Possible Mechanism of Action of the Hypotensive Effect of Peperomia pellucida and Interactions between Human Cytochrome P450 Enzymes

Chukwuemeka R. Nwokocha1*, Daniel U. Owu1, Kelece Kinlocke1, JeAnn Murray2, Rupika Delgoda3, Karen Thaxter1, Garsha McCalla1 and Lauriann Young1

1Department of Basic Medical Sciences, University of the West Indies, Mona Campus, Kingston 7, Jamaica
2Natural Products Institute, University of the West Indies, Mona Campus, Kingston 7, Jamaica

Abstract

Background: Peperomia pellucida is used as a medicinal plant and as an antihypertensive remedy. We investigated the possible mechanism of this action and its impact on cytochrome P450 (CYP) enzyme activity.

Methods: Mean arterial pressure and heart rate were recorded via cannulation of the carotid artery on anaesthetized, normotensive Sprague-Dawley rats following intravenous administration of Peperomia pellucida aqueous (10-30 mg/kg) plant extract (PPAE). Recordings of the contractile activity of the aortic rings to the extract (1.9-8.6 mg/ml) were done using standard organ bath techniques. Impact on CYP3A4 and CYP2D6 enzyme activities was investigated using human liver and heterologously expressed microsomes.

Results: We observed a dose-dependent reduction in systolic, diastolic, MAP and HR. Pre-treatment with atropine (2 mg/kg) and propranolol (1 mg/kg) but not meprazine (2 mg/kg) significantly (p<0.05) reduced the hypotensive and negative chronotropic activities caused by the extract, while L-NAME (5 mg/kg) completely abolished it. PPAE significantly (p<0.05) relaxed the phenylephrine (10-4-10-5 M) and KCl-induced contractions and displayed moderate inhibition of CYP3A4 enzyme activity with IC50, values of 0.466 ± 0.126 mg/mL and 0.153 ± 0.054 mg/mL, respectively using heterologously expressed CYP3A4 and human liver microsomes (HLMs).

Conclusion: Results suggest dose-dependent hypotensive, bradycardic and vasorelaxant effects of PPAE are mediated through Nitric oxide-dependent mechanisms. The impact on CYPs enzyme activities indicate unlikely adverse drug effect when Peperomia pellucida is consumed with other medications reliant on CYP3A4 metabolism.

Keywords: Hypertension; Endothelium; Peperomia pellucida; Cytochrome P450 (CYP450); Mechanism of action

Background

Hypertension is a major cardiovascular burden that has been estimated to cause 7.1 million premature deaths and 45% of the disease burden [1]. However, it remains inadequately managed everywhere [2], and in spite of the large number of antihypertensive medications, most people in developing countries have poor access to modern healthcare and cannot afford these drugs due to cost. Therefore, they resort to alternative herbal remedies to manage hypertension. Such alternative remedies include the use of herbs and natural plant products, one of the plant used is Peperomia pellucida [3]. Peperomia pellucida is a common, fleshy annual herb that belongs to the family of Piperaceae. It is commonly called shiny bush, pepper elder, man-to-man, rat-ear, Pansit pansitan and is found mainly in the tropics [4-6].

Traditionally, the plant is used as a diuretic and to reduce cholesterol levels in the treatment of hypertension and kidney disorder [4-6]. It is also reported to have anti-inflammatory properties [6] analgesic activity [4,6-8] antipyretic [9] as well as antibacterial [5,7,10] also used in the treatment of abscesses, furuncles, and conjunctivitis [6].

The phytochemicals present in the plant are alkaloids, namely, secolognans, tetrahydronaphthalene, peperonins A, B, C, and E, sesamin, and isoswertisin [11]. Peperomin E shows growth inhibitory effects on the HL-60, MCF-7, and HeLa three cancer cell lines [7,11]. Peperomia pellucida also contains several essential oils, mainly dillapiole, β-caryophyllene and carotol that have high larvicidal activities [12-14]. Other compounds are flavonoids such as acacetin, apigenin, isovitexin and pellucidatin [15,16], phytosterols, namely, campesterol, stigmastanol, and arylpropaannoids. Cardiac glycosides, tannins and anthraquinones have also been isolated from the plant [4].

Given the widespread ethno medicinal use of this plant and its usage in combination with other medications, it was important to investigate impact on drug metabolising cytochrome P450s (CYPs), a heme containing superfamily of enzymes [17]. Herbal remedies are known to affect the dynamics of drug and chemical interactions [18], and of significant concern to drug-drug interactions [19,20]. There is therefore need for pharmacological validation of this medicinal plant to justify its usage and safety in ethno medicinal treatment, which could greatly benefit populations with poor economic resources. Therefore, the aim of the present study was to investigate the blood pressure lowering effects and possible mechanism of action of an aqueous extract of Peperomia pellucida, and its possible drug-herb interactions using CYP540 microsomes.

Methods

Chemicals and reagents

All chemicals except those noted below were purchased from

*Corresponding author: Dr. Chukwuemeka R. Nwokocha, Department of Basic Medical Sciences, University of the West Indies, Mona Campus, Kingston 7, Jamaica; Tel: +876 589 5445, Fax: +876 977 3823; E-mail: chukwuemeka.nwokocha@uwimona.edu.jm

Received March 06, 2012; Accepted May 23, 2012; Published May 28, 2012

Copyright: © 2012 Nwokocha CR, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Sigma-Aldrich (St. Louis, MO). All CYP substrates and metabolites were purchased from Gentest Corporation (Woburn, MA, USA). *Escherichia coli* membranes expressing human CYP2D6 and CYP3A4 co-expressed with CYP reductase were purchased from Cypex Ltd. (Dundee, UK), while pooled human liver microsomes were purchased from Xenotech (Kansas, USA).

Plant material and extraction

The *Peperomia pellucida* whole plant (1 kg) was collected in January 2010 and the species authenticated by the resident botanist (Mr Patrick Lewis) at the herbarium of the University of The West Indies (UWI) where a voucher specimen of the plant material has been deposited (35447). The whole plant was washed, dried, ground into powder and soaked in distilled water overnight. It was filtered using Whatman No. 1 filter paper and the filtrate was concentrated under reduced pressure (35447). The dark brown solid residue was stored in a capped container in a refrigerator at -4ºC until ready for use. All the drugs used were dissolved in distilled water prior to use. All solutions were freshly prepared prior to the start of experimental procedures.

Experimental animals

Male Sprague Dawley rats, aged 12 weeks and weighing 300-350 g were obtained from the Animal House of the Department of Basic Medical Sciences, UWI, Mona Campus. They were housed in plastic cages under 12 h light/dark cycles at 25 ± 2ºC and fed with standard rat chow and tap water *ad libitum*. Ethical approval was sought and obtained from the FMS/UHWI/UWI, Mona Campus Ethics committee.

Measurement of blood pressure and heart rate

The animals were anaesthetized with an intraperitoneal injection of 15% urethane (8 ml/kg body weight). The trachea was exposed and cannulated to facilitate easy respiration. The left jugular vein was cannulated to facilitate easy respiration. The right carotid artery was cannulated and connected to a pressure transducer (Statham P23 XL) coupled with a Grass Polygraph (Model 7D, Quincy, MA, USA). This connection was used for blood pressure and heart rate recording. A plateau. Endothelium was removed mechanically by gently rubbing the intimal surface of the aortic rings with glass rod and removal was confirmed by the absence of relaxation to 10-7 M acetylcholine [21]. In another set of experiments, aortic rings with intact endothelium were pre-contracted with *Peperomia pellucida* extract for 30 min following which cumulative dose-response curves were generated for phenylephrine. Dose-response curves were plotted as percentage relaxation against logarithmic concentration of the extract.

Characterization of vasorelaxant response to *Peperomia pellucida*

After the equilibration period, the aortic rings with or without endothelium were pre-contracted with 1 µM phenylephrine and the relaxant responses to *Peperomia pellucida* at different concentrations (1.9-8.6 mg/ml) were recorded by adding cumulative doses of aqueous extract to the tissue bath after the previous concentration had reached a plateau. Endothelium was removed mechanically by gently rubbing the intimal surface of the aortic rings with glass rod and removal was confirmed by the absence of relaxation to 10-7 M acetylcholine [21]. In another set of experiments, aortic rings with intact endothelium were pre-incubated with *Peperomia pellucida* extract for 30 min following which cumulative dose-response curves were generated for phenylephrine. Dose-response curves were plotted as percentage relaxation against logarithmic concentration of the extract.

Characterization of vasorelaxant action

In order to determine the involvement of intracellular Ca2+-mobilization in the vasorelaxant action of *Peperomia pellucida*, Ca2+-free Kreb's solution with the following composition: KCl 50, NaCl 91.04, MgSO4 1.05, NaHCO3, 11.90, glucose 5.55 and EGTA 0.1 mM was used. To confirm the calcium channel blocking effect, the tissue was allowed to stabilize in normal Kreb's solution, which was then replaced with Ca2+-free Kreb's solution containing EGTA (0.1 mM) for 30 min with 4.5 serial washing in order to remove calcium from the tissues. The aortic ring was assessed by testing on high K+ (80 mM)-induced contraction. This solution was further replaced with K+-rich and Ca2+-free Kreb's solution. Following an incubation period of 30 min, dose-response curves of Ca2+-were obtained and then repeated following 30 min incubation with the *Peperomia pellucida* extract.

CYP inhibition assay

The extract was evaluated for its ability to inhibit the catalytic activity of human CYP3A4 enzyme by means of fluorometric detection assays conducted in 96 well microtitre plates using the substrate;
7-Benzylxoy-4-trifluoromethylcounarin (BFC) for detecting CYP3A4 activity as described elsewhere [22,23]. For experiments with pooled HLMs, 300 µg/ml of protein was used in each assay. The reactions were monitored fluorometrically at 37°C, using a Varian Cary Eclipse Fluorescence spectrophotometer. All standards were dissolved in 20% acetonitrile and less than 0.3% of acetonitrile was used in the final assay.

The accuracy of experimental techniques employed to detect CYP3A4 inhibition assay was verified with known inhibitor ketoconozole and the obtained \(IC_{50}\) value (0.06 ± 0.01 µM) compared well with published values (0.06 µM) [24]. Michaelis constant, \(K_m\), was determined for the marker substrate under the specified experimental conditions, in order to determine suitable substrate concentrations for assessing inhibitory potential of the test extract. Control experiments included the intrinsic fluorescence of the \textit{Peperomia pellucida} extract and its effect on the metabolite’s fluorescence at the respective excitation and emission wavelengths.

Data analysis

The results are expressed as mean ± SEM. Student’s t-test and one-way analysis of variance (ANOVA) with Bonferroni’s post-test was performed where applicable using GraphPad Prism version 5.0 for Windows (GraphPad Software, San Diego, CA, USA). \(IC_{50}\) values were determined by fitting the data in Sigma Plot (version 10.0) and enzyme kinetics module, using non linear regression analysis. \(IC_{50}\) data listed represent the average values from three different determinations. A \(p\) value of 0.05 was considered statistically significant.

Results

Effect of graded doses of \textit{Peperomia pellucida} on blood pressure and heart rates

Intravenous administration of increasing dose \textit{Peperomia pellucida} aqueous extract caused a dose-dependent reduction in systolic blood pressure (SBP), diastolic blood pressure (DBP), Heart rate and MAP (Table 1).

Mechanism of hypotensive effect of \textit{Peperomia pellucida}

The effects of atropine, propranolol, mepyramine and L-NAME on the hypotensive action of the aqueous extract of \textit{Peperomia pellucida} (10 mg/kg) were investigated. As shown in Figure 1, the pretreatment of anesthetized Sprague Dawley normotensive rats with atropine sulphate (2 mg/kg) or propranolol (1 mg/kg) significantly (\(p<0.05\)) reduced the hypotensive effect of the plant extract. However, mepyramine (5 mg/ kg) caused a significant (\(p<0.05\)) further reduction of MAP by the plant extract. By contrast, pretreatment with L-NAME significantly (\(p<0.01\)) abolished the hypotensive effect of the extract in the rats.

<table>
<thead>
<tr>
<th>parameter</th>
<th>control</th>
<th>dosage 10 mg/kg</th>
<th>20 mg/kg</th>
<th>30 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBP (mmHg)</td>
<td>109 ± 5</td>
<td>76 ± 6 (30.28)</td>
<td>62 ± 10* (43.12)</td>
<td>40 ± 10* (63.30)</td>
</tr>
<tr>
<td>DBP (mmHg)</td>
<td>82 ± 7</td>
<td>39 ± 8 (61.85)</td>
<td>31 ± 7* (63.53)</td>
<td>15 ± 7* (81.70)</td>
</tr>
<tr>
<td>MAP (mmHg)</td>
<td>91 ± 10</td>
<td>51 ± 8 (43.33)</td>
<td>41 ± 6* (55.91)</td>
<td>23.3 ± 5* (67.67)</td>
</tr>
<tr>
<td>HR (beats / min)</td>
<td>240 ± 20</td>
<td>100 ± 10 (58.33)</td>
<td>50 ± 10* (71.20)</td>
<td>20 ± 7* (91.60)</td>
</tr>
</tbody>
</table>

The result is expressed as mean ± SEM in 6 observations. The number in parentheses indicates percentage reduction compared with control. * \(p<0.05\) when compared to control.

Table 1: Dose-dependent reductions of blood pressure by \textit{Peperomia pellucida} in normotensive rat

Effect of \textit{Peperomia pellucida} on phenylephrine-induced contraction

The aqueous extract of \textit{Peperomia pellucida} did not have any vasoconstrictor effect when the aortic rings were incubated init. However, the extract caused a significant (\(p<0.05\)) reduction in phenylephrine-induced contraction of aortic rings with a maximum contraction of 72 ± 5% and a rightward shift of the dose-response curve (Figure 2). The sensitivity (pD2) to phenylephrine in the presence of \textit{Peperomia pellucida} (5.63) was significantly (\(p<0.05\)) reduced when compared with the control (pD2 = 6.64).

Effect of \textit{Peperomia pellucida} on relaxation of aorta

The extract of \textit{Peperomia pellucida} (1.9-8.6 mg/ml) caused a dose-dependent relaxation of aortic rings precontracted with phenylephrine (Figure 3). The maximum relaxation to phenylephrine-induced contraction was 33.1 ± 4% in aortic rings with intact endothelium. In endothelium-denuded aortic rings, the vasodilator effect of the extract was completely abolished.

Effect of \textit{Peperomia pellucida} aqueous extract on calcium induced contraction

In the presence of \textit{Peperomia pellucida}, the calcium ion concentration-response curve constructed in a calcium ion free medium on rat aorta was enhanced (Figure 4). There was a significant increase in the maximum contractions to 120.5 ± 4% in the calcium...
ion induced contractions of the aortic rings incubated with *P. pellucida*, which was significantly (p<0.05) higher than that of the control.

Effect of Peperomia pellucida extract on CYP enzyme activities

The inhibitory impact of *Peperomia pellucida* extract on the activity of CYP3A4 enzyme is displayed in Figure 5, using both HLMs and heterologously expressed CYP3A4 microsomes and used to generate IC_{50} values which were calculated to be 0.153 ± 0.054 mg/ml and 0.466 ± 0.126 mg/ml, respectively.

Discussion

The major findings of this study are that the aqueous extract of *Peperomia pellucida* produced a dose-dependent decrease in systolic blood pressure, diastolic blood pressure, MAP and heart rate in normotensive rats. The observed fall in BP is in keeping with the traditional use of *Peperomia pellucida* as an antihypertensive agent. The data suggest that the extract had a negative chronotropic effect. Our results also reveal that the muscarinic receptor antagonist, atropine, (atropine may act by blocking the effect of acetylcholine on the heart. Alternatively, atropine may block the action of endothelial acetylcholine acting over the receptor M_{1}, that induces vasodilation) and the beta blocker, propranolol, (Propranolol, on the other hand, may oppose the vascular smooth muscle relaxation induced by the activation of the beta 2 receptor by endogenous epinephrine) significantly (p<0.05) reduced the MAP, while the histaminergic receptor antagonist, methyamine, did not inhibit the hypotensive effect of the *Peperomia pellucida* extract maybe due to the receptors involved (H_{1}-receptors mediating contraction and H_{2}-type receptors relaxation. However, the nitric oxide synthase inhibitor, L-NAME, completely blocked the hypotensive effect and caused a reduction in heart rate. The complete blockade with L-NAME indicated that the plant extract exerts its hypotensive effect via the endothelium-mediated / nitric oxide pathway. This result was further confirmed by the vasoconstriction action of the extract on endothelial intact rings, which was not seen in endothelium denuded rings.

PPAE caused a significant reduction in phenylephrine-induced contraction of aortic rings and a rightward shift of the dose-response curve; this may indicate a non competitive interaction between PPAE and phenylephrine,

The decreased phenylephrine and Potassium-induced contraction in the aortic rings suggested the involvement of Ca^{2+}. However, in the investigation of the role of Ca^{2+} channels Ca^{2+-} induced contraction in the presence of *Peperomia pellucida* showed an enhanced calcium-induced contractions. Nitric oxide and cGMP has been reported to inhibit calcium channels as a mechanism of vasorelaxation in vessels [25], our results suggests that the vasorelaxation of blood vessel may not be attributed to the effect of the *Peperomia pellucida* on calcium-mediated antagonism of voltage-stimulated Ca^{2+} channels in the vascular tissues a paradoxical finding. Villar et al. [26] had reported that biflavonoids induced endothelium-dependent relaxation that was unaltered by removal of extracellular calcium, *Peperomia pellucida* is reported to contain flavonoids and essential oils [15] and this may possibly have contributed to the observed effect in this study. The vasoconstriction effect of *Peperomia pellucida* was observed only in endothelium-intact but not denuded aortic rings, it therefore suggests that the vasorelaxation is endothelium dependent [21,27-29].

Given that *Peperomia pellucida* is used as a complementary medicine and taken along with other medications, it was also important to study its inhibitory potencies against CYP3A4, an enzyme key to evaluating drug interactions. CYPs are responsible for the metabolism of numerous hypertensive therapeutics, including calcium channel blockers, such as diltiazem, felodipine, verapamil amloidipine, lercanidipine, nifedipine, nisoldipine, nitrrendipine, HMG-CoA reductase inhibitors such as simvastatin, atorvastatin, cerivastatin, lovastatin and other important classes of drugs including antiretrovirals, immunosuppressants and
antibiotics. Potent inhibition of this enzyme could result in clinically relevant drug adversities. *Peperomia pellucida* aqueous extract inhibited CYP3A4 enzyme activity in both human liver microsomes and heterologously expressed microsomes in the sub milligram/ml levels, which appear to be poor in potency, especially compared with the known potent inhibitor ketoconazole which has an IC₅₀ value of 3.1x10⁻⁹ mg/ml. Other medicinal plant extracts have been noted to have IC₅₀ values ranging between 0.1 mg/ml [30] to more potent <0.01 mg/ml values [31,32]. Although conclusive determinations can only be drawn from clinical studies, the weak inhibition displayed by the *Peperomia pellucida* extract in this in-vitro investigation, is indicative of a fairly low likelihood of clinically observable interactions and adversities through CYP3A4 mediated metabolism.

Conclusion

The results from this study show that the aqueous extract of *Peperomia pellucida* induces hypotension and bradycardia in normotensive rats via nitric oxide dependent mechanisms. *Peperomia pellucida* aqueous extract displayed poor in vitro inhibition on CYP3A4 enzyme making it unlikely to impart clinically significant pharmacokinetic drug interactions via the inhibition of this enzyme. This data validate the use of this plant extract as a traditional medicine against hypertension.

Acknowledgement

This research was funded by the University of West Indies New Initiative grant No: 15053P and by the Forest Conservation Fund and International Foundation for Science (IFS). We also thank Mr. Patrick Lewis and Dr Sylvia Mitchell for the identification and verification of the plant.

Conflict of Interest

The authors declare that there is no conflict of interest.

References

