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Abstract
Background and purpose: Predicting the efficacy of anticancer therapy is the holy grail of drug development 

and treatment selection in the clinic. To achieve this goal, scientists require pre-clinical models that can reliably 
screen anticancer agents with robust clinical correlation. However, there is increasing challenge to develop models 
that can accurately capture the diversity of the tumor ecosystem, and therefore reliably predict how tumors respond 
or resistant to treatment. Indeed, tumors are made up of a heterogeneous landscape comprising malignant cells, 
normal and abnormal stroma, immune cells, and dynamic microenvironment containing chemokines, cytokines 
and growth factors. In this mini-review we present a focused, brief perspective on emerging preclinical models for 
anticancer therapy that attempt to address the challenge posed by tumor heterogeneity, highlighting biomarkers of 
response and resistance. 

Recent findings: Starting from 2-dimensional and 3-dimensional in-vitro models, we discuss how organoid co-
cultures have led to accelerated efforts in anti-cancer drug screening, and advanced our fundamental understanding 
for mechanisms of action using high-throughput platforms that interrogate various biomarkers of ‘clinical’ efficacy. 
Then, mentioning the limitations that exist, we focus on in-vivo and human explant technologies and models, which 
build-in intrinsic tumor heterogeneity using the native microenvironment as a scaffold. Importantly, we will address 
how these models can be harnessed to understand cancer immunotherapy, an emerging therapeutic strategy that 
seeks to recalibrate the body’s own immune system to fight cancer. 

Conclusion: Over the past several decades, numerous model systems have emerged to address the exploding 
market of drug development for cancer. While all of the present models have contributed critical information about 
tumor biology, each one carries limitations. Harnessing pre-clinical models that incorporate cell heterogeneity 
is beginning to address some of the underlying challenges associated with predicting clinical efficacy of novel 
anticancer agents. 

Keywords: Tumor biology; Cancer; Microorganisms; 3D organoids; 
PDX in vivo models

Introduction
Over the past several decades there has been an explosion in 

anticancer drug discovery research, ranging from novel general cytotoxic 
agents that broadly attack malignant features (i.e. rapid proliferation), 
to development of more focused compounds such as kinase-targeted 
small molecules that directly attack addictive oncogenes [1]. Despite 
the aggressive nature of this discovery effort, and the thousands of 
compounds developed and in-development, only 5% of lead drug 
candidates end up advancing through the clinic [2]. Indeed, a major 
limitation to drug development and clinical success remains our ability 
to predict patient outcomes before reaching clinical trial. The best 
preclinical model would be relatively inexpensive, amenable to high-
throughput screening, and most importantly, reflect human-tumor 
biology as closely as possible. Indeed, this latter challenge underpins 
a major hurdle in the development of successful preclinical models for 
cancer drug discovery. 

The notion that cellular heterogeneity limits the therapeutic 
success of drugs dates back more than seven decades to the original 
observations of Luria and Delbrück in microorganisms, which were 
later adapted to tumor biology [3]. Indeed, more recent efforts in basic 
biology and clinical evidence have begun to uncover just how integral 
tumor heterogeneity is for therapy response and resistance. For example, 
the earlier discovery that small populations of inherently drug resistant 
cancer cells exhibiting stem-like features [4] has been overshadowed 
by newer evidences that stochastic gene expression [5] or non-genetic 

cell state dynamics arising from spontaneous phenotypic switching [6] 
are just the ‘tip of the iceberg’. Indeed, our own research has recently 
revealed that different cell states can even be induced by drug pressure, 
itself [7,8] via deterministic mechanisms [9]. Such evidences beg the 
question: what are novel methods we should be employing to study the 
preclinical efficacy of drugs, which incorporates the inherent dynamic, 
stochastic and deterministic processes that underlie response and 
resistance? 

Despite rigorous efforts to design novel platforms for drug 
discovery, preclinical cancer models have been challenged by their 
inability to faithfully map to patient outcomes [10-13]. While much of 
the early cancer drug discovery was performed using in-vitro conditions 
in cell-based models that poorly represent actual malignancies, here we 
will describe some emerging tools based on more complex co-culture 
technology using live cell in-vitro and human explant experiments, as 
well as discussing in-vivo platforms currently in use. As described below, 
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we argue that preclinical models, which introduce inherent biological 
complexity, preserve the intrinsic dynamism of cellular heterogeneity, 
and maintain the 3-dimensional architecture of the native tumor, will 
lead to improved strategies for drug development.

Present Tools or Models
In-vitro preclinical cancer models have been a mainstay of research 

since the first cancer cell line was established from humans [14]. In 
the past several decades, techniques and tools have been improved 
by moving from 2-dimensional cell culture, to more improved 
3-dimensional cell growth, which better recapitulates the physiologic 
environment and growth patterns of solid tissue and tumors [15].   

From 2-D cell line models to patient derived 3-D organoids

Pre-clinical research to delineate molecular mechanisms that drive 
cancer growth and progression is usually carried out in 2-dimensional 
(2-D) cell culture systems, which are efficient and reliable, but lack the 
appropriate cell-cell contact environment typically observed in vivo. 
However, some successes using these less complex models have been 
noted. For example, ChemoFx - a 2-D culture based chemoresponse 
selection marker, has shown some clinical benefit and utility in 
gynecological cancer [16-18]. The ChemoFx® Assay harnesses and 
platform (a phenotype-based, using a short-term culture) designed to 
predict the sensitivity and resistance of a given patient’s solid tumor to 
a variety of chemotherapy agents. A portion of a patient’s solid tumor, 
as small as a core biopsy, is mechanically disaggregated and established 
in primary culture where malignant epithelial cells migrate out of 
tumor explants to form a monolayer. Cultures are verified as epithelial 
and exposed to increasing doses of selected chemotherapeutic agents. 
The number of live cells remaining post-treatment is enumerated 
microscopically using automated cell-counting software. The 
resultant cell counts in treated wells are compared with those in 
untreated control wells to generate a dose-response curve for each 
chemotherapeutic agent tested on a given patient specimen. Features of 
each dose-response curve are used to score a tumor’s response to each 
ex-vivo treatment as “responsive,” “intermediate response,” or “non-
responsive.” Collectively, these scores are used to assist an oncologist in 
making treatment decisions. 

Despite using patient-derived cells and tissue, 3-dimensional 
architecture and preserved heterogeneity of tumor cells in-vitro is a more 
accurate model for the complex microenvironments and surrounding 
stromal components. These more complicated in-vitro models are 
termed ‘organoids’ [19]. Organoids are developed by explanting 
dissociated patient-derived cells into a semi-solid extracellular matrix 
and expanding these cells in growth-factor-enriched medium [20]. 
Organoids have the distinct advantage of growing in three dimensions, 
and they often recreate the endogenous architecture of the tissue 
from which they were derived, theoretically recapitulating the in vivo 
tumor environment more closely than 2D cultures on plastic, enabling 
maintenance of the same driver mutations that were identified in the 
primary tumor. Recently, organoids have been developed from patients 
with multiple cancer indications, each one requiring unique scaffolds 
and stromal components [20-22]. 

Excitingly, new 3D culture systems are beginning to incorporate 
advances in biomaterials, microfluids and tissue engineering to 
improve culture quality and reproducibility. Indeed, microfluidics can 
not only empower methods of isolation and downstream manipulation 
of circulating tumor cells (CTCs) from the blood of patients with 
cancer have dramatically improved over the past few years [23]. More 

importantly, these techniques enable researchers to capture the inherent 
shear fluid pressures that are found in the native microenvironment 
of the tumor, a feature that can ‘turn on’ inherent drug resistance 
mechanisms, and dynamically influence heterogeneity of spheroidal 
cell clusters [24]. 

PDX in vivo models

While in-vitro models enable high-throughput screening of drugs, 
they fail to take into account the full complexity of a living organism. 
In-vivo models use patient biopsy material implanted subcutaneously 
or orthotopically and expanded in vivo, which have the theoretical 
advantage of retaining some of the histology, gene expression and 
somatic genetics of the patient tumor [25]. PDX models are becoming 
standard in the drug discovery pharmacology toolbox for testing 
efficacy; they have also been suggested as avenues for selecting patient 
therapies [26]. Recently, unique ex-vivo live tissue sensitivity assay 
(LTSA) based PDX model reflected clinical patients' responses and 
this could be used as a personalized strategy for improving systemic 
therapy effectiveness in patients with pancreatic cancer [27]. However, 
this approach requires a significant amount of lead-time, redering acute 
treatment decision-making difficult.

Although animal models have been an exciting advance 
in our understanding of drug effect, pharmacodynamics and 
pharmacokinetics, they are limited by the inability for high-throughput 
screening given the expensive, time consuming and laborious efforts 
required. CIVIO, an in vivo based technology platform, enables 
simultaneous assessment of up to eight drugs or drug combinations 
within a single solid tumor [28]. The platform is currently designed for 
use in animal models of cancer and patients with superficial tumors 
but can be modified for investigation of deeper-seated malignancies. 
This CIVIO technology essentially allows for medium-throughput 
screening of drug activity in living animals and this application has 
been tested in human xenografted mouse models including a model of 
chemoresistant lymphoma, canine and in human patients [28].

Explant, organotypic culture

Organotypic tumor slices retain the complexity of tumors in vivo 
without extensive manipulation of the tissue. In other words, they 
preserve the 3D environment of the native tumor or to preserve the 
heterogeneity of the original tumor admixed with stromal cells. 
Live thin sections of the original patient solid tumor maintained in 
commercial culture plate inserts have been treated with drugs; under 
these conditions, the tumor cells showed appropriate on-pathway 
responses to inhibitors Preclinical model of organotypic culture for 
pharmacodynamic profiling of human tumors. Using such improved 
methods recently cytotoxicity responses of individual tumor slices to 
chemotherapy was assessed in multiple solid tumors [29,30]. 

CANScriptTM is a rapid reproducible ex-vivo tumor explant system, 
developed to mimic native tumor microenvironment. By including 
autologous paracrine growth factors, cancer specific customized 
matrix support, autologous immune environment along with other 
growth promoting conditions, significant improvements were observed 
in viability, proliferation of tumors including retention of tumor/
stroma, cancer phenotypes, integrity at micro-architecture level and 
maintenance of functional signaling network. By recreating of the 
complete tumor microenvironment, CANscript™ evaluates how a 
unique patient’s tumor responds to tested treatments, in real-time. 
Unlike alternative platforms, CANscript™ does not manipulate or 
distort tumor tissue for evaluation [31].
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development more simple and inexpensive than ever before. Moreover, 
we are entering a new era in medicine in which novel compounds are 
now being introduced to target, and re-awaken the body’s own immune 
defense to fight cancer. The renaissance in cancer immunotherapy is 
bringing with it added complexity for preclinical drug-development 
tools. While some models enable high-throughput screening of drugs, 
they cannot accurately re-capitulate the tumor-immune contexture, and 
complexity of the microenvironment. Other models that rely on animal 
systems, like in-vivo murine PDX models, fail to faithfully correlate to 
the clinical context given the interspecies dependence. Finally, some 
researchers have attained an elegant admixture of models, which can 
re-create the microenvironment, retain tumor-immune contexture and 
keep clinical correlation using autologous systems. This latest example, 
although robust, still requires further development to enable high-
throughput screening, which will advance our capability and meet the 
demands of future drug development (Figure 1).
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Biomarkers for Preclinical Modeling
Screening apoptosis

While pre-clinical models for cancer pose their own fundamental 
biological challenges, screening drugs requires a concerted effort to 
identify specific biomarkers that infer anticancer efficacy. As a strategy 
to improve the biomarkers predictive of clinical response or resistance, 
novel platforms have been engineered. For example, ChemoINTEL 
(original name MICK Assay) measures in-vitro apoptotic response of 
a patient’s tumor to chemotherapy drugs using multiple biochemical 
and morphologic apoptotic markers within single cells continuously 
over a 48 hour cell culture period. Based on foundational work done 
at Vanderbilt University, ChemoINTEL is a new category of chemo 
sensitivity assay relying on drug-induced apoptotic response in cell 
lines rather than classic phenotypic markers that have been employed 
for decades [32].

BH3 as an emerging target

In addition to apoptosis, cytotoxic chemotherapy targets elements 
common to all nucleated human cells, such as DNA and microtubules, 
which induce cell death in tumor cells through unique pathways. 
Clinical response to these drugs correlates with, and may be partially 
governed by, the pre-treatment proximity of tumor cell mitochondria to 
the apoptotic threshold, a property called mitochondrial priming. BH3 
profiling is used to measure priming in tumor cells from patients with 
multiple myeloma, acute myelogenous and lymphoblastic leukemia, 
and ovarian cancer. This assay measures mitochondrial response 
to peptides derived from pro-apoptotic BH3 domains of proteins 
critical for death signaling to mitochondria. Patients with highly 
primed cancers exhibited superior clinical response to chemotherapy. 
In contrast, chemoresistant cancers and normal tissues were poorly 
primed. Manipulation of mitochondrial priming might enhance the 
efficacy of cytotoxic agents [33].

Conclusion and Perspectives
Drug development is only going to accelerate in the next several 

decades. Indeed, drug combinations, ease of identifying new targets, 
and improved medicinal chemistry techniques are making drug 

Figure 1: Clinical correlation using autologous systems.
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