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Introduction
Breast cancer is a cancer that begins in the tissues of the breast. 

It develops as a result of uncontrolled growth of altered cells of the 
breast [1]. These cells form a tumor, which can be palpated and felt 
by some females as a lump or mass during breast self-examination. 
Recent studies have indicated that one in eight women in the United 
States (U.S) will develop invasive breast cancer during their lifetime 
[2]. Regardless of what race and ethnicity women belong to, breast 
cancer in U.S. is the most common cancer in women excluding some 
kinds of skin cancer [3]. It accounts for a very high prevalence of 16% 
among all cancer types [4]. In 2008, breast cancer claimed 458,400 
lives [5]. Moreover, approximately 60% of deaths due to breast cancer 
occurred in developing nations, which contrasted the common belief 
among cancer researchers that breast cancer is prevalent in developed 
countries. In 2010, 206,966 women were diagnosed with breast cancer 
and 40,996 women died from the disease in the US [6]. The incidence 
rate of breast cancer among White females is 119.5 per 100,000 
population, which is highest among all races [3]. 

Breast cancer is the most common cancer among American 
women accounting for the highest overall incidence rate of 123.1 per 
100,000 population among all cancers [1,6]. Some major known risk 
factors of breast cancer are age, smoking, excessive alcohol drinking, 
obesity, lactation, and family history [7,8]. It was believed that level of 
awareness, fewer mammograms, socio-economic factors, and lack of 
access to health care are strong risk factors for breast cancer. However, 
recent studies indicate that ethnic differences could also be an important 
factor associated with breast cancer mortality and incidence rates [1].

In 2013, an estimated 232,340 new cases of invasive breast cancer 
diagnosis were expected to be diagnosed among US women along 
with an estimated 64,640 additional cases of in situ breast cancer. 
Approximately 39,620 women were expected to die from breast 
cancer [9]. The incidence rate of breast cancer among all racial and 
ethnic groups remained stable from 2004-2008. The death rates among 
all ethnic groups began decreasing in the early 1990s except for the 
American Indians/Alaska Natives [2]. According to the American 
Cancer Society, sufficient evidence supports the fact that there are 
disparities among breast cancer death rates by state, socioeconomic 
status, and race/ethnicity [2]. Research focusing on each of these 
determinants is necessary in order to have an understanding of the 

breast cancer epidemic among American women. Despite the fact 
that age remains the strongest risk factor for breast cancer, race and 
ethnicity also contributes to the increased probability of developing 
breast cancer [1]. White women are more likely to develop breast 
cancer compared to any other racial group in the United States [1].

According to the US Census Bureau, 50.0 million Americans, 
or 16% of the total population identified themselves as Hispanic or 
Latino in 2010 [4]. About 17,100 diagnosis among Hispanic women 
were expected to be diagnosed and 2400 were expected to die from 
breast cancer in 2012 [4]. Among all ethnicities in US, the overall death 
rates of breast cancer are highest among Hispanic women [3]. Lack of 
awareness and inaccessibility to health care are possible factors that 
explain the elevated risk of breast cancer among Hispanic women as 
compared to other ethnic groups [1]. 

Although previous studies suggest that Mexican women have 
a lower risk of developing breast cancer, current research indicates 
an increase in the incidence rates of breast cancer among Mexican-
American women. The Arizona Cancer Center and three Mexican 
universities have collaborated in the Ella Binational Breast Cancer 
Study (EBBCS) to gather data that can provide insight on the breast 
cancer differences between Mexican native and Mexican-American 
women [1]. According to the EBBCS, Mexican women who live in the 
US have increased risk of breast cancer due to lifestyle and reproductive 
factors. Studies conducted on all other U.S. born Hispanic women 
correspond to the EBBCS findings. Physical inactivity, early menarche, 
late menopause, postmenopausal obesity, and alcohol consumption 
are responsible for the increase in the risk of breast cancer among 
the Mexican-American women [4]. On the other hand, having more 
children breast-feeding for a longer period of time, active lifestyle, and 
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Abstract
The purpose of this paper is to develop a statistical probability model and to obtain posterior inference for the 

parameters given the survival times of the White Hispanic female cancer patients. Stratified random sample of White 
Hispanic female patients’ survival data was used to derive a best fit statistical probability model. The study sample was 
extracted from the Surveillance Epidemiology and End Results (SEER) cancer registry database. Three model building 
criterions were utilized; Akaike Information Criteria (AIC), Bayesian Information Criteria (BIC), and Deviance Information 
Criteria (DIC) to measure the goodness of fit. We found that the Exponentiated Weibull model fits the survival times 
better as compared to other widely known statistical probability models. The Bayesian approach is employed to derive 
the posterior inference for the parameters. 
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more fiber consumption lowers the risk of getting breast cancer among 
women born in Mexico [1].

Cancer survival data is recorded and stored at various hospitals and 
cancer registries, so that it can be used for future analysis. There is a 
high demand for novel statistical analysis and methods to understand 
such type of data in a scientific manner. Statistical analysis can give an 
idea of inferences about the exiting survival data and its probability 
model.

The main goals of this paper are (i) to review certain right skewed 
models; (ii) to give a justification that the given sample data set follows 
a specific model by using model selection criterions for goodness 
of fit tests; and (iii) to perform a Bayesian analysis of the posterior 
distribution for the parameters.

This paper is organized as follows. A real breast cancer survival 
data example related to goodness of fit and reparameterization, and 
posterior inference for the model parameters of white ethnicity are 
presented in Section 2. Finally, conclusion is added in Section 3.

Probability Model Testing
The data extracted from healthcare experiments may follow several 

statistical probability models, for example, exponential, gamma, 
lognormal, Weibull, exponentiated exponential (EE), exponentiated 
Weibull (EW), and beta generalized exponential (BGE), etc. Statistical 
methodologies are immensely necessary to understand and make 
scientific conclusions from such type of data.

There are many statistical probability models have been used 
in modeling survival data. In this paper we consider exponentiated 
exponential model (EEM), beta generalized exponential (BGEM), 
exponentiated Weibull model (EWM), and beta inverse-Weibull 
(BIW) because for specific values of the parameters they reduces to 
certain statistical probability models.

The exponentiated exponential model (EEM) is used in modeling 
the data from engineering and biomedical sciences. The EEM has 
two parameters, scale and shape. A random variable x is said to have 
an exponentiated exponential distribution if its probability density 
function (pdf) is given by 

{ } { }( ) 1
( ) =   exp  ( )  1 exp  ( ) ,

α
α λ λ λ

−
− − −p x x x

where α>0 and λ>0 are the shape and scale parameters, respectively.

The probability density function of beta generalized exponential 
model is given by

{ } { }( ) { }( )( ) 11  ( ) =   exp ( )  1  exp ( )  1  1  exp ( ) ,
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α αα λ λ λ λ
−−

− − − − − −
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where the shape parameter, α>0 and the scale parameter, λ>0. There 
are two additional parameters, a>0 and b>0 whose role is to introduce 
skewness and to vary tail weight [10]. The BGE model generalizes some 
well-known models; beta exponential and generalized exponential 
models are the special cases.

Mudholkar and Srivastav [11] presented the first exponentiated 
Weibull model (EWM). The probability density function for the 
exponentiated Weibull model is given by

{ } { }( ) 11( ) =    exp  ( )  1  exp ( ) ,
α

β β βαβλ λ λ
−

− − − −p x x x x  

where α>0 and β>0 are the shape parameters, and λ>0 is the scale 
parameter.

The beta inverse-Weibull (BIW) model is one of the widely used 
distributions for problems in medicine and reliability. It shows a good 
fit to several data sets such as the times to breakdown of an insulating 
fluid and subject to constant tensions [12]. The probability density 
function of beta inverse-Weibull model is given by

{ } { }( ) { }( )
( 1) 1 1 ( ) =   exp  ( )  exp  ( )  1  exp  ( ) ,
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− − −− − − −
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where β>0 is the shape parameter, and two additional parameters, a>0 
and b>0 whose role is to introduce skewness and to vary tail weight.

A Bayesian method is used to explore the posterior probability for 
the parameters from the EEM, BGEM, EWM, and BIWM. The purpose 
of Bayesian method is to develop the posterior inference for the 
parameters given a set of observed data. For further information about 
Bayesian method, the readers can refer to several published works 
[13-19]. Additional applications of Bayesian method for predictive 
inference have been discussed by a number of authors [20-26]. 

Example of Breast Cancer Survival Data
We used the breast cancer data (N=657,712) from Surveillance, 

Epidemiology and End Results (SEER, 1973-2009) cancer registry 
website in the USA [27]. In the USA, there are twelve states that collect 
breast cancer patients’ information. The total SEER data were by gender: 
males=4,269 and females=653,443. Among the total females=608,032, 
White Hispanic=22,639, White non-Hispanic=531,562. Since there is 
a small chance that breast cancer will occur in males, they were not 
considered in this study. Stratified random sampling scheme was used 
to randomly select a sample of nine states out of twelve data-recorded 
states to represent White Hispanic breast cancer cases. Exclusion of 
three states will allow other researchers to perform external validation 
of our findings, since the information-theoretic criteria are essentially 
internal validations. However, external validation is beyond the scope 
of the present study. Finally, a simple random sampling (SRS) method 
was then used to select 2,000 White Hispanic patients from the selected 
nine states. 

Goodness of fit and reparameterization

The log-likelihood function from the EE model which is given by

 { }( )
1 1

( , | ) =  log( ) + log( ) ( 1) log 1  exp ( )   .α λ α λ α λ λ
= =

+ − − − −∑ ∑

n n

i i
i i

n n x xx

The most commonly used methods to measure the goodness of 
fit for the models are Akaike Information Criterion (AIC), Deviance 
Information Criterion (DIC), and Bayesian Information Criterion 
(BIC). Among these methods, DIC is the most widely used method. It 
is a Bayesian measure of fit, which is used for comparison of different 
models where the samples of the posterior distribution of parameters 
are obtained by Markov chain Monte Carlo (MCMC) methods, for 
example, the use of public data by Congdon [28,29]. The values of 
DIC can be both positive and negative. Model with lower DIC value 
is considered better than others. BIC is an asymptotic result assumed 
that the distribution of data is an exponential family. Similar to AIC, 
given any two estimated models, the model with a lower value of BIC 
is preferred. We used multiple information-theoretic criteria in this 
study to see whether or not each criterion agrees in selecting a best 
fitting model. Achcar et al. [30] used a re-parameterization for certain 
skewed models. A re-parameterization method may apply considering 
the log-likelihood functions based on x=(x1,x2,…,xn) from the models 
described earlier, which are given below:
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Assume ρ1=log(α) and ρ2=log(λ). We further assume that ρ1 and ρ2 
are independently distributed. To obtain non-informative prior for ρ1 
and ρ2, let a uniform prior distribution for ρi be U(- c ,  c ),    = 1,  2. ∀i i i   

The log-likelihood function from the beta generalized exponentiated 
model, which is given by
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Assume ρ1=log(a); ρ2=log(b); ρ3=log(α); and ρ4=log(λ). We 
further assume that ρ1, ρ2, ρ3, and ρ4 are independently distributed. To 
obtain non-informative prior for ρ1, ρ2, ρ3, and ρ4 let a uniform prior 
distribution for ρj be  U(- d ,  d ),    = 1,  2,  3,  4. ∀j j j   

The log-likelihood function from the EW model which is given by
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Assume ρ1=log(α); ρ2=log(β); and ρ3=log(λ). We further assume 
that ρ1, ρ2 and ρ3 are independently distributed. To obtain non-
informative prior for ρ1, ρ2 and ρ3, let a uniform prior distribution for 
ρk be  U(- e ,  e ),    = 1,  2,  3. ∀k k k   

The log-likelihood function from the beta inverse Weibull model, 
which is given by

the least (19423.700) in the case of EWM. The estimated value of BIC 
(19442.001) is very close to the lowest (19441.602) while the DIC value 
is the lowest (19423.700) in the case of EWM. Comparing the estimated 
values of AIC, BIC, and DIC for the models, the EWM fits better for the 
survival days because it produces smaller values of AIC, BIC, and DIC. 

Table 2 indicates summary results of the posterior distribution of 
the parameters from the exponentiated exponential by using the White 
Hispanic breast cancer patient’s survival data. By generating the values 
of the  ρ1 and ρ2 from the data, the results of the posterior distribution 
parameters α and λ are estimated using the MCMC method. The log-
likelihood function is derived from the exponentiated exponential 
model and then its parameter values are assigned to the appropriate 
theoretical probability distributions. The WinBugs software is used 
to obtain the summary results of the parameters. After removing the 
burn-in samples, the remaining samples are treated as if the samples are 
from the original distribution. The procedure was conducted by 50,000 
Monte Carlo repetitions to produce the inference for the posterior 
parameters in Table 2. Figure 1 displays the graphical representation 
of the parameters behavior. After 50,000 Monte Carlo repetitions, it 

Model criterions AIC BIC DIC
Exponentiated exponential 19430.400 19441.602 19430.426
Exponentiated Weibull 19425.700 19442.001 19423.700
Beta generalized 
exponential

19433.300 19455.703 19429.300

Beta inverse Weibull 19444.400 19465.700 19442.300

Table 1: Selection of the best model for White Hispanic females on the basis of 
AIC, BIC, and DIC criterions.

Node Mean SD MC error Median 95% CI Sample
alpha 8.152 0.3771 0.005046 8.144 (7.44, 8.909) 50,000
lambda 0.0351 7.19E-04 9.50E-06 0.0351 (0.03369, 

0.03652)
50,000

rho1 2.097 0.04627 6.18E-04 2.097 (2.007, 2.187) 50,000
rho2 -3.35 0.02049 2.71E-04 -3.35 (-3.39, -3.31) 50,000

Table 2: Summary results of the posterior parameters in the case of exponentiated 
exponential for White Hispanic females breast cancer patients (n=2,000).

Node Mean SD MC error Median 95% CI Sample
alpha 6.338 0.3607 0.0171 6.295 (5.744, 7.164) 50,000
beta 1.099 0.01956 0.001189 1.103 (1.052, 1.124) 50,000
lambda 0.02083 0.002238 1.38E-04 0.02019 (0.01839, 0.02642) 50,000
rho1 1.845 0.05629 0.002639 1.84 (1.748, 1.969) 50,000
rho2 0.09379 0.01798 0.001095 0.0981 (0.05065, 0.1166) 50,000
rho3 -3.877 0.1015 0.006212 -3.903 (-3.996, -3.634 50,000

Table 3: Summary results of the posterior parameters in the case of exponentiated 
Weibull (EW) for White Hispanic females breast cancer patients (n=2,000).

Node Mean SD MC error Median 95% CI Sample

a 4.741 1.319 0.08746 4.483 (2.928, 7.226) 50,000

alpha 1.811 0.4869 0.03249 1.777 (1.093, 2.665) 50,000

b 1.042 0.02052 2.94E-04 1.044 (1.003, 1.071) 50,000

lambda 0.03407 8.50E-04 1.64E-05 0.03404 (0.03246, 0.03579) 50,000
rho1 1.518 0.2774 0.01853 1.5 (1.074, 1.978) 50,000
rho2 0.04052 0.01977 2.83E-04 0.04303 (0.002838, 0.0688) 50,000
rho3 0.5564 0.2759 0.01844 0.5747 (0.08872, 0.9801) 50,000
rho4 -3.38 0.02494 4.80E-04 -3.38 (-3.428, -3.33) 50,000

Table 4: Summary results of the posterior parameters in the case of beta 
generalized exponentiated for White Hispanic females breast cancer patients 
(n=2,000).

Node Mean SD MC error Median 95% CI Sample

a 1.031 0.01789 9.39E-05 1.031 (1.002, 1.06) 50,000

b 1.047 0.02722 1.25E-04 1.046 (1.002, 1.092) 50,000

beta 403.2 0.2026 0.001536 403.3 (402.7, 403.4) 50,000
rho1 6 5.03E-04 3.81E-06 6 (5.998, 6.0) 50,000
rho2 0.03037 0.01736 9.11E-05 0.03054 (0.001552, 0.05857) 50,000
rho3 0.04527 0.02601 1.20E-04 0.0453 (0.002265, 0.08786) 50,000

Table 5: Summary results of the posterior parameters in the case of beta inverse 
Weibull for White Hispanic females breast cancer patients (n=2,000).

( ) ( ) { }( )
1 1 1
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Assume ρ1=log(β); ρ2=log(a); and ρ3=log(b). We further assume 
that ρ1, ρ2 and ρ3 are independently distributed. To obtain non-
informative prior for ρ1, ρ2 and ρ3 let a uniform prior distribution for ρg 
be U(- f ,  f ),    = 1,  2,  3. ∀g g g   

Table 1 presents the results of the measures of goodness of fit. The 
posterior distributions for the parameters and their results are reported 
in Tables 2-5. The posterior kernel densities for the parameters are 
given in Figures 1-4. Specifications for the kernel density estimation 
were the WinBugs defaults.

Results of goodness of fit tests and posterior inference for the 
parameters from the White Hispanic survival data

The following AIC, BIC, and DIC values are calculated and the 
posterior inference for the parameters with their corresponding kernel 
densities are obtained. 

Table 1 consists of AIC, BIC, and DIC values for the EE, EW, BGE, 
and BIW models. Lower values of AIC, BIC, and DIC infer better 
model fit. The data fits EW distribution better than other models. The 
estimated value of AIC is the lowest (19425.700) while the DIC value is 
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deviates from symmetric distribution, and other model parameters 
β and λ are distributed as skewed models. The parameter  ρ1 deviates 
from the normal; and both ρ2 and ρ3 form skewed models. 

Table 4 indicates the summary results of the posterior distribution 
of the parameters from the beta generalized exponentiated model by 
using the White Hispanic female breast cancer patients’ data. The 
WinBugs software is used to obtain the summary results (Mean, SD, 
MC Error, Median, and Confidence Intervals) of the parameters. Figure 
3 displays the graphical representations of the parameters for female in 
the case of beta generalized exponential. It is noted that the parameters 
λ and ρ4 from the beta generalized exponential exhibit approximate 
normal distribution. The other parameters tend not only non-uniform, 
they are often not even remotely symmetric distributions. 

is noted that the kernel densities for both shape and scale parameters 
exhibit approximately symmetric distribution. 

Table 3 indicates the summary results of the posterior distribution 
of the parameters from the exponentiated Weibull by using the White 
Hispanic female breast cancer patients’ survival data. By setting the 
generated values  ρ1, ρ2 and ρ3 from the data, the results of the posterior 
distribution parameters α, β, and λ are estimated using the MCMC 
methods. The log-likelihood function is derived from the exponentiated 
Weibull model and then by its parameter values which are assigned to 
appropriate probability distributions. The WinBugs software is used 
to obtain the summary results of the parameters. Figure 2 displays 
the graphical representation of the distributions of the parameters 
behaviors. It is noted that the distribution of the shape parameter α 
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Figure 1: Kernel density of the posterior parameters in the case of exponentiated exponential for White Hispanic females breast cancer 
patients (n=2,000).
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Figure 2: Kernel density of the posterior parameters in the case of exponentiated Weibull for White Hispanic females breast cancer patients (n=2,000).
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Figure 3: Kernel density of the posterior parameters in the case of beta generalized exponential for White Hispanic females’ breast cancer patients 
(n=2,000).
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Figure 4: Kernel density of the posterior parameters in the case of beta inverse Weibull for White Hispanic females’ breast cancer patients (n=2,000).
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Table 5 indicates the summary results of the posterior distribution 
of the parameters from the beta inverse Weibull model by using the 
White Hispanic female breast cancer patients’ survival data. The 
WinBugs software is used to obtain the summary results (Mean, SD, 
MC Error, Median, and Confidence Intervals) of the parameters. Figure 
4 displays the graphical representations of the parameters for female in 
the case of beta inverse Weibull model. It is noted that the parameters 
β and ρ1 from the beta inverse Weibull exhibit skewed distribution, and 
other parameters remains approximately uniform distributions.

Conclusion
Several statistical models were used to identify the best fit model for 

the White Hispanic female breast cancer patients’ survival data. In the 
case of goodness of fit analysis, the breast cancer survival sample for the 
ethnicity followed exponentiated Weibull distribution. The lowest DIC 
value of White Hispanic is 19423.700. In the case of EWM, Mean ± SD 
for α, β, and λ values are 6.338 ± 0.3607, 1.099 ± 0.01956, and 0.02083 
± 0.002238, respectively. 

We determined the inference for posterior parameters given breast 
cancer survival model by using the Bayesian method. By using less 
Markov Chain errors, the inferences for the posterior parameters are 
reported in Tables 2-5. The dynamic kernel densities for each of the 
parameters are reported in Figures 1-4 so that one can observe the 
shape of the kernel density.

Statistical probability models are very important to describe 
inferences for posterior model parameters. To develop the best 
statistical probability model for White Hispanic, we used model 
selection criterions, AIC, BIC, and DIC. The summary results of 
the posterior parameters are reported. The results are obtained after 
running 50,000 Monte Carlo repetitions. The results of the posterior 
distribution of parameters using the breast cancer patients’ survival 
data will contribute a new addition to White Hispanic ethnicity. 
WinBugs software was used to check the goodness of fit tests, to obtain 
the summary results of the posterior parameters, to determine the 
kernel densities of the parameters, and also to carry out all related 
calculations.
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