}, \ldots, \partial_{\sigma(k+1)}\right)[& d\left(i\left(\partial_{\sigma(k+2)}, \ldots, \partial_{\sigma(n)}\right) \Omega\right) \wedge \Phi_{n-k}(\varphi) \\
& \left.+\Omega \wedge d\left(i\left(\partial_{\sigma(k+2)}, \ldots, \partial_{\sigma(n)}\right) \Phi_{n-k}(\varphi)\right)\right]
\end{aligned}
$$

for all $\sigma \in S_{k+1, n-k-1}$, where $\varepsilon=\varepsilon(n, k)=(-1)^{\frac{(n-k)(n-k+1)}{2}}$.
Proof. To simplify, we write d_{i} in place of $d X_{i}$. We have seen that for every $P \in \mathcal{A}_{\mathcal{P}}$, we have $\delta^{0} P=-\Omega \wedge d P$. But

$$
\Phi_{n-1}(\delta P)=\sum_{k=1}^{n}(-1)^{k-1}\left\{X_{k}, P\right\} d_{1} \wedge \cdots \wedge \hat{d_{k}} \wedge \cdots \wedge d_{n}
$$

where \hat{d}_{i} means that this factor does not appear with $\left\{P, X_{i}\right\}=\sum_{j=1}^{n} P_{j i} \partial_{j} P$ with $P_{j i}=-P_{i j}$ when $j>i$. But

$$
\begin{aligned}
i\left(\partial_{1}\right) & {\left[\Omega \wedge d\left(i\left(\partial_{2}, \ldots, \partial_{n}\right) \Phi_{n}(P)\right)+d\left(i\left(\partial_{2}, \ldots, \partial_{n}\right) \Omega\right) \wedge \Phi_{n}(P)\right.} \\
& =i\left(\partial_{1}\right)\left[\Omega \wedge d\left(i\left(\partial_{2}, \ldots, \partial_{n}\right) \Phi_{n}(P)\right)\right]=(-1)^{\frac{n(n-1)}{2}} i\left(\partial_{1}\right)\left[\Omega \wedge d P \wedge d_{1}\right] \\
& =-(-1)^{\frac{n(n-1)}{2}} \sum_{i=2}^{n} P_{1 i} \partial_{i} P d_{2} \wedge \cdots \wedge d_{n}=(-1)^{\frac{n(n-1)}{2}} \Phi_{n-1}(P)\left(\partial_{2}, \ldots, \partial_{n}\right) .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
i\left(\partial_{j}\right) & {\left[\Omega \wedge d\left(i\left(\partial_{1}, \ldots, \hat{\partial}_{j}, \ldots, \partial_{n}\right) \Phi_{n}(P)\right)+d\left(i\left(\partial_{1}, \ldots, \hat{\partial}_{j}, \ldots, \partial_{n}\right) \Omega\right) \wedge \Phi_{n}(P)\right] } \\
& =i\left(\partial_{j}\right)\left[\Omega \wedge d\left(i\left(\partial_{1}, \ldots, \hat{\partial}_{j}, \ldots, \partial_{n}\right) \Phi_{n}(P)\right)\right]=(-1)^{j-1+\frac{n(n-1)}{2}} i\left(\partial_{j}\right)\left[\Omega \wedge d P \wedge d X_{j}\right] \\
& =(-1)^{j-1+\frac{n(n-1)}{2}} i\left(\partial_{j}\right)\left(\sum_{l=1}^{l=j-1} P_{1 j} \partial_{l} P-\sum_{l=j+1}^{l=n} P_{j l} \partial_{l} P\right) d_{1} \wedge \cdots \wedge d_{n} \\
& =(-1)^{\frac{n(n-1)}{2}}\left(\sum_{l=1}^{l=j-1} P_{1 j} \partial_{l} P-\sum_{l=j+1}^{l=n} P_{j l} \partial_{l} P\right) d_{1} \wedge \cdots \wedge \hat{d}_{j} \cdots \wedge d_{n} \\
& =(-1)^{\frac{n(n-1)}{2}}\left\{P, X_{i}\right\} d_{1} \wedge \cdots \wedge \hat{d}_{i} \wedge \cdots \wedge d_{n} .
\end{aligned}
$$

We deduce

$$
\Phi_{n-1}\left(\delta^{0} P\right)=(-1)^{\frac{n(n-1)}{2}} \sum_{j=1}^{n}(-1)^{j-1} i\left(\partial_{j}\right)\left[\Omega \wedge d\left(i\left(\partial_{1}, \ldots, \hat{\partial}_{j}, \ldots, \partial_{n}\right) \Phi_{n}(P)\right)\right],
$$

which proves the theorem for $k=0$. The proof is similar for any k.

Application 2.5. We consider the n-dimensional complex Lie algebra defined by the brackets:

$$
\left[X_{1}, X_{i}\right]=(i-1) X_{i}
$$

for $i=2, \ldots, n$. Let \mathcal{P}_{2} be the corresponding Poisson bracket on $\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$. Let $\chi_{2}^{k}\left(\mathcal{A}_{\mathcal{P}_{2}}\right)$ be the subspace of $\chi^{k}\left(\mathcal{A}_{\mathcal{P}_{2}}\right)$ whose elements are homogenous of degree 2 . We denote by $H_{2}^{2}\left(\mathcal{A}_{\mathcal{P}_{2}}\right)=Z_{2}^{2} / B_{2}^{2}$ the corresponding subspace of $H^{2}\left(\mathcal{A}_{\mathcal{P}_{2}}\right)$. Define $N:=\frac{n(n-1)}{2}$.

- If n is even, then

$$
\operatorname{dim} B_{2}^{2}=N+(N-1)+\cdots+N-n / 2+1=\frac{n\left(2 n^{2}-3 n+2\right)}{8}
$$

- If n is odd,

$$
\operatorname{dim} B_{2}^{2}=N+(N-1)+\cdots+(N-(n-1) / 2)=\frac{\left(n^{2}-1\right)(2 n-1)}{8}
$$

In fact, if $f \in \chi_{2}^{1}\left(\mathcal{A}_{\mathcal{P}}\right)$, then $f\left(X_{i}\right)=P_{i}=\Sigma a_{i_{1}, \ldots, i_{n}}^{i} X_{1}^{i_{1}} X_{2}^{i_{2}} \cdots X_{n}^{i_{n}}$ is homogenous of degree 2, then:
(1) in $\delta f\left(X_{1}, X_{2 l}\right)$, we find $N-l$ independent coefficients of $P_{2 l}$. The coefficients which do not appear are

$$
a_{1,0,0, \ldots, 0,1,0, \ldots, 0}^{2 l}, a_{0,1,0, \ldots, 0,1,0, \ldots, 0}^{2 l}, \ldots, a_{0,0, \ldots, 1,1,0, \ldots, 0}^{2 l}
$$

where the second 1 in the sequences of indices is, respectively, in the place $2 l, 2 l-$ $1, \ldots, l+1$;
(2) in $\delta f\left(X_{1}, X_{2 l+1}\right)$, we find $N-l-1$ independent coefficients of $P_{2 l+1}$. The coefficients which do not appear are

$$
a_{1,0,0, \ldots, 0,1,0, \ldots, 0}^{2 l+1}, a_{0,1,0, \ldots, 0,1,0, \ldots, 0}^{2 l+1}, \ldots, a_{0,0, \ldots, 0,2,0, \ldots, 0}^{2 l+1}
$$

where the second 1 in the sequences of indices is in place $2 l+1,2 l, \ldots, l+2$ and in the last case the 2 is in place $l+1$;
(3) for $i \geq 2$ and $j>i, \delta f\left(X_{i}, X_{j}\right)$ is defined by the $(n-2)$ coefficients $a_{1,0,0, \ldots, 0,1,0, \ldots, 0}^{i}$.

Now we can find the generators of $H_{2}^{2}\left(\mathcal{A}_{\mathcal{P}}\right)$. We can choose $\phi \in \chi_{2}^{2}$ such that

$$
\left\{\begin{array}{l}
\phi\left(X_{1}, X_{2}\right)=0, \\
\phi\left(X_{1}, X_{3}\right)=a_{1,3}^{1,3} X_{1} X_{3}+a_{1,3}^{2,2} X_{2}^{2}, \\
\cdots \\
\phi\left(X_{1}, X_{2 l}\right)=a_{1,2}^{1,2 l} X_{1} X_{2 l}+a_{1,2 l}^{2,2 l-1} X_{2} X_{2 l-1}+\cdots+a_{1,2 l}^{l, l+1} X_{l} X_{l+1}, \\
\phi\left(X_{1}, X_{2 l+1}\right)=a_{1,2 l+1}^{1,2 l+1} X_{1} X_{2 l+1}+a_{1,2 l+1}^{2,2 l} X_{2} X_{2 l}+\cdots+a_{1,2 l+1}^{l,} X_{l}^{2}, \\
\cdots \\
\phi\left(X_{1}, X_{n}\right)=a_{1, n}^{1, n} X_{1} X_{n}+a_{1, n}^{2, n-1} X_{2} X_{n-1}+\cdots, \\
\phi\left(X_{i}, X_{j}\right)=A_{i, j},
\end{array}\right.
$$

where $A_{i, j}$ is a degree 2 homogenous polynomial without monomial of types $X_{1} X_{k}$ and $X_{i} X_{j}$. By solving $\Phi_{n-2}(\delta \phi)=0$, we obtain the generators of $H_{2}^{2}\left(\mathcal{A}_{\mathcal{P}}\right)$. They are given by

$$
\left\{\begin{array}{l}
\phi\left(X_{1}, X_{2}\right)=0, \\
\phi\left(X_{1}, X_{3}\right)=a_{1,3}^{2,2} X_{2}^{2}, \\
\cdots \\
\phi\left(X_{1}, X_{2 l}\right)=a_{1,2 l}^{2,2 l-1} X_{2} X_{2 l-1}+\cdots+a_{1,2 l}^{l, l+1} X_{l} X_{l+1}, \\
\phi\left(X_{1}, X_{2 l+1}\right)=a_{1,2 l+1}^{2,2 l} X_{2} X_{2 l}+\cdots+a_{1,2 l+1}^{l+1,+1} X_{l+1}^{2}, \\
\cdots \\
\phi\left(X_{1}, X_{n}\right)=a_{1, n}^{2, n-1} X_{2} X_{n-1}+\cdots+a_{1, n}^{m, m+1} X_{m} X_{m+1}, \quad \text { if } n=2 m, \\
\phi\left(X_{i}, X_{j}\right)=A_{i, j},
\end{array}\right.
$$

or $\phi\left(X_{1}, X_{n}\right)=a_{1, n}^{2, n-1} X_{2} X_{n-1}+\cdots+a_{1, n}^{m+1, m+1} X_{m} X_{m+1}$, if $n=2 m+1$. For example:

- if $n=2, \operatorname{dim} H_{2}^{2}\left(\mathcal{A}_{\mathcal{P}_{2}}, \mathcal{A}_{\mathcal{P}_{2}}\right)=1 ;$
- if $n=3, \operatorname{dim} H_{2}^{2}\left(\mathcal{A}_{\mathcal{P}_{2}}, \mathcal{A}_{\mathcal{P}_{2}}\right)=3 ;$
- if $n=4, \operatorname{dim} H_{2}^{2}\left(\mathcal{A}_{\mathcal{P}_{2}}, \mathcal{A}_{\mathcal{P}_{2}}\right)=8 ;$
- if $n=5, \operatorname{dim} H_{2}^{2}\left(\mathcal{A}_{\mathcal{P}_{2}}, \mathcal{A}_{\mathcal{P}_{2}}\right)=16$.

3 Poisson structures of degree 2 on $\mathbb{C}\left[X_{1}, X_{2}, X_{3}\right]$

Let \mathcal{P} be a Poisson structure on $\mathcal{A}^{3}=\mathbb{C}\left[X_{1}, X_{2}, X_{3}\right]$ with $P_{i j}$ of degree 2 . Then \mathcal{P} writes

$$
\mathcal{P}=\mathcal{P}_{0}+\mathcal{P}_{1}+\mathcal{P}_{2},
$$

where \mathcal{P}_{i} is homogenous of degree i. The associated form Ω is decomposed in homogenous parts $\Omega=\Omega_{0}+\Omega_{1}+\Omega_{2}$ and, since $d \Omega_{0}=0$, the condition $\Omega \wedge d \Omega=0$ is equivalent to

$$
\left\{\begin{array}{l}
\Omega_{2} \wedge d \Omega_{2}=0 \tag{3.1}\\
\Omega_{0} \wedge d \Omega_{1}+\Omega_{1} \wedge d \Omega_{0}=0 \\
\Omega_{0} \wedge d \Omega_{2}+\Omega_{2} \wedge d \Omega_{0}+\Omega_{1} \wedge d \Omega_{1}=0 \\
\Omega_{1} \wedge d \Omega_{2}+\Omega_{2} \wedge d \Omega_{1}=0
\end{array}\right.
$$

If $\Omega_{2}=0$, then \mathcal{P} is a linear Poisson structure on $\mathcal{A}^{3}([1])$. If $\Omega_{2} \neq 0$ and $\Omega_{0}=\Omega_{1}=0$, then \mathcal{P} is a quadratic homogenous Poisson structure, and the classification is given in [9]. In this section, we will study the remaining cases $\Omega_{0} \neq 0$ or $\Omega_{1} \neq 0$. The associative algebra \mathcal{A}^{3} admits a natural grading $\mathcal{A}^{3}=\oplus_{n \geq 0} V_{n}$, where V_{n} is the space of degree n homogenous polynomial of \mathcal{A}^{3}.

Definition 3.1. A linear isomorphism:

$$
f: \oplus_{n \geq 0} V_{n} \longrightarrow \oplus_{n \geq 0} V_{n}
$$

is called equivalence of order 2 if it satisfies

- $f\left(V_{1}\right) \subset V_{1} \oplus V_{2}$,

3.1.1 $d \Omega_{2}=0$

If $\Omega_{1}=\Omega_{1}^{1}$ or Ω_{1}^{2}, then $d \Omega_{1}=0$, and (3.2) is satisfied. An equivalence of order 2 of type $Y_{1}=X_{1}, Y_{2}=X_{2}, Y_{3}=X_{3}+B$, where B is an homogenous polynomial of degree 2, allows to reduce the form Ω_{2} to a form with $A_{1}=0$. We obtain the following Poisson structure associated to

$$
\begin{equation*}
\Omega(1)=\left(a X_{1}^{2}-\frac{b}{2} X_{2}^{2}-2 c X_{1} X_{2}\right) d X_{1}-\left(c X_{1}^{2}+e X_{2}^{2}+b X_{1} X_{2}\right) d X_{2}+X_{3} d X_{3} \tag{3.3}
\end{equation*}
$$

corresponding to $\Omega_{1}=\Omega_{1}^{1}$, and

$$
\begin{equation*}
\Omega(2)=\left(X_{1}+a X_{1}^{2}-\frac{b}{2} X_{2}^{2}-2 c X_{1} X_{2}\right) d X_{1}+\left(X_{3}-c X_{1}^{2}-e X_{2}^{2}-b X_{1} X_{2}\right) d X_{2}+X_{3} d X_{3} \tag{3.4}
\end{equation*}
$$

corresponding to $\Omega_{1}=\Omega_{1}^{2}$. If $\Omega_{1}=\Omega_{1}^{3}$ or Ω_{1}^{4}, then $d \Omega_{1}=k d X_{2} \wedge d X_{3}$ with $k \neq 0$. Then (3.2) implies $\Omega_{2} \wedge d X_{2} \wedge d X_{3}=0$ that is $A_{3}=0$. Such a structure is a Poisson structure on \mathcal{A}^{2}.

3.1.2 $d \Omega_{2} \neq 0, \Omega_{1}=\Omega_{1}^{1}$

As $d \Omega_{1}=0$, then (3.2) is equivalent to

$$
\left\{\begin{array}{l}
\Omega_{1} \wedge d \Omega_{2}=0 \\
\Omega_{2} \wedge d \Omega_{2}=0
\end{array}\right.
$$

This implies $P d \Omega_{2}=\Omega_{1} \wedge \Omega_{2}$, where P is an homogenous polynomial of degree 2 . The equivalence of order 2 given by $Y_{i}=X_{i}$ for $i=1,2$ and $Y_{3}=X_{3}+B$ with $B \in V_{2}$ enables to consider $A_{1}=0$. In this case, $\Omega_{1} \wedge \Omega_{2}=P d \Omega_{2}$ is equivalent to

$$
\left\{\begin{array}{l}
\partial_{1} A_{2}+\partial_{2} A_{3}=0 \\
P \partial_{3} A_{3}=X_{3} A_{3} \\
P \partial_{3} A_{2}=X_{3} A_{2}
\end{array}\right.
$$

If X_{3} is not a factor of P, then $\partial_{3} A_{2}=\alpha X_{3}$ and $\partial_{3} A_{3}=\beta X_{3}$. If $\alpha=\beta=0$, then $\Omega_{2}=0$. The case $\alpha \beta \neq 0$ reduces by a change of variables to the case $\alpha \neq 0$ and $\beta=0$, then $A_{3}=0$. Thus, we obtain

$$
\Omega=X_{3} d X_{3}-\left(a X_{2}^{2}+b X_{3}^{2}\right) d X_{2} .
$$

This structure is a trivial extension of a Poisson structure on $\mathbb{C}\left[X_{2}, X_{3}\right]$. If $P=X_{3} Q$ and Q is a degree 1 homogenous polynomial, then Q satisfies

$$
\left\{\begin{array}{l}
Q\left(\partial_{1} A_{2}+\partial_{2} A_{3}\right)=0 \\
Q \partial_{3} A_{3}=A_{3} \\
Q \partial_{3} A_{2}=A_{2}
\end{array}\right.
$$

We deduce the following structures:

$$
\begin{aligned}
& \Omega=\left(a X_{1}^{2}+b X_{1} X_{3}\right) d X_{1}+X_{3} d X_{3}, \\
& \Omega=\left(a X_{1}+X_{3} / 2\right)^{2} d X_{1}+X_{3} d X_{3}, \\
& \Omega=\left(a X_{1} X_{3}+b X_{2} X_{3}\right) d X_{1}+\left(b X_{1} X_{3}+c X_{2} X_{3}\right) d X_{2}+X_{3} d X_{3},
\end{aligned}
$$

The first two equations depend only on X_{1} and X_{3}. Then we obtain the following Poisson structure:

$$
\begin{equation*}
\Omega(3)=\left(a X_{1} X_{3}+b X_{2} X_{3}\right) d X_{1}+\left(b X_{1} X_{3}+c X_{2} X_{3}\right) d X_{2}+X_{3} d X_{3} . \tag{3.5}
\end{equation*}
$$

3.1.3 $d \Omega_{2} \neq 0, \Omega_{1}=\Omega_{1}^{2}$

By an equivalence of degree 2 , we can consider that $A_{3}=0$. Then $P d \Omega_{2}=\Omega_{1} \wedge \Omega_{2}$ gives

$$
\left\{\begin{array}{l}
P \partial_{1} A_{2}=X_{1} A_{2}, \\
P \partial_{1} A_{1}=X_{1} A_{1}, \\
P\left(\partial_{2} A_{1}+\partial_{3} A_{2}\right)=\left(A_{2} X_{2}+A_{1} X_{3}\right)
\end{array}\right.
$$

Solving these equations, we obtain

$$
\begin{align*}
& \Omega(4)=X_{1} d X_{1}+\left(X_{3}-a X_{1} X_{3}\right) d X_{2}+\left(X_{2}+a X_{1} X_{2}\right) d X_{3}, \\
& \Omega(5)=X_{1} d X_{1}+\left(X_{3}-a X_{1}^{2}-2 a X_{2} X_{3}\right) d X_{2}+X_{2} d X_{3} . \tag{3.6}
\end{align*}
$$

3.1.4 $d \Omega_{2} \neq 0, \Omega_{1}=\Omega_{1}^{3}=X_{2} d X_{3}-\alpha X_{3} d X_{2}$

Assume that $\alpha \neq 0$ and $\alpha \neq-1$. The equivalence given by $Y_{2}=X_{2}+B_{2}, Y_{i}=X_{i}$ for $i=1,3$ and $B_{2} \in V_{2}$ shows that the structure corresponding to $\Omega=\Omega_{1}$ is equivalent to a structure of degree 2 defined as follow:

$$
\left\{\begin{array}{l}
A_{1}=a_{2} X_{2}^{2}+a_{3} X_{3}^{2}+\frac{c_{6}}{\alpha} X_{1} X_{2}+c_{3} X_{1} X_{3} \\
A_{2}=0 \\
A_{3}=c_{3} X_{3}^{2}+c_{5} X_{1} X_{3}+c_{6} X_{2} X_{3}
\end{array}\right.
$$

Thus we can assume that in Ω_{2}, we have $c_{3}=c_{5}=c_{6}=a_{2}=a_{3}=a_{6}=0$. The new equivalence of degree 2 given by $Y_{3}=X_{3}+B_{3}, Y_{i}=X_{i}$ for $i=1,2$ and $B_{3} \in V_{2}$ gives a Poisson structure of degree 2 equivalent to the structure of degree 1 with

$$
\left\{\begin{array}{l}
A_{1}=0 \\
A_{2}=b_{2} X_{2}^{2}+b_{3} X_{3}^{2}-c_{2} X_{1} X_{2}+\frac{c_{6}}{\alpha} X_{1} X_{3} \\
A_{3}=c_{2} X_{2}^{2}+c_{4} X_{1} X_{2}+c_{6} X_{2} X_{3}
\end{array}\right.
$$

Thus we can assume that

$$
\Omega_{2}=\left(a_{1} X_{1}^{2}+a_{4} X_{1} X_{2}+a_{5} X_{1} X_{3}\right) d X_{1}+\left(b_{1} X_{1}^{2}+b_{4} X_{1} X_{2}+b_{5} X_{1} X_{3}\right) d X_{2}+c_{1} X_{1}^{2} d X_{3} .
$$

As $\Omega_{1} \wedge d \Omega_{2}+\Omega_{2} \wedge d \Omega_{1}=0$, we obtain the following Poisson structure:

$$
\begin{equation*}
\Omega(6)=a X_{1} X_{3} d X_{1}-\alpha X_{3} d X_{2}+\left(X_{2}-\frac{a}{2 \alpha} X_{1}^{2}\right) d X_{3} \tag{3.7}
\end{equation*}
$$

with $\alpha \neq 0$ and $\alpha \neq-1$.
If $\alpha=-1$, then $d \Omega_{1}=0$, and this case has already been studied. If $\alpha=0$, by equivalence of degree 2 we can assume that

$$
\left\{\begin{array}{l}
A_{1}=a_{1} X_{1}^{2}+a_{3} X_{3}^{2}+a_{4} X_{1} X_{2}+a_{5} X_{1} X_{3}, \\
A_{2}=b_{1} X_{1}^{2}+b_{3} X_{3}^{2}+b_{5} X_{1} X_{3}, \\
A_{3}=c_{1} X_{1}^{2}+c_{3} X_{3}^{2}+c_{5} X_{1} X_{3}
\end{array}\right.
$$

Then we have $A_{3}=0$, and the Poisson structure concerns only two variables.
3.1.5 $d \Omega_{2} \neq 0, \Omega_{1}=\Omega_{1}^{4}=\left(X_{2}+X_{3}\right) d X_{3}-X_{3} d X_{2}$

By equivalence of degree 2, we can assume that $A_{1}=0, c_{5}=0$, and $b_{4}=0$. The equation $\Omega_{1} \wedge d \Omega_{2}+\Omega_{2} \wedge d \Omega_{1}=0$ implies that $c_{1}=c_{4}=b_{1}=0, c_{6}=-b_{5}=2 c_{2}$. The equation $\Omega_{2} \wedge d \Omega_{2}=0$ implies that $c_{2}=0$ and $b_{2} c_{3}=b_{6} c_{3}=0$. Then we obtain the following Poisson structure:

$$
\begin{equation*}
\Omega(7)=a X_{3}^{2} d X_{1}-\left(X_{3}+b X_{3}^{2}\right) d X_{2}+\left(X_{2}+X_{3}\right) d X_{3} \tag{3.8}
\end{equation*}
$$

with $a \neq 0$.

3.2 Second case: $\Omega=\Omega_{2}+\Omega_{1}+\Omega_{0}, \Omega_{0} \neq 0$

The form $\Omega_{0} \oplus \Omega_{1}$ provides the vector space $V_{0} \oplus V_{1}$ with a linear Poisson structure. Then $V_{0} \oplus V_{1}$ is a Lie algebra such that V_{0} is in the center. This implies $\Omega_{1} \wedge d \Omega_{1}=0$. We deduce that $\Omega_{0}+\Omega_{1}$ is equivalent to

$$
\left\{\begin{array}{l}
d X_{3}-X_{3} d X_{2} \tag{3.9}\\
X_{3} d X_{3}-d X_{2} \\
X_{2} d X_{3}+X_{3} d X_{2}+d X_{1}
\end{array}\right.
$$

3.2.1 $\quad \Omega_{0}+\Omega_{1}=d X_{3}-X_{3} d X_{2}$

By equivalence, we can assume that $a_{3}=a_{5}=b_{3}=c_{5}=0$. The equation $\Omega_{0} \wedge d \Omega_{2}=0$ implies $b_{4}=-2 c_{2}, c_{4}=-2 b_{1}, c_{6}=-b_{5}, \Omega_{1} \wedge d \Omega_{2}+\Omega_{2} \wedge d \Omega_{1}=0$ implies that $c_{1}=c_{2}=c_{3}=c_{4}=0$, $a_{1}=a_{4}=0$, and $\Omega_{2} \wedge d \Omega_{2}=0$ gives $b_{5} b_{2}=b_{5} a_{2}=b_{5} a_{6}=0$. Thus we obtain the following Poisson structures given by

$$
\begin{equation*}
\Omega(8)=a X_{2} X_{3} d X_{1}-\left(X_{3}-a X_{1} X_{3}+b X_{2} X_{3}\right) d X_{2}+d X_{3} \tag{3.10}
\end{equation*}
$$

with $a \neq 0$.

3.2.2 $\quad \Omega_{0}+\Omega_{1}=-d X_{2}+X_{3} d X_{3}$

We can assume that $A_{2}=b_{2} X_{2}^{2}+b_{4} X_{1} X_{2}$. As $d \Omega_{1}=0$, the system reduces to $\Omega_{0} \wedge d \Omega_{2}=$ $\Omega_{1} \wedge d \Omega_{2}=0$. This gives $c_{4}=c_{6}=a_{4}=0$ and $b_{4}+2 c_{2}=a_{5}-2 c_{3}=2 a_{1}-c_{5}=0$. Thus, $\Omega_{2} \wedge d \Omega_{2}=0$ is equivalent to $\left(2 a_{2} X_{2}+a_{6} X_{3}\right) A_{3}=0$. We obtain the following Poisson structures:

$$
\begin{align*}
\Omega(9)= & -\left(X_{2}+a X_{2}^{2}+b X_{1} X_{2}\right) d X_{2}+\left(1+c X_{1}^{2}+e X_{3}^{2}+f X_{1} X_{3}\right) d X_{3} \\
& +\left(g X_{1}^{2}-\frac{b}{2} X_{2}^{2}+\frac{f}{2} X_{3}^{2}+2 c X_{1} X_{3}\right) d X_{1} . \tag{3.11}
\end{align*}
$$

3.2.3 $\Omega_{0}+\Omega_{1}=d X_{1}+X_{3} d X_{2}+X_{2} d X_{3}$

By equivalence, we can assume $b_{5}=b_{2}=a_{3}=a_{5}=c_{2}=c_{5}=0$. As $d \Omega_{1}=0$, the equation $\Omega_{0} \wedge d \Omega_{2}=\Omega_{1} \wedge d \Omega_{2}=0$ implies that $b_{6}+2 a_{2}=a_{6}+2 b_{3}=a_{4}=a_{1}=b_{1}=b_{4}=c_{3}=0$. In this case, $\Omega_{2} \wedge d \Omega_{2}=0$ is equivalent to $c_{6}\left(X_{2} A_{2}+X_{3} A_{1}\right)=0$. We obtain

$$
\begin{equation*}
\Omega(10)=\left(1+a X_{1}^{2}\right) d X_{1}+X_{3} d X_{2}+X_{2} d X_{3}, \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\Omega(11)=\left(1+a X_{1}^{2}\right) d X_{1}+\left(X_{3}+b X_{3}^{2}+c X_{2} X_{3}\right) d X_{2}+\left(X_{2}+\frac{c}{2} X_{2}^{2}+2 b X_{2} X_{3}\right) d X_{3} . \tag{3.13}
\end{equation*}
$$

4 Poisson algebras associated to rigid Lie algebras

4.1 Rigid Lie algebras

Let us fix a basis of \mathbb{C}^{n}. With respect to this basis, a multiplication μ of a n-dimensional complex Lie algebra is determined by its structure constants $C_{i j}^{k}$. We denote by L_{n} the algebraic variety $\mathbb{C}\left[C_{i j}^{k}\right] / I$, where I is the ideal generated by the polynomials:

$$
\left\{\begin{array}{l}
C_{i j}^{k}+C_{j i}^{k}=0, \\
\sum_{l=1}^{n} C_{i j}^{l} C_{l k}^{s}+C_{j k}^{l} C_{l i}^{s}+C_{k i}^{l} C_{l i}^{s}=0
\end{array}\right.
$$

for all $1 \leq i, j, k, s \leq n$. Then every multiplication μ of a n-dimensional complex Lie algebra is identified to one point of L_{n}. We have a natural action of the algebraic group $\mathrm{Gl}(n, \mathbb{C})$ on L_{n} whose orbits correspond to the classes of isomorphic multiplications:

$$
\mathcal{O}(\mu)=\left\{f^{-1} \circ \mu \circ(f \times f), f \in \operatorname{Gl}(n, \mathbb{C})\right\} .
$$

Let $\mathfrak{g}=\left(\mathbb{C}^{n}, \mu\right)$ be a n-dimensional complex Lie algebra. We denote also by μ the corresponding point of L_{n}.

Definition 4.1. The Lie algebra \mathfrak{g} is rigid if its orbit $\mathcal{O}(\mu)$ is open (for the Zariski topology) in L_{n}.

Among rigid complex Lie algebras, there are all simple and semi-simple Lie algebras, all Borel algebras and parabolic Lie algebras. Concerning the classification of rigid Lie algebras, we know the classification up the dimension 8 ([2]), the classification in any dimension of solvable rigid Lie algebras whose nilradical is filiform ([2]). Recall two interesting tools to study rigidity of a given Lie algebra.

Theorem 4.2. Let $\mathfrak{g}=\left(\mathbb{C}^{n}, \mu\right)$ be a n-dimensional complex Lie algebra. Then:
(1) \mathfrak{g} is rigid if and only if any valued deformation \mathfrak{g}^{\prime} is $\left(K^{*}\right)$-isomorphic to \mathfrak{g}, where K^{*} is the fraction field of the valuation ring R containing the structure constants of \mathfrak{g} ';
(2) (Nijenhuis-Richardson theorem) if $H^{2}(\mathfrak{g}, \mathfrak{g})=0$, then \mathfrak{g} is rigid.

The notion of valued deformation, which extends in a natural way the classical notion of Gerstenhaber deformations, is developed in [4]. In the Nijenhuis-Richardson theorem, the second cohomological space $H^{2}(\mathfrak{g}, \mathfrak{g})$ of the Chevalley cohomology of \mathfrak{g} is trivial. Let us recall that the converse of this theorem is not true. There exists solvable rigid Lie algebras with $H^{2}(\mathfrak{g}, \mathfrak{g}) \neq 0$ (see for example [2]). In this case, there exists a 2-cocycle $\varphi_{1} \in H^{2}(\mathfrak{g}, \mathfrak{g})$ which is not the first term of a valued (or formal) deformation:

$$
\mu_{t}=\mu+\sum_{i \geq 1} t^{i} \varphi_{i}
$$

of the Lie multiplication μ of \mathfrak{g}.

4.2 Finite dimensional Poisson algebras whose Lie bracket is rigid

We recall in this section some results of [5] which precise the structure of a finite dimensional complex Poisson algebra with rigid underlying Lie bracket. Let $\mathcal{P}=\left(\mathbb{C}^{n}, \mathcal{P}\right)$ be a finite dimensional complex Poisson algebra. We denote by $\{X, Y\}$ and $X \cdot Y$ the corresponding Lie bracket and associative multiplication, by $\mathfrak{g}_{\mathcal{P}}$ the Lie algebra $(\mathcal{P},\{\}$,$) , and by \mathcal{A}_{\mathcal{P}}$ the associative algebra ($\mathcal{P}, \cdot)$.

Proposition 4.3 ([5]). If the Lie algebra $\mathfrak{g}_{\mathcal{P}}$ is a simple complex Lie algebra, then the associative product is trivial that is $X \cdot Y=0$ for every X, Y in \mathcal{P}.

Let us assume now that $\mathfrak{g}_{\mathcal{P}}$ is a complex rigid solvable Lie algebra. Then \mathfrak{g} is written as follows:

$$
\mathfrak{g}=\mathfrak{t} \oplus \mathfrak{n}
$$

where \mathfrak{n} is the nilradical of \mathfrak{g} and \mathfrak{t} is a maximal abelian subalgebra such that the adjoint operators $a d X$ are diagonalizable for every $X \in \mathfrak{t}$. This subalgebra \mathfrak{t} is usually called a Malcev torus. All these maximal tori are conjugated and their common dimension is called the rank of \mathfrak{g}.

Lemma 4.4. If there is a non-zero vector $X \in \mathfrak{g}_{\mathcal{P}}$, such that adX is diagonalizable with 0 as a simple root, then $\mathcal{A}_{\mathcal{P}} \cdot \mathcal{A}_{\mathcal{P}}=\{0\}$.

Proof. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a basis of $\mathfrak{g}_{\mathcal{P}}$, such that ade e_{1} is diagonal with respect to this basis. By assumption, $\left\{e_{1}, e_{i}\right\}=\lambda_{i} e_{i}$ with $\lambda_{i} \neq 0$ for $i \geq 2$. Since $\left\{e_{1}^{2}, e_{1}\right\}=2 e_{1} \cdot\left\{e_{1}, e_{1}\right\}=$ 0 , it follows that $e_{1}^{2}=a e_{1}$. But for any $i \neq 1,\left\{e_{1}^{2}, e_{i}\right\}=2 e_{1} \cdot\left\{e_{1}, e_{i}\right\}=2 \lambda_{i} e_{1} \cdot e_{i}$ and $\left\{e_{1}^{2}, e_{i}\right\}=a \lambda_{i} e_{i}$, thus $e_{1} \cdot e_{i}=\frac{a}{2} e_{i}$. The associativity of the product $X \cdot Y$ implies that $\left(e_{1} \cdot e_{1}\right) \cdot e_{i}=a e_{1} \cdot e_{i}=\frac{a^{2}}{2} e_{i}=e_{1} \cdot\left(e_{1} \cdot e_{i}\right)=\frac{a^{2}}{4} e_{i}$. Therefore, $a=0$ and $e_{1}^{2}=0=e_{1} \cdot e_{i}$ for any i. Finally, $0=\left\{e_{1} \cdot e_{j}, e_{i}\right\}=e_{1} \cdot\left\{e_{j}, e_{i}\right\}+e_{j} \cdot\left\{e_{1}, e_{i}\right\}=\lambda_{i} e_{j} \cdot e_{i}$, which implies $e_{i} \cdot e_{j}=0$, $\forall i, j \geq 1$.

Proposition 4.5. Let \mathfrak{g} be a rigid solvable Lie algebra of rank 1 with non-zero roots. Then, there is only one Poisson algebra \mathcal{P} such that $\mathfrak{g}_{\mathcal{P}}=\mathfrak{g}$. It corresponds to

$$
X \cdot Y=0
$$

for any $X, Y \in \mathcal{P}$.
Proof. By hypothesis, we have $\operatorname{dim} \mathfrak{t}=1$ and for $X \in \mathfrak{g}_{\mathcal{P}}, X \neq 0$, as the roots of \mathfrak{g} are non-zero, the restriction of the operator $a d X$ on \mathfrak{n} is invertible (all known solvable rigid Lie algebras satisfy this hypothesis). By the previous lemma, the associated algebra $\mathcal{A}_{\mathcal{P}}$ satisfies $\mathcal{A}_{\mathcal{P}} \cdot \mathcal{A}_{\mathcal{P}}=\{0\}$.

Theorem 4.6. Let \mathcal{P} a complex Poisson algebra, such that $\mathfrak{g}_{\mathcal{P}}$ is rigid solvable of rank 1 (i.e $\operatorname{dim} \mathfrak{t}=1$) with non-zero roots. Then \mathcal{P} is a rigid Poisson algebra.

Proof. See [5].

4.3 Linear Poisson structures on $\mathcal{A}^{n+1}=\mathbb{C}\left[X_{0}, X_{1}, \ldots, X_{n}\right]$ given by a rigid Lie bracket

In this section, we consider a linear Poisson bracket on $\mathbb{C}\left[X_{0}, \ldots, X_{n}\right]$, such that the brackets $\left\{X_{i}, X_{j}\right\}=\mathcal{P}\left(X_{i}, X_{j}\right)$ correspond to a solvable rigid Lie algebra \mathfrak{g} of rank 1. We assume that the roots (see [2]) of this rigid Lie algebras are $1, \ldots, n$. In this case, we have

$$
\left\{\begin{array}{l}
\left\{X_{0}, X_{i}\right\}=i X_{i}, \quad i=1, \ldots, n, \\
\left\{X_{1}, X_{i}\right\}=X_{i+1}, \quad i=2, \ldots, n-1, \\
\left\{X_{2}, X_{i}\right\}=X_{i+2}, \quad i=3, \ldots, n-2 .
\end{array}\right.
$$

We denote this $(n+1)$-dimensional Poisson algebra by $\mathcal{P}(\mathfrak{g})$. This algebra is a deformation of the Poisson algebra studied in Section 2.2. The corresponding $(n-1)$-exterior form is

$$
\begin{aligned}
\Omega= & \sum_{i=1}^{n}(-1)^{i-1} X_{i} d_{1} \wedge \cdots \wedge \hat{d}_{i} \wedge \cdots \wedge d_{n}+\sum_{i=2}^{n-1}(-1)^{i} X_{i+1} d_{0} \wedge d_{2} \wedge \cdots \wedge \hat{d}_{i} \wedge \cdots \wedge d_{n} \\
& +\sum_{i=3}^{n-2}(-1)^{i+1} X_{i+2} d_{0} \wedge d_{1} \wedge d_{3} \wedge \cdots \wedge \hat{d}_{i} \wedge \cdots \wedge d_{n},
\end{aligned}
$$

where d_{i} denotes $d X_{i}$, and \hat{d}_{i} means that this term does not appear. Let φ be a 2 -cochain. We denote by $\varphi(i, j)$ the vector $\varphi\left(X_{i}, X_{j}\right)$. Then φ is a 2 cocycle if and only if

$$
\begin{aligned}
\Phi_{n-1}(\varphi)= & (-1)^{n-2} \varphi(1, i) d_{0} \wedge d_{2} \wedge \cdots \wedge \hat{d}_{i} \wedge \cdots \wedge d_{n} \\
& +\sum_{i=3}^{n}(-1)^{i-1} \varphi(2, i) d_{0} \wedge d_{1} \wedge d_{3} \wedge \cdots \wedge \hat{d}_{i} \wedge \cdots \wedge d_{n} \\
& +\sum_{3 \leq i<j \leq n}(-1)^{j-i-1} \varphi(i, j) d_{0} \wedge \cdots \wedge \hat{d}_{i} \wedge \cdots \wedge \hat{d}_{j} \wedge \cdots \wedge d_{n}
\end{aligned}
$$

satisfies

$$
\begin{equation*}
d\left[i\left(\partial_{\sigma(1)}, \ldots, \partial_{\sigma(n-2)}\right) \Omega\right] \wedge \Phi_{n-1}(\varphi)+\Omega \wedge d\left[i\left(\partial_{\sigma(1)}, \ldots, \partial_{\sigma(n-2)}\right) \Phi_{n-2}(\varphi)\right]=0 \tag{4.1}
\end{equation*}
$$

for any $\sigma \in S_{3, n-2}$. As $\mathfrak{g}=\mathfrak{t} \oplus \mathfrak{n}$, we have the decomposition $\mathcal{P}(\mathfrak{g})=\mathcal{P}(\mathfrak{t}) \oplus \mathcal{P}(\mathfrak{n})$, where $\mathcal{P}(\mathfrak{t})$ and $\mathcal{P}(\mathfrak{n})$ are the Poisson algebras $\left(\mathbb{C}\left[X_{0}\right], \mathcal{P}\right)$ and $\left(\mathbb{C}\left[X_{1}, \ldots, X_{n}\right], \mathcal{P}\right)$. From the HochschildSerre factorization theorem, we assume that the cocycles are \mathfrak{t}-invariant and with values in $\mathcal{P}(\mathfrak{n})$. We denote this space by $\chi^{k}(\mathcal{P}(\mathfrak{g}), \mathcal{P}(\mathfrak{g}))^{\mathfrak{t}}$. If $f \in \chi^{1}(\mathcal{P}(\mathfrak{g}), \mathcal{P}(\mathfrak{g}))^{\mathfrak{t}}$, then

$$
\left\{X_{0}, f\left(X_{i}\right)\right\}=i f\left(X_{i}\right),
$$

and we obtain

$$
f\left(X_{1}\right)=a_{1}^{1} X_{1}, f\left(X_{2}\right)=a_{1}^{11} X_{1}^{2}+a_{2}^{2} X_{2}, \ldots, f\left(X_{i}\right)=\sum_{l_{1}+\cdots+l_{k}=i} a_{i}^{l_{1} \cdots l_{k}} X_{1}^{l_{1}} \cdots X_{k}^{l_{k}} .
$$

Thus, $\delta f\left(X_{1}, X_{i}\right)=a_{1}^{1}\left\{X_{1}, X_{i}\right\}+\left\{X_{1}, f\left(X_{i}\right)\right\}-f\left(X_{i+1}\right)$ and we can reduce any element $\varphi \in Z^{2}(\mathcal{P}(\mathfrak{g}), \mathcal{P}(\mathfrak{g}))^{\mathfrak{t}}$ to a 2-cocycle satisfying

$$
\varphi\left(X_{1}, X_{i}\right)=0 \quad \text { for } i=2, \ldots, n-1
$$

We denote by $Z_{k}^{*}(\mathcal{P}(\mathfrak{g}), \mathcal{P}(\mathfrak{g}))^{\mathfrak{t}}$ the subspace of homogenous cocycles of degree k. Let us have look the system at the $\varphi(i, j)$ which is deduced from equation (4.1).

- If $(\sigma(1), \ldots, \sigma(n-2))=(3,4, \ldots, n)$, then condition (4.1) is trivial.
- If $(\sigma(1), \ldots, \sigma(n-2))=(2,3, \ldots, \hat{l}, \ldots, n)$, then condition (4.1) is trivial as soon as $l \neq n$. If $l=n$, we obtain

$$
n \varphi\left(X_{1}, X_{n}\right)+(-1)^{n-1} \sum i X_{i} \partial_{i} \varphi\left(X_{1}, X_{n}\right)=0,
$$

and $\varphi\left(X_{1}, X_{n}\right)$ is of weight $n+1$.

- If $(\sigma(1), \ldots, \sigma(n-2))=(1,2, \ldots, \hat{i}, \ldots, \hat{j}, \ldots, n)$, we obtain

$$
(i+j) \varphi\left(X_{i}, X_{j}\right)=\sum k X_{k} \partial_{k} \varphi\left(X_{i}, X_{j}\right)
$$

and $\varphi\left(X_{i}, X_{j}\right)$ is of weight $i+j$.
Other relations show that the space of cocycles of degree 2 is generated by $\varphi\left(X_{1}, X_{n}\right)$ and $\varphi\left(X_{2}, X_{2 k+1}\right)$ with $k=1, \ldots, l$ where $n=2 l+1$ or $n=2 l$. The relations between these generators lead to study two cases: $k=1$ and $k=2$.

Case $k=1$. As $\varphi\left(X_{1}, X_{n}\right)$ is of weight $n+1$, then $\varphi\left(X_{1}, X_{n}\right)=0$. We have also $\varphi\left(X_{i}, X_{j}\right)=$ $a_{i j}^{i+j} X_{i+j}$ if $i+j \leq n$.

If $(\sigma(1), \ldots, \sigma(n-2))=(1,2, \ldots, \hat{i}, \ldots, \hat{j}, \ldots, n)$, we obtain

$$
(i+j) \varphi\left(X_{i}, X_{j}\right)=\sum k X_{k} \partial_{k} \varphi\left(X_{i}, X_{j}\right),
$$

and $\varphi\left(X_{i}, X_{j}\right)$ is of weight $i+1$. Then,

$$
\varphi\left(X_{i}, X_{j}\right)=a_{i j}^{i+j} X_{i+j},
$$

if $i+j \leq n$.
If $(\sigma(1), \ldots, \sigma(n-2))=(0,1,2, \ldots, \hat{i}, \ldots, \hat{j}, \ldots, \hat{k}, \ldots, n)$ with $i \geq 3$, then the related conditions are always satisfied.

If $(\sigma(1), \ldots, \sigma(n-2))=(0,3, \ldots, \hat{i}, \ldots, n), i \geq 3$, we obtain relation between $\varphi(3, l)$ and $\varphi(2, l+1)$. We deduce that

$$
a_{3, i}=-a_{2, i+1}+a_{2, i},
$$

and $a_{2,3}=a_{2,4}$.
If $(\sigma(1), \ldots, \sigma(n-2))=(0,1,2, \ldots, \hat{i}, \ldots, \hat{j}, \ldots, \hat{k}, \ldots, n)$ with $i \geq 3$, then

$$
a_{4, i}=a_{2, i+2}-2 a_{2, i+1}+a_{2, i},
$$

and

$$
a_{3,4}=a_{3,5} .
$$

If $(\sigma(1), \ldots, \sigma(n-2))=(0,2,3, \ldots, \hat{i}, \ldots, \hat{j}, \ldots, n), i \geq 4$, then we have

$$
a_{i+1, j}=-a_{i, j+1}+a_{i, j},
$$

and

$$
a_{i, i+2}=a_{i, i+1} .
$$

$$
\begin{aligned}
& \text { If }(\sigma(1), \ldots, \sigma(n-2))=(0,1,3, \ldots, \hat{i}, \ldots, \hat{j}, \ldots, n), i \geq 4 \text {, then we have } \\
& \qquad a_{i+2, j}=-a_{i, j+2}+a_{i, j}
\end{aligned}
$$

and

$$
a_{3, j}=a_{2, j}-a 2, j+1
$$

If we solve this linear system, we obtain the following.
Proposition 4.7. If $n \geq 7$, then $H_{1}^{2}\left(A_{p}, A_{p}\right)$ is of dimension 1 and generated by the cocycle given by

$$
\left\{\begin{array}{l}
\varphi\left(X_{2}, X_{i}\right)=(4-i) X_{2+i} \quad i=5, \ldots, n-2 \\
\varphi\left(X_{3}, X_{i}\right)=X_{3+i} \quad i=4, \ldots, n-3 \\
\varphi\left(X_{i}, X_{j}\right)=0, \quad \text { in other cases. }
\end{array}\right.
$$

Case $k=2$. The set of generators is of dimension $\frac{p^{2}+5 p}{2}$ if $n=2 p+1$ and $\frac{p^{2}+3 p-2}{2}$ if $n=2 p$. The number of independent relations concerning these parameters is greater than the dimension of the set of generators as soon as $n \geq 6$. For $n=5$, the dimension is equal to 2 , and for $n=6$, this dimension is 0 . We deduce that $\operatorname{dim} H_{2}^{2}=0$ when $n \geq 7$.

Remark 4.8 (deformations of the enveloping algebra of a rigid Lie algebra). Let \mathfrak{g} be a finite dimensional complex Lie algebra. We denote by $\mathcal{U}(\mathfrak{g})$ its enveloping algebra. One of the most important problems in this time is to look at the deformations of the associative algebra $\mathcal{U}(\mathfrak{g})$. The theory of quantum groups comes from the deformation of $\mathcal{U}(\mathrm{sl}(2))$. In this case, $\mathfrak{g}=\operatorname{sl}(2)$ is a rigid Lie algebra, and $\mathcal{U}(\operatorname{sl}(2))$ is a rigid associative algebra. Thus, we have to look upon what happens for any rigid Lie algebra. The aim of this section is to study the deformations of $\mathcal{U}(\mathfrak{g})$ when \mathfrak{g} is the rigid Lie algebras studied in the previous section.

We denote by $S(\mathfrak{g})$ the symmetric algebra on the vector space \mathfrak{g}. This associative commutative algebra is interpreted as the algebra of polynomials on the dual vector space \mathfrak{g}^{*} of \mathfrak{g} that is $\mathbb{C}\left[\alpha_{1}, \ldots, \alpha_{n}\right]$ where $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ is a basis of \mathfrak{g}^{*}. But the Lie structure of \mathfrak{g} induces a linear Poisson structure (or of degree 1), \mathcal{P}, on \mathfrak{g}^{*}. In fact, if $\left\{X_{1}, \ldots, X_{n}\right\}$ is the (dual) basis of \mathfrak{g}, this Poisson structure corresponds to the Poisson structure of degree 1 on $\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ associated to \mathfrak{g}. From the formality theorem of Kontsevich, $\mathcal{U}(\mathfrak{g})$ is a deformation of the Poisson algebra $\left(\mathbb{C}\left[X_{1}, \ldots, X_{n}\right], \mathcal{P}\right)$. In his thesis, Toukaidine Petit ([10]) shows that every nontrivial deformation of the Poisson structure \mathcal{P} on $\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ induces a nontrivial deformation of the associative algebra $\mathcal{U}(\mathfrak{g})$. As a consequence, we have that if \mathfrak{g} is a nonrigid Lie algebra, then there is a nontrivial deformation of $\mathcal{U}(\mathfrak{g})$.

If we consider the rigid Lie algebra \mathfrak{g}_{n+1} studied in the previous section, we have determinate a nontrivial cocycle of degree one for the corresponding Poisson algebra which is not integrable. Thus, we cannot define a deformation of its enveloping algebra. But the Lie algebra \mathfrak{g}_{n+1} admit a deformation in the following nonLie algebra which is written as follows:

$$
\left\{\begin{array}{l}
\mu\left(X_{0}, X_{i}\right)=i X_{i}, \quad i=1, \ldots, n, \\
\mu\left(X_{1}, X_{i}\right)=X_{i+1}, \quad i=2, \ldots, n-1, \\
\mu\left(X_{2}, X_{3}\right)=X_{5}, \\
\mu\left(X_{2}, X_{i}\right)=(5-i) X_{2+i}, \quad i=4, \ldots, n-2, \\
\mu\left(X_{3}, X_{i}\right)=X_{3+i}, \quad i=4, \ldots, n-3 .
\end{array}\right.
$$

References

[1] J.-P. Dufour, Formes normales de structures de Poisson. In "Symplectic Geometry and Mathematical Physics (Aix-en-Provence, 1990)", pp. 129-135, Progr. Math. 99, Birkhäuser Boston, Boston, MA, 1991.
[2] M. Goze and J. M. Ancochea Bermudez, On the classification of rigid Lie algebras. J. Algebra, 245 (2001), 68-91.
[3] M. Goze, Algèbres de Lie. Classifications, Déformations et Rigidité, Géométrie différentielle. In "Algèbre, dynamique et analyse pour la géométrie: aspects récents". Editions Ellipse, 2010, 39-99.
[4] M. Goze and E. Remm, Valued deformations of algebras. J. Algebra Appl., 3 (2004), 345-365.
[5] M. Goze and E. Remm, Poisson algebras in terms of non-associative algebras. J. Algebra, $\mathbf{3 2 0}$ (2008), 294-317.
[6] A. Haraki, Quadratisation de certaines structures de Poisson. J. London Math. Soc. (2), 56 (1997), 384-394.
[7] A. Lichnerowicz, Les variétés de Poisson et leurs algèbres de Lie associées, J. Differential Geometry, 12 (1977), 253-300.
[8] M. Markl and E. Remm, Algebras with one operation including Poisson and other Lie-admissible algebras. J. Algebra, 299 (2006), 171-189.
[9] P. Monnier, Formal Poisson cohomology of quadratic Poisson structures. Lett. Math. Phys, 59 (2002), 253-267.
[10] T. Petit, Sur les algèbres enveloppantes des algèbres de Lie rigides. Thèse de doctorat, Université de Haute Alsace, 2001.
[11] A. Pichereau, Poisson (co)homology and isolated singularities. J. Algebra, 299 (2006), 747-777.
[12] E. Remm, Opérades Lie-admissibles. C. R. Math. Acad. Sci. Paris, 334 (2002), 1047-1050.
Received October 15, 2009
Revised July 10, 2010

