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Abstract
A new numerical method based on the approximation of polynomials is here proposed for solving the one 

dimensional parabolic partial differential equation arising from unsteady state flow of heat subject to initial and 
boundary conditions. The method results from discretization of the parabolic partial differential equation which leads 
to the production of a system of algebraic equations. By solving the system of algebraic equations we obtain the 
problem approximate solutions.
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Introduction
The development of continuous numerical techniques for solving 

parabolic partial differential equations in physics and mathematics 
subject to initial and boundary conditions is a subject of considerable 
interest. In this paper, we develop a new numerical method based 
on interpolation and collocation of the equation arising from 
approximating the polynomials [1-27]. To do this, we let U(x,t) 
represent the temperature at any point in a rod, whose distance from 
one end is x and X is the length of the rod. Heat is flowing from one 
end to another under the influence of the temperature gradient 

U
x

∂
∂ . 

To make a balance of the rate of heat flow in and out of the element, we 
consider R for thermal conductivity and c the heat capacity which we 
assume constants, and ρ the density and t represent the time coordinate. 
In this study we try to find solution to the heat flow equation:

( )U U U URA RA dx c Adx
dx dx x x t

ρ
  ∂ ∂ ∂ ∂ ∂ − − − + =   ∂ ∂ ∂   

             (1)

Where A is the cross section of the rod and the initial and boundary 
conditions are given by:

( ) ( ) ( ), ,0U x t U x f x and= =  ( ) ( )1 20, , ,0U t c U X c= = , where c1, c2 
are constants.

The Solution Method
To set up the solution method we select an integer N such that N>0. 

We subdivide the interval 0≤xX into N equal subintervals with meshes 

given by 1 1,jt jk j M
α α
 = =  
 

 where Nh=X. Similarly, we reverse the 

roles of x and t and we select an integer M such that M>0. We also 
subdivide the interval 0≤t≤T into M equal subintervals with meshes 

given by 1 1,jt jk j M
α α
 = =  
 

, where Mk=T, and h,k are the mesh 

sizes along space and time coordinates. We seek for the approximate 
solution ( ),U x t  to U(x,t) of the form:

( ) ( ) ( ) ( ) ( )
1

0

, , , , ,
p

r r r r r
r

U x t a q x t s x t x t x tψ
−

=

= + + + Φ  ∑ ,

[ ],i i hx x x +∈ , ,j j kt t t + ∈                (2)

over h>0, k>0 successive subintervals [ ],i i hx x + , ,j j kt t +   , such that

0 00 ... ... , 0 ... ...i N j Mx x x t t t= < < < < = < < < < . p is the sum of 
interpolation points along the space and time coordinates respectively. 
That is p=g+b, where g is the number of interpolation points along 

the space coordinate, while b is the number of interpolation points 
along the time coordinate. The bases functions , , ,r r r rq s ψ Φ

0,1,..., 1r p= −  are the Taylor, Legendre, chebyshev and Laguerre 
polynomials which are known, ar are the constants to be determined. 
The interpolation values , 1,,...,i j i h jU U + −  are assumed to have been 
determined from previous steps, while the method seeks to obtain 

,i h jU +  [5-26]. Expanding eqn. (2) we obtain:

( ) ( )( ) ( )( )
( )( )

, 0 0 0 0 0 1 1 1 1 1

1 1 1 1 1

, , , ...

,

i h j k i h j k i h j k

p p p p p i h j k

U x t a q s x t a q s x t

a q s x t

ψ ψ

ψ

+ + + + + +

− − − − − + +

= + + + Φ + + + + Φ +

+ + + + Φ
     (3)

We let 1 1 2 1h g β
β β β

    −
= − −    

    
, where g is the number of 

interpolation points along the space coordinate. Then, by Cramer’s rule 
we obtain from eqn. (3),

, 1 ,,
, , ,..., ,

T

v j k z j kv j k
W a F F U U U

β
+ +

+ +

 
 = =
 
 

   (4)

( )0 1,...,
T

pa a a −=  and,

( )( ) ( )( ) ( )( )

( ) ( ) ( )

( )

0 0 0 0 v j k 1 1 1 1 v j k p 1 p 1 p 1 p 1 v j k

0 0 0 0 1 j k 1 1 1 1 1 j k p 1 p 1 p 1 p 1 1 j kv v v

0 0 0 0 z

q s x , t , q s x , t , ..., q s x , t

q s x , t , q s x , t ,..., q s x , t
W

..., ..., ..., ...,

q s x

+ + − − − − +

+ + − − − − +
+ + +
β β β

+ + ψ +Φ + +ψ +Φ + +ψ +Φ

     
+ + ψ +Φ + +ψ +Φ + +ψ +Φ          =      

+ + ψ +Φ ( ) ( )( ) ( )( )j k 1 1 1 1 z j k p 1 p 1 p 1 p 1 z j k, t , q s x , t , ..., q s x , t+ + − − − − +

 
 
 
 
 
 
 
 + + ψ +Φ + +ψ +Φ  

Where 
2 1 1,z i g v iβ
β β

 −
= + − = − 

 
 and W−1 exist [10-27].

Hence, by eqn. (4), we obtain:

1, .a F Wϖ ϖ −= = 			                (5)

The vector ( )0 1,...,
T

pa a a −= is now determined in terms of known 
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parameters in Fϖ . If 1, 0,..., 1r r pϖ + = −  is the ( )1 thr +  row ofϖ, 
then,

1r ra Fϖ +=  					                   (6)

Eqn. (6) determines the values of ar, r=0,1,...,p−1.

We take first and second derivatives of eqn. (2) with respect to x,

( ) ( ) ( ) ( ) ( )( )
1

0
, , , , ,

p

r r r r r
r

U x t a q x t s x t x t x tψ
−

=

′ ′ ′ ′ ′ = + + +Φ  ∑

( ) ( ) ( ) ( ) ( )( )
1

0
, , , , ,

p

r r r r r
r

U x t a q x t s x t x t x tψ
−

=

″ ″ ″ ″ ″ = + + + Φ  ∑   (7)

Putting eqn. (6) in eqn. (7) we obtain:

( ) ( ) ( ) ( ) ( )( )
1

1
0

, , , , ,
p

r r r rr
r

U x t F q x t s x t x t x tϖ ψ
−

+
=

″ ″ ″ ″ ′′ = + + + Φ  ∑     (8)

We reverse the roles of x and t in eqn. (3) and we set 
1 10k b α
α α

 −   = −        
, where b is the number of interpolation 

points along the time coordinate, then by Cramer’s rule we obtain,

1 , ,,
, , ,...,

T

i h i hi h
Y a E E U U Uη γη

α
+ +

+ −

 
= =   

 
 		                   (9)

( )0 1,...,
T

pa a a −= and,

( ) ( ) ( )

( )( ) ( )( ) ( )( )

( )

0 0 0 0 i h 1 1 1 1 1 i h 1 p 1 p 1 p 1 p 1 i h 1

0 0 0 0 i h 1 1 1 1 i h p 1 p 1 p 1 p 1 i h

0 0 0 0 i

q s x , t , q s x , t , ..., q s x , t

q s x , t , q s x , t , ..., q s x , tY

..., ..., ..., ...

q s x

+ + − − − − +
η− η− η−

α α α

+ η + η − − − − + η

+

     
+ + ψ + Φ + + ψ +Φ + + ψ +Φ          

     

+ + ψ + Φ + + ψ +Φ + + ψ +Φ=

+ + ψ +Φ ( ) ( )( ) ( )( )h 1 1 1 1 i h p 1 p 1 p 1 p 1 i h, t , q s x , t , ..., q s x , tγ + γ − − − − + γ

 
 
 
 
 
 
 
 + + ψ + Φ + + ψ +Φ 

where 
1 1,j j b αη γ
α α

− = + = + −  
 

 and Y−1 exist [1-16].

Hence, from eqn. (9) we obtain:

 1, .a LE L Y −= =  				                  (10)

The vector ( )0 2,...,
T

pa a a −= is now determined in terms of known 
parameters in LE .

 If Lr+1, r=0,...,p−1 is the (r+1)th row of L then,

1rra L E+=  					                    (11)

Also, eqn. (11) determines the values of ar, r=0,1,...,p−1.

Taking the first derivatives of eqn. (2) with respect to t we obtain:

( ) ( ) ( ) ( ) ( )( )
1

0
, , , , ,

p

r r r r r
r

U x t a q x t s x t x t x tψ
−

=

′ ′ ′ ′ ′ = + + + Φ  ∑       (12)

Putting eqn. (11) in eqn. (12) we obtain:

( ) ( ) ( ) ( ) ( )( )
1

1
0

, , , , ,
p

r r r r r
r

U x t L E q x t s x t x t x tψ
−

+
=

′ ′ ′ ′ ′ = + + + Φ  ∑   (13)

But by eqn. (1), it is obvious that eqn. (13) is equal to eqn. (8), 
therefore,

( ) ( ) ( ) ( )( )
1

1
0

, , , ,
p

r r r r r
r

L E q x t s x t x t x tψ
−

+
=

′ ′ ′ ′ + + + Φ  ∑

( ) ( ) ( ) ( )( )
1

1
0

, , , , 0
p

r r r rr
r

F q x t s x t x t x tϖ ψ
−

+
=

″ ″ ″ ″ − + + + Φ =  ∑    (14)

If we collocate eqn. (14) at x=xi and t=tj we obtain a new numerical 
scheme that solves eqn. (1) explicitly.

Numerical Examples
In this section, we will test the numerical accuracy of the new 

method by using the new scheme to solve four (4) test examples. That 
is, we compute an approximate solution of eqn. (1) at each time level. 
To achieve this, we truncate the polynomials after second degree. We 
now specifically use the resultant scheme to solve examples 4.1, 4.2, 4.3 
and 4.4 below.

Example 4.1

Solve for the temperatures in a copper rod 1cm long, with the outer 
curved surface insulated so that heat flows in only one direction. If the 
initial temperature (°C) within the rod is given as a function of the 
distance from one face by the equation ( ),0 100sin .

2
xU x π =  

 
 Find the 

temperatures as a function of x and t if both faces are maintained at 
(°C). Copper has a thermal conductivity A=0.13cal/sec.cm. °C, its heat 
capacity c=0.11cal.g. °C and density ρ=7.8g/cm3

To solve example 3.1, therefore, we simplify eqn. (1) and apply eqn. 
(16) to solve it.

By simplification eqn. (1) becomes 
2

2

U UA c
x t

ρ∂ ∂
=

∂ ∂
. To solve 

this equation, we take ∆x=0.25cm, then we find ∆t by the relation 

( )2 4 , 28.78sec.k t t
cp x

∆
= ⇒ ∆ =

∆
 we also take β=4, α=128, it 

implies that 1 1 1,
4 4 128

v i z i and jη γ= − = + = = + . We take two 

interpolation points along space coordinate and one interpolation 
point along time coordinate. This implies that g=2, b=1, and p=3. 

Therefore, for 1 1 3 1 1 3, , ,..., , , ,...,
4 2 4 128 64 128

i and j= = implies that 

1 1 1,0, 0,
4 4 128

h and k= − = , then the calculated temperatures and 

concentrations of alcohol are as shown below Table 1.

Example 4.2

A hollow tube 20 cm long is initially filled with air containing 2% 
of ethyl alcohol vapors. At the bottom of the tube is a pool of alcohol 
which evaporates into the stagnant gas above. (Heat transfers to the 
alcohol from the surroundings to maintain a constant temperature 
of 30°C, at which temperature the vapor pressure is 0.1 atm.) At the 
upper end of the tube, the alcohol vapors dissipate to the outside air, 
so the concentration is essentially zero. Considering only the effects 
of molecular diffusion, determine the concentration of alcohol as a 
function of time and the distance x measured from the top of the tube. 
Molecular diffusion follows the law:

2

2 ,c cD
t x
∂ ∂

=
∂ ∂

 where D is the diffusion coefficient, with units of 

cm2/sec. (This is the same as for the ratio /k cp , which is often termed 
thermal diffusivity.) For ethyl alcohol, D=0.102 cm2/sec at 30°C, and 
the vapor pressure is such that 10 volume percent alcohol in air is 
present at the surface. Our initial condition is c(x,0)=2.0. The boundary 

t x=0 x=0.25 x=0.50 x=0.75 x=1.00 x=1.25
0.00 0.00 38.27 70.71 92.39 100 92.39
28.78 0.0 37.54 69.37 90.63 98.10 90.63
57.57 0.0 36.83 68.05 88.91 96.23 88.91
86.35 0.0 36.13 66.76 87.23 94.40 87.23
115.51 0.0 35.45 65.49 85.59 92.61 85.59
143.91 0.0 34.77 64.24 83.94 90.85 83.94

Table 1: Calculated temperatures.
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conditions are c(0,t)=0, c(20,t)=10. To solve this resulting equation we 
subdivide the length of the tube into five intervals, such that ∆x=4cm. 
Using the maximum value permitted for ∆t yields:

( )2 21, 0.102 1, 134.45sec
4

t tD t s
x
∆ ∆

= = ∆ =
∆

. We also take β=4, 

α==32, it implies that 1 1 1,
4 4 32

v i z i and jη γ= − = + = = + .

We take two interpolation points along space coordinate and 
one interpolation point along time coordinate. This implies that 

2, 1, 3g b and p= = = . For 1 1 3 1 1 3, , ,..., , , ,...,
4 2 4 32 16 32

i and j= =

this implies that 1 1 1,0, 0,
4 4 32

h and k= − = , then the calculated 

concentrations of alcohol in Table 2.

Example 4.3

Use the scheme to approximate the solution to the heat equation 
(Table 3).

2

2 0, 0 1 0U U x t
t x

∂ ∂
− = < < <

∂ ∂

( ) ( )0, 1, 0, 0U t U t t= = >

( ),0 sin , 0 1U x x xπ= ≤ ≤

Example 4.4

Use the scheme to approximate the solution to the heat equation 
(Table 4).

2

2 0 0U U t
t x

∂ ∂
− = <

∂ ∂

( ) ( )1, 1, 0, 0U t U t t− = = >

( ),0 cos , 1 1, 0
2
xU x x tπ = − ≤ ≤ = 

 
Conclusion

In this work, I proposed a method to find the solution of the 
system of ordinary differential equations arising from discretizing the 
parabolic partial differential equations with respect to space variables. 
Discretization of many of the partial differential equations result in 
this type of the systems and the proposed method can be applied for 
computation the solutions of the systems.

t x=0 x=4 x=8 x=12 x=16 x=20
0.0 0.0 2 2 2 2 10

134.45 0.0 1.75 2 2 6 10
268.90 0.0 1.56 1.97 3.50 7 10
403.35 0.0 1.42 2.11 3.75 6.94 10
537.80 0.0 1.33 2.23 3.94 6.92 10
672.25 0.0 1.28 1.67 4.10 6.93 10

Table 2: Calculated concentrations of alcohol.

x Computed solution U(x,t) Exact solution U(x,t) Schmidt Method U(x,t) Errors
New Method Schmidt Method

0 0 0 0 0 0
0.1 0.308008706 0.308002141 0.307963277 6.6 X E-6 2.1 X E-4
0.2 0.585867367 0.585854886 0.58577788 1.2 X E-5 4.0 X E-4
0.3 0.806377253 0.806360073 0.806254085 1.7 X E-5 5.6 X E-4
0.4 0.947953314 0.947932118 0.947808521 2.0 X E-5 6.6 X E-4
0.5 0.996737101 0.996715865 0.996584857 2.1 X E-5 1.2 X E -4
0.6 0.947953314 0.947932118 0.947808521 2.0 X E-5 6.6 X E-4
0.7 0.806377253 0.806360073 0.806254085 1.7 X E-5 5.6 X E-4
0.8 0.585867367 0.585854886 0.58577788 1.2 X E-5 4.0 X E-4
0.9 0.398221058 0.308002141 0.307963277 6.6 X E-6 2.1 X E-4
1.0 0 0 0 0 0

Table 3: Result of action of the scheme on problem.

x Exact Solution U(x,t) Computed Solution U(x,t) Schmidt method Errors
New Method Schmidt Method

-1.0 0 0 0 0 0
-0.75 0.380721639 0.380741429 0.380659316 1.9 X E-5 4.2 X E-4
-0.50 0.703481860 0.703518427 0.703366704 3.7 X E-5 7.9 X E -4
-0.25 0.919143346 0.919191122 0.918992885 4.8 X E-5 1.0 X E-3

0 0.994873588 0.994925302 0.995899602 5.2 X E-5 2.3 X E- 3
0.25 0.919143346 0.911191122 0.918992885 4.8 X E-5 1.0 X E-3
0.50 0.703481860 0.703518427 0.703366704 3.7 X E-5 7.9 X E -4
0.75 0.380721639 0.380741429 0.380659316 1.9 X E-5 4.2 X E-4
1.00 0 0 0 0 0

Table 4: Result of action of the new scheme on problem.
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